A Coalgebraic View of ε -Transitions

Alexandra Silva Bram Westerbaan

Institute for Computing and Information Sciences Radboud University Nijmegen, The Netherlands

5th Conference on Algebra and Coalgebra in Computer Science

Refresher on ε -Transitions

Non-deterministic automaton for $a^*b^*c^*$:

Refresher on ε -Transitions

Non-deterministic automaton for $a^*b^*c^*$:

ε -Elimination gives:

Refresher on ε -Transitions

Non-deterministic automaton for $a^*b^*c^*$:

 $\varepsilon ext{-Elimination gives:}$

Can we treat ε -elimination $\alpha \mapsto \alpha^{\#}$ coalgebraically?

Outline

1 ε -Elimination for NDAs

Weighted Automata

Definition of NDA (with ε -Transitions)

NDA:

$$X \longrightarrow \wp(A \times X + 1)$$

NDA with ε -transitions:

$$X \longrightarrow \wp((A + \{\varepsilon\}) \times X + 1)$$

Semantics of NDAs

$$q$$
 accepts $w\equiv a_1a_2\cdots a_N$ if
$$q\stackrel{a_1}{\longrightarrow} q_2\stackrel{a_2}{\longrightarrow}\cdots \stackrel{a_N}{\longrightarrow} q_{N+1} \quad {\rm and} \quad q_{N+1} \ {\rm is \ final}$$

Semantics of NDAs

$$q$$
 accepts $w\equiv a_1a_2\cdots a_N$ if
$$q\xrightarrow{a_1}q_2\xrightarrow{a_2}\cdots \xrightarrow{a_N}q_{N+1} \quad \text{and} \quad q_{N+1} \text{ is final}$$

semantics:
$$[\![-]\!]_{\alpha} \colon X \longrightarrow \wp(A^*)$$

$$[\![q]\!]_{\alpha} \ = \ \{\ w \in A^* \colon \ \alpha \text{ accepts } w\ \}$$

Semantics of NDAs with ε -Transitions

$$q$$
 accepts $w \equiv a_1 a_2 \cdots a_N$ if
$$q \xrightarrow{\varepsilon} \xrightarrow{a_1} \cdots \xrightarrow{\varepsilon} \xrightarrow{a_N} \xrightarrow{\varepsilon} q' \text{ and } q' \text{ is final}$$

Semantics of NDAs with ε -Transitions

$$q$$
 accepts $w\equiv a_1a_2\cdots a_N$ if
$$q\xrightarrow[]{\varepsilon}a_1\rightarrow\cdots\xrightarrow[]{\varepsilon}a_N\xrightarrow[]{\varepsilon}q' \text{ and } q' \text{ is final}$$

semantics:
$$\llbracket - \rrbracket_{\alpha}^{\varepsilon} \colon X \longrightarrow \wp(A^*)$$

$$\llbracket q \rrbracket_{\alpha}^{\varepsilon} \ = \ \{ \ w \in A^* \colon \ \alpha \text{ accepts } w \ \}$$

ε -Elimination for NDAs

Sought: NDA $\alpha^{\#}$ with

$$\llbracket - \rrbracket_{\alpha^\#} \ = \ \llbracket - \rrbracket_{\alpha}^\varepsilon$$

ε -Elimination for NDAs

Sought: NDA $\alpha^{\#}$ with

$$\llbracket - \rrbracket_{\alpha^\#} \ = \ \llbracket - \rrbracket_{\alpha}^\varepsilon$$

Solution:

Definition of Trace

$$\operatorname{tr}_{\alpha}: X \longrightarrow \wp(\mathbb{N} \times (A \times X + 1))$$

$$(n,(a,r)) \in \operatorname{tr}_{\alpha}(q) \qquad \iff \qquad q \stackrel{\varepsilon}{\longrightarrow}_n q' \stackrel{a}{\longrightarrow} r$$
 $(n,*) \in \operatorname{tr}_{\alpha}(q) \qquad \iff \qquad q \stackrel{\varepsilon}{\longrightarrow}_n q' \text{ and } q' \text{ is final}$

$\operatorname{tr}_{\alpha}\operatorname{Versus}\,\alpha^{\#}$

$$b \in \alpha^{\#}(q) \iff \exists n \in \mathbb{N}[\ (n,b) \in \operatorname{tr}_{\alpha}(q)\].$$

$\operatorname{tr}_{\alpha} \operatorname{Versus} \alpha^{\#}$

$$b \in \alpha^{\#}(q) \iff \exists n \in \mathbb{N}[\ (n,b) \in \operatorname{tr}_{\alpha}(q)\].$$

More categorically, writing $B = A \times X + 1$

$$X \xrightarrow{\operatorname{tr}_{\alpha}} \wp(\mathbb{N} \cdot B) \xrightarrow{\wp(\nabla)} \wp(B)$$

 $\nabla \colon \mathbb{N} \cdot B \to B$ is the **codiagonal**: $\nabla(n, b) = b$.

$\operatorname{tr}_{\alpha} \operatorname{Versus} \alpha^{\#}$

$$b \in \alpha^{\#}(q) \iff \exists n \in \mathbb{N}[\ (n,b) \in \operatorname{tr}_{\alpha}(q)\].$$

More categorically, writing $B = A \times X + 1$

$$X \xrightarrow{\operatorname{tr}_{\alpha}} \wp(\mathbb{N} \cdot B) \xrightarrow{\wp(\nabla)} \wp(B)$$

 $\nabla \colon \mathbb{N} \cdot B \to B$ is the **codiagonal**: $\nabla(n, b) = b$.

Recursive Description of tr_{α}

$$(0,b) \in \operatorname{tr}_{\alpha}(q) \iff b \in \alpha(q)$$

 $(n+1,b) \in \operatorname{tr}_{\alpha}(q) \iff \exists r \in X \left[q \stackrel{\varepsilon}{\longrightarrow} r \land (n,b) \in \operatorname{tr}_{\alpha}(r) \right]$

Recall, writing $B := A \times X + 1$:

$$\operatorname{tr}_{\alpha} \colon X \longrightarrow \wp(\mathbb{N} \cdot B)$$

Recursive Description of tr_{α}

$$(0,b) \in \operatorname{tr}_{\alpha}(q) \iff b \in \alpha(q)$$

 $(n+1,b) \in \operatorname{tr}_{\alpha}(q) \iff \exists r \in X \left[q \stackrel{\varepsilon}{\longrightarrow} r \land (n,b) \in \operatorname{tr}_{\alpha}(r) \right]$

Recall, writing $B := A \times X + 1$:

$$\operatorname{tr}_{\alpha} \colon X \longrightarrow \wp(\mathbb{N} \cdot B)$$

In $\mathcal{K}\ell(\wp)$ — the Kleisli category of \wp :

$$\operatorname{tr}_{\alpha} \colon X \longrightarrow \mathbb{N} \cdot B$$
.

Universal Property of tr_{α}

Universal Property of tr_{α}

 ξ is the final -+ B-coalgebra in $\mathcal{K}\ell(\wp)$

Universal Property of tr_{α}

 ξ is the final -+ B-coalgebra in $\mathcal{K}\ell(\wp)$

Overview of ε -Elimination for NDAs

In $\mathcal{K}\ell(\wp)$:

Here α is a NDA with ε -transitions with states X and alphabet A and

$$B := A \times X + 1$$
.

Outline

1 ε -Elimination for NDAs

Weighted Automata

Definition of Weighted Automata (with ε -Transitions)

$$\alpha: X \longrightarrow \mathcal{M}(A \times X + 1)$$

Definition of Weighted Automata (with ε -Transitions)

$$\alpha: X \longrightarrow \mathcal{M}(A \times X + 1)$$

$$\alpha: X \longrightarrow \mathcal{M}((A + \{\varepsilon\}) \times X + 1)$$

Definition of Weighted Automata (with ε -Transitions)

$$\alpha: X \longrightarrow \mathcal{M}(A \times X + 1)$$

$$\alpha: X \longrightarrow \mathcal{M}((A + \{\varepsilon\}) \times X + 1)$$

M is the multiset monad

$$\mathcal{M}(X) = \{ \varphi \colon X \to S \mid \mathsf{supp}\,\varphi \text{ is finite} \}.$$

S is a semiring (such as $\mathbb N$ or $\mathbb R$)

Example of a Weighted Automaton

It is a map
$$\alpha \colon X \longrightarrow \mathcal{M}((A + \{\varepsilon\}) \times X + 1)$$
.

$$\alpha(q_1)(a,q_2) = 3.$$

It is a map $\alpha \colon X \longrightarrow \mathscr{M}((A + \{\varepsilon\}) \times X + 1)$.

$$\alpha(q_1)(a,q_2)=3.$$

We would get a trace $\operatorname{tr}_{\alpha} \colon X \longrightarrow \mathscr{M}(\mathbb{N} \cdot (A \times X + 1))$ with

$$\operatorname{tr}_{\alpha}(q_1)(n,(a,q_2)) = 2^n \cdot 3.$$

It is a map $\alpha \colon X \longrightarrow \mathscr{M}((A + \{\varepsilon\}) \times X + 1)$.

$$\alpha(q_1)(a,q_2)=3.$$

We would get a trace $\operatorname{tr}_{\alpha} \colon X \longrightarrow \mathscr{M}(\mathbb{N} \cdot (A \times X + 1))$ with

$$\operatorname{tr}_{\alpha}(q_1)(n,(a,q_2)) = 2^n \cdot 3.$$

 $\operatorname{tr}_{\alpha}(q_1) \in \mathscr{M}(\cdots)$, but the support of $\operatorname{tr}_{\alpha}(q_1)$ is not finite!

The Monad \mathcal{M}

$$\mathcal{M}X = \{ \varphi \colon X \to S \mid \mathsf{supp}(\varphi) \text{ is at most countable } \}$$

The Monad \mathcal{M}

$$\mathcal{M}X = \{ \varphi \colon X \to S \mid \mathsf{supp}(\varphi) \text{ is at most countable } \}$$

Multiplication $\mu : \mathcal{MM}X \to \mathcal{M}X$ is

$$\mu(\Phi)(x) = \sum_{\varphi \in \mathcal{M}X} \Phi(\varphi) \cdot \varphi(x).$$

The Monad \mathcal{M}

$$\mathcal{M}X = \{ \varphi \colon X \to S \mid \text{supp}(\varphi) \text{ is at most countable } \}$$

Multiplication $\mu: \mathcal{MM}X \to \mathcal{M}X$ is

$$\mu(\Phi)(x) = \sum_{\varphi \in \mathcal{M}X} \Phi(\varphi) \cdot \varphi(x).$$

To define \mathcal{M} , we need countable sums on our semiring S!

σ -Semirings

For **every** sequence a_1, a_2, \ldots in S we should have a sum

$$\sum_{n=0}^{\infty} a_n$$

These are σ -semirings. Example: $[0, +\infty]$

σ -Semirings

For **every** sequence $a_1, a_2, ...$ in S we should have a sum

$$\sum_{n=0}^{\infty} a_n$$

These are σ -semirings. Example: $[0, +\infty]$

$$\sum_{n}\sum_{m} a_{nm} = \sum_{m}\sum_{n} a_{nm}.$$

σ -Semirings

For **every** sequence a_1, a_2, \ldots in S we should have a sum

$$\sum_{n=0}^{\infty} a_n$$

These are σ -semirings. Example: $[0, +\infty]$

$$\sum_{n}\sum_{m} a_{nm} = \sum_{m}\sum_{n} a_{nm}.$$

Surprisingly, this entails S is **positive**:

$$a+b=0 \implies a=0 \text{ and } b=0.$$

If a + b = 0, then

Similarly, a = 0

If
$$a + b = 0$$
, then

Similarly, a = 0 Conclusion: \mathbb{R} cannot be (part of) a σ -semiring

$$\begin{array}{c}
\varepsilon|-1 \\
\hline
q_4
\end{array}$$

$$\llbracket q_1
rbracket^{arepsilon}(\Box) =$$

$$\llbracket q_2 \rrbracket^{\varepsilon}(\Box) =$$

$$\llbracket q_3 \rrbracket^{\varepsilon}(\Box) =$$

$$\llbracket q_4 \rrbracket^{\varepsilon}(\Box) =$$

$$[q_1]^{\varepsilon}(\Box) = 1 + 0.5 + (0.5)^2 + \cdots = 2$$

$$\llbracket q_2 \rrbracket^{\varepsilon}(\Box) =$$

$$\llbracket q_3 \rrbracket^{\varepsilon}(\Box) =$$

$$\llbracket q_4 \rrbracket^{\varepsilon}(\Box) =$$

$$[q_1]^{\varepsilon}(\Box) = 1 + 0.5 + (0.5)^2 + \cdots = 2$$

$$[q_2]^{\varepsilon}(\Box) = 1 - 0.5 + (0.5)^2 - \cdots = 2/3$$

$$\llbracket q_3 \rrbracket^{\varepsilon} (\Box) =$$

$$\llbracket q_4 \rrbracket^{\varepsilon}(\Box) =$$

$$[q_1]^{\varepsilon}(\Box) = 1 + 0.5 + (0.5)^2 + \cdots = 2$$

$$[q_2]^{\varepsilon}(\Box) = 1 - 0.5 + (0.5)^2 - \cdots = 2/3$$

$$[\![q_3]\!]^{\varepsilon}(\Box) = 1 + 2 + 4 + 8 + \cdots = +\infty$$

$$\llbracket q_4 \rrbracket^{\varepsilon}(\Box) =$$

$$[q_1]^{\varepsilon}(\Box) = 1 + 0.5 + (0.5)^2 + \cdots = 2$$

$$[q_2]^{\varepsilon}(\Box) = 1 - 0.5 + (0.5)^2 - \cdots = 2/3$$

$$[\![q_3]\!]^{\varepsilon}(\square) = 1 + 2 + 4 + 8 + \cdots = +\infty$$

$$[\![q_4]\!]^{\varepsilon}(\square) = 1 - 1 + 1 - 1 + \cdots$$

Overview of ε -Elimination for Weighted Automata over a σ -Semiring

In $\mathcal{K}\ell(\mathcal{M})$:

Here α is a weighted automaton with ε -transitions states X and alphabet A and

$$FX := A \times X + 1.$$

We have seen:

• ε -elimination coalgebraically à la Hasuo using the trace semantics of Hasuo, Jacobs and Sokolova

We have seen:

- ε-elimination coalgebraically à la Hasuo using the trace semantics of Hasuo, Jacobs and Sokolova
- ullet for weighted automata over σ -semirings

We have seen:

- ε-elimination coalgebraically à la Hasuo using the trace semantics of Hasuo, Jacobs and Sokolova
- ullet for **weighted automata** over σ -semirings
- ullet difficulties for weighted automata over ${\mathbb R}$

We have seen:

- ε-elimination coalgebraically à la Hasuo using the trace semantics of Hasuo, Jacobs and Sokolova
- ullet for weighted automata over σ -semirings
- ullet difficulties for weighted automata over ${\mathbb R}$

and also:

positive semirings à la Gumm

We have seen:

- ε-elimination coalgebraically à la Hasuo using the trace semantics of Hasuo, Jacobs and Sokolova
- ullet for **weighted automata** over σ -semirings
- ullet difficulties for weighted automata over ${\mathbb R}$

and also:

positive semirings à la Gumm

Thank you!

Questions?

Outline

Framework

Recap

We had the following diagram in $\mathcal{K}\ell(\wp)$.

Here α is a NDA with states X and alphabet A and

$$B := A \times X + 1$$
.

Recap

We had the following diagram in $\mathcal{K}\ell(\wp)$.

Here α is a NDA with states X and alphabet A and

$$FX := A \times X + 1.$$

Let **C** be a category which has countable colimits.

Let F be a functor on \mathbf{C} .

Let T be a monad on **C** with Kleisli category $\mathcal{K}\ell(T)$.

Assume F is lifted to a functor \overline{F} on $\mathfrak{K}\ell(T)$ via a distributive law

$$\lambda \colon FT \longrightarrow TF$$
.

Definition

An **automaton** of type T, F is a morphism in $\mathcal{K}\ell(T)$ of the form

$$\alpha: X \longrightarrow \overline{F}X.$$

An ε -automaton of type T, F is a morphism of the form

$$\alpha: X \longrightarrow X + \overline{F}X.$$

Assume that $\mathcal{K}\ell(T)$ has a final \overline{F} -coalgebra

$$\omega \colon \Omega \longrightarrow F\Omega.$$

Writing $\overline{F}_{arepsilon}:=-+\overline{F}$, assume that $\mathcal{K}\ell(T)$ has a final $\overline{F}_{arepsilon}$ -coalgebra

$$\omega_{\varepsilon} \colon \Omega_{\varepsilon} \longrightarrow F\Omega_{\varepsilon}.$$

Assume that $\mathcal{K}\ell(T)$ has a final \overline{F} -coalgebra

$$\omega \colon \Omega \longrightarrow F\Omega.$$

Writing $\overline{F}_{arepsilon}:=-+\overline{F}$, assume that $\mathcal{K}\ell(T)$ has a final $\overline{F}_{arepsilon}$ -coalgebra

$$\omega_{\varepsilon} \colon \Omega_{\varepsilon} \longrightarrow F\Omega_{\varepsilon}.$$

Definition

Let $\alpha\colon X \longrightarrow FX$ be a automaton of type T,F. The semantics of α is the unique homomorphism $[\![-]\!]_\alpha\colon X \longrightarrow \Omega$ from α to ω .

Let B be an object of **C** Note that the morphism in $\mathfrak{K}\ell(T)$

$$\iota_B \colon \mathbb{N} \cdot B + B \longrightarrow \mathbb{N} \cdot B$$

given by $\iota_B = [[\kappa_{n+1}]_{n \in \mathbb{N}}, \kappa_0]$ is the initial -+ B-algebra.

Assume that $\xi_B := \iota_B^{-1}$ is the final - + B-coalgebra in $\mathfrak{K}\ell(T)$.

Definition

Let $\alpha: X \longrightarrow X + \overline{F}X$ be a ε -automaton of type T, F.

1 The **trace** of α is the unique $-+\overline{F}X$ -homomorphism

$$\operatorname{tr}_{\alpha} \colon X \longrightarrow \mathbb{N} \cdot \overline{F} X.$$

from α to the final $-+\overline{F}X$ -coalgebra $\xi_{\overline{F}X}$.

Definition

Let $\alpha: X \longrightarrow X + \overline{F}X$ be a ε -automaton of type T, F.

1 The **trace** of α is the unique $-+\overline{F}X$ -homomorphism

$$\operatorname{tr}_{\alpha} \colon X \longrightarrow \mathbb{N} \cdot \overline{F} X.$$

from α to the final $-+\overline{F}X$ -coalgebra $\xi_{\overline{F}X}$.

2 The **iterate** of α is the map

$$\alpha^{\#} : X \longrightarrow \overline{F}X$$

given by $\alpha^{\#} = \nabla \circ \operatorname{tr}_{\alpha}$ (composition in $\mathfrak{K}\ell(R)$), where

$$\nabla \colon \mathbb{N} \cdot \overline{F}X \longrightarrow \overline{F}X$$

is the **codiagonal** given by $\nabla = [\operatorname{id}_{\overline{F}X}]_{n \in \mathbb{N}}$.

Overview

We have the following diagram in $\mathcal{K}\ell(T)$.

Here α is an ε -automaton of type T, F.

Semantics of ε -Automata

Recall that for an arepsilon-NDA the semantics $[\![-]\!]_{lpha}^{arepsilon}$ is given by

$$\llbracket q \rrbracket_{\alpha}^{\varepsilon} \ = \ \{ \ \tilde{w} \backslash \varepsilon \colon \ \tilde{w} \in \llbracket q \rrbracket_{\alpha} \ \} \ = \ \wp(- \backslash \varepsilon)(\llbracket q \rrbracket_{\alpha}).$$

Definition

Let $-\ensuremath{\setminus} \varepsilon$ be the unique morphism in ${\bf C}$ such that

commutes. That is, $- \setminus \varepsilon = \llbracket - \rrbracket_{\omega_{\varepsilon}^{\#}}$.

Semantics of ε -Automata

Definition

Let $\alpha \colon X \longrightarrow X + \overline{F}X$ be an ε -automaton of type T, F. The semantics of α is the map

$$\llbracket - \rrbracket_{\alpha}^{\varepsilon} \colon X \longrightarrow \Omega$$

given by $\llbracket - \rrbracket_{\alpha}^{\varepsilon} = - \backslash \varepsilon \circ \llbracket - \rrbracket_{\alpha}$ (composition in $\mathfrak{K}\ell(T)$).

Semantics of ε -Automata

Theorem

Let $\alpha: X \longrightarrow X + \overline{F}X$ be an ε -automaton of type T, F. Then the semantics of α and $\alpha^{\#}$ coincide:

$$\llbracket - \rrbracket_{\alpha}^{\varepsilon} = \llbracket - \rrbracket_{\alpha^{\#}}.$$