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Some related work

1. method of exhaustion by Eudoxos, ∼390, BC

2. integration of functions Newton, ∼1665, . . .

3. formalised by Riemann, 1854

4. completed by Lebesgue, 1902

5. generalised by Daniell in 1918, Bochner in 1933, Haar in
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6. we present another generalisation* based on effect algebras

* of integration of [0, 1]-valued functions
with respect to probability measures (≈ [0, 1]-valued measures)
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But why yet another !?

The theory of integration, because of its
central rôle in mathematical analysis and
geometry, continues to afford opportunities for
serious investigation.

— M.H. Stone, 1948
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Universal property

Let E be an ω-complete effect module.
Let ΣX be a σ-algebra on a set X .

(measurable subsets)
A 7→1A //

µ

++

(measurable functions)

f 7→
∫
f dµ

��
[0, 1]

key observation: both µ and
∫

(−)dµ are
homomorphisms of ω-complete effect algebras

Conclusion: Meas(X , [0, 1]) is the free ω-complete effect module
over ΣX via A 7→ 1A.
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Effect algebras

An effect algebra is a set E with 0, 1, (−)⊥, and partial >

with

1. a > b = b > a

2. a > (b > c) = (a > b) > c

3. a > 0 = a

4. a > a⊥ = 1

5. a > b = 0 =⇒ a = b = 0

6. a > b = a > c =⇒ b = c

Examples:

1. [0, 1] a > b = a + b if a + b ≤ 1

2. ℘(X ) A > B = A ∪ B if A ∩ B = ∅

3. Ef (H) A > B = A + B if A + B ≤ I



Effect algebras

An effect algebra is a set E with 0, 1, (−)⊥, and partial > with

1. a > b = b > a

2. a > (b > c) = (a > b) > c

3. a > 0 = a

4. a > a⊥ = 1

5. a > b = 0 =⇒ a = b = 0

6. a > b = a > c =⇒ b = c

Examples:

1. [0, 1] a > b = a + b if a + b ≤ 1

2. ℘(X ) A > B = A ∪ B if A ∩ B = ∅

3. Ef (H) A > B = A + B if A + B ≤ I



Effect algebras

An effect algebra is a set E with 0, 1, (−)⊥, and partial > with

1. a > b = b > a

2. a > (b > c) = (a > b) > c

3. a > 0 = a

4. a > a⊥ = 1

5. a > b = 0 =⇒ a = b = 0

6. a > b = a > c =⇒ b = c

Examples:

1. [0, 1] a > b = a + b if a + b ≤ 1

2. ℘(X ) A > B = A ∪ B if A ∩ B = ∅

3. Ef (H) A > B = A + B if A + B ≤ I



Effect algebras

An effect algebra is a set E with 0, 1, (−)⊥, and partial > with

1. a > b = b > a

2. a > (b > c) = (a > b) > c

3. a > 0 = a

4. a > a⊥ = 1

5. a > b = 0 =⇒ a = b = 0

6. a > b = a > c =⇒ b = c

Examples:

1. [0, 1] a > b = a + b if a + b ≤ 1

2. ℘(X ) A > B = A ∪ B if A ∩ B = ∅
3. Ef (H) A > B = A + B if A + B ≤ I



Universal property

Let E be an ω-complete effect module.
Let ΣX be a σ-algebra on a set X .

(measurable subsets)
A 7→1A //

µ

++

(measurable functions)

f 7→
∫
f dµ

��
[0, 1]

key observation: both µ and
∫

(−)dµ are
homomorphisms of ω-complete effect algebras

Conclusion: Meas(X , [0, 1]) is the free ω-complete effect module
over ΣX via A 7→ 1A.



Universal property

Let E be an ω-complete effect module.
Let ΣX be a σ-algebra on a set X .

(measurable subsets)
A 7→1A //

µ

++

(measurable functions)

f 7→
∫
f dµ

��
[0, 1]

key observation: both µ and
∫

(−)dµ are
homomorphisms of ω-complete effect algebras

Conclusion: Meas(X , [0, 1]) is the free ω-complete effect module
over ΣX via A 7→ 1A.
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Let E be an effect algebra.

a ≤ b ⇐⇒ ∃d a > d = b

The effect algebra E is ω-complete if each chain

a1 ≤ a2 ≤ · · ·

has a supremum,
∨

n an.

Examples:

1. [0, 1]

2. ℘(X )
∨

n An =
⋃

n An

3. Ef (H)

4. σ-algebra on X = sub-(ω-complete EA) of ℘(X ) !
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Measurable functions

Let ΣX be a σ-algebra on a set X

A map f : X → [0, 1] is measurable if

f −1([a, b]) ∈ ΣX for all a ≤ b in [0, 1]

Meas(X , [0, 1]) = { f : X → [0, 1] : f is measurable }
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f : F → E is a homomorphism of effect algebras if

1. f (0) = 0 f (1) = 1 f (a⊥) = f (a)⊥

2. if a > b is defined, then f (a > b) = f (a) > f (b)

f is a homomorphism of ω-complete effect algebras if

3.
∨

n f (an) = f (
∨

n an) for a1 ≤ a2 ≤ · · · in F

Examples:

1. 1(−) : ΣX −→ Meas(X , [0, 1])

2. homomorphisms of ω-complete EA µ : ΣX → [0, 1]
= probability measures on X (!)
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An effect module is an effect algebra E with scalar multiplication
λ · x (λ ∈ [0, 1], x ∈ E )

such that

1. 1 · a = a

2. λ · (µ · a) = (λ · µ) · a
3. λ · (−) preserves > and 0

4. (−) · a preserves > and 0

Examples:

1. [0, 1], Ef (H), Meas(X , [0, 1]) are

2. ℘(X ) is not

A homomorphism of effect modules is what you expect
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Example: formulation of the Spectral Theorem

Let H be a Hilbert space.

Let A be an effect on H — A ∈ Ef (H).
Let σ(A) = {λ ∈ C : A− λ is not invertible}

Spectral theorem: there is a unique homomorphism of
ω-complete effect algebras φ : ΣσA

−→ Ef (H) such that

1. A =
∫
id dφ

2. φ(S) is a projection for all S ∈ ΣσA

3. if φ(G ) = 0 for an open subset of σA, then G = ∅
Moreover, we have

4.
∫

f dφ ·
∫

gdφ =
∫

f · g dφ

5. B commutes with A iff B commutes with all φ(S)

Motto: effects behave somewhat like measurable functions;
the integral

∫
(−)dφ : Meas(X , [0, 1])→ Ef (H) translates.
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Recap and outlook

You have seen:

1. Lebesgue integration and effect algebras.

2. A universal property of the extension of measure to integral.

Agenda:

1. Fubini’s Theorem

2. Carathéodory’s Extension Theorem

3. Gleason’s Theorem


