Quantum Programs as Kleisli Maps

Abraham Westerbaan

Radboud University Nijmegen bram@westerbaan.name

Furber and Jacobs have shown in their study of quantum computation that the category of commutative C^* -algebras and PU-maps (positive linear maps which preserve the unit) is isomorphic to the Kleisli category of a comonad on the category of commutative C^* -algebras with MIU-maps (linear maps which preserve multiplication, involution and unit). [3]

In this paper, we prove a non-commutative variant of this result: the category of C^* -algebras and PU-maps is isomorphic to the Kleisli category of a comonad on the subcategory of MIU-maps.

A variation on this result has been used to construct a model of Selinger and Valiron's quantum lambda calculus using von Neumann algebras. [1]

The semantics of a non-deterministic program that takes two bits and returns three bits can be described as a multimap (= binary relation) from $\{0,1\}^2$ to $\{0,1\}^3$. Similarly, a program that takes two qubits and returns three qubits can be modelled as a positive linear unit-preserving map from $M_2 \otimes M_2 \otimes M_2$ to $M_2 \otimes M_2$, where M_2 is the C^* -algebra of 2×2 -matrices over \mathbb{C} .

More generally, the category $\mathbf{Set}_{\text{multi}}$ of multimaps between sets models non-deterministic programs (running on an ordinary computer), while the opposite of the category \mathbf{C}_{PU}^* of PU-maps (positive linear unit-preserving maps) between C^* -algebras models programs running on a quantum computer. (When we write " C^* -algebra" we always mean " C^* -algebra with unit".)

A multimap from $\{0,1\}^2$ to $\{0,1\}^3$ is simply a map from $\{0,1\}^2$ to $\mathscr{P}(\{0,1\}^3)$. In the same line \mathbf{Set}_{multi} is (isomorphic to) the Kleisli category of the powerset monad \mathscr{P} on \mathbf{Set} . What about \mathbf{C}_{PU}^* ?

We will show that there is a monad Ω on $(\mathbf{C}_{MIU}^*)^{op}$, the opposite of the category \mathbf{C}_{MIU}^* of C^* -algebras and MIU-maps (linear maps that preserve the multiplication, involution and unit), such that $(\mathbf{C}_{PU}^*)^{op}$ is isomorphic to the Kleisli category of Ω . We say that $(\mathbf{C}_{PU}^*)^{op}$ is *Kleislian* over $(\mathbf{C}_{MIU}^*)^{op}$. So in the same way we add non-determinism to **Set** by the powerset monad $\mathscr P$ yielding \mathbf{Set}_{multi} , we can obtain $(\mathbf{C}_{PU}^*)^{op}$ from $(\mathbf{C}_{MIII}^*)^{op}$ by a monad Ω .

Let us spend some words on how we obtain this monad Ω . Note that since every positive element of a C^* -algebra $\mathscr A$ is of the form a^*a for some $a \in \mathscr A$ any MIU-map will be positive. Thus $\mathbf{C}^*_{\mathrm{MIU}}$ is a subcategory of $\mathbf{C}^*_{\mathrm{PU}}$. Let $U : \mathbf{C}^*_{\mathrm{MIU}} \longrightarrow \mathbf{C}^*_{\mathrm{PU}}$ be the embedding.

In Section 1 we will prove that U has a left adjoint $F: \mathbf{C}^*_{PU} \longrightarrow \mathbf{C}^*_{MIU}$, see Theorem 5. This adjunction gives us a comonad $\Omega := FU$ on \mathbf{C}^*_{MIU} (which is a monad on $(\mathbf{C}^*_{MIU})^{\mathrm{op}}$) with the same counit as the adjunction. The comultiplication δ is given by $\delta_{\mathscr{A}} = F \eta_{U\mathscr{A}}$ for every object \mathscr{A} from \mathbf{C}^*_{MIU} where η is the unit of the adjunction between F and U.

In Section 2 we will prove that $(\mathbf{C}_{PU}^*)^{op}$ is isomorphic to $\mathscr{K}\ell(FU)$ if FU is considered a monad on $(\mathbf{C}_{MIU}^*)^{op}$. In fact, we will prove that the *comparison functor* $L\colon \mathscr{K}\ell(FU)\longrightarrow (\mathbf{C}_{PU}^*)^{op}$ (which sends a MIU-map $f\colon FU\mathscr{A}\longrightarrow \mathscr{B}$ to $Uf\circ \eta_{U\mathscr{A}}\colon U\mathscr{A}\longrightarrow U\mathscr{B}$) is an isomorphism, see Corollary 10.

The method used to show that $(\mathbf{C}_{PU}^*)^{op}$ is Kleislian over $(\mathbf{C}_{MIU}^*)^{op}$ is quite general and it will be obvious that many variations on $(\mathbf{C}_{PU}^*)^{op}$ will be Kleislian over $(\mathbf{C}_{MIU}^*)^{op}$ as well, such as the opposite of the category of subunital completely positive linear maps between C^* -algebras. The flip-side of this generality is that we discover preciously little about the monad Ω which leaves room for future inquiry (see Section 3).

Submitted to: QPL 2016

We will also see that the opposite $(\mathbf{W}_{NCP_{SU}}^*)^{op}$ of the category of normal completely positive subunital maps between von Neumann algebras is Kleislian over the subcategory $(\mathbf{W}_{NMIU}^*)^{op}$ of normal unital *-homomorphisms. This fact is used in [1] to construct an adequate model of Selinger and Valiron's quantum lambda calculus using von Neumann algebras.

1 The Left Adjoint

In Theorem 5 we will show that U has a left adjoint, $F: \mathbf{C}^*_{\mathrm{MIU}} \to \mathbf{C}^*_{\mathrm{PU}}$, using a quite general method. As a result we do not get any "concrete" information about F in the sense that while we will learn that for every C^* -algebra $\mathscr A$ there exists an arrow $\rho: \mathscr A \to UF\mathscr A$ which is initial from $\mathscr A$ to U we will learn nothing more about ρ than this. Nevertheless, for some (very) basic C^* -algebras $\mathscr A$ we can describe $F\mathscr A$ directly, as is shown below in Example 1–3.

Example 1. Let us start easy: \mathbb{C} will be mapped to itself by F, that is:

the identity $\rho: \mathbb{C} \longrightarrow U\mathbb{C}$ is an initial arrow from \mathbb{C} to U(-).

Indeed, let \mathscr{A} be a C^* -algebra and let $\sigma \colon \mathbb{C} \to U \mathscr{A}$ be a PU-map. Then σ must be given by $\sigma(\lambda) = \lambda \cdot 1$ for $\lambda \in \mathbb{C}$, where 1 is the identity of \mathscr{A} . Thus σ is a MIU-map as well. Hence there is a unique MIU-map $\hat{\sigma} \colon \mathbb{C} \to \mathscr{A}$ (namely $\hat{\sigma} = \sigma$) such that $\hat{\sigma} \circ \rho = \sigma$. (\mathbb{C} is initial in both $\mathbf{C}^*_{\text{MIU}}$ and \mathbf{C}^*_{PU} .)

Example 2. The image of \mathbb{C}^2 under F will be the C^* -algebra C[0,1] of continuous functions from [0,1] to \mathbb{C} . As will become clear below, this is very much related to the familiar functional calculus for C^* -algebras: given an element a of a C^* -algebra \mathscr{A} with $0 \le a \le 1$ and $f \in C[0,1]$ we can make sense of "f(a)", as an element of \mathscr{A} .

The map $\rho: \mathbb{C}^2 \longrightarrow UC[0,1]$ given by, for $\lambda, \mu \in \mathbb{C}$, $x \in [0,1]$,

$$\rho(\lambda,\mu)(x) = \lambda x + \mu(1-x)$$

is an initial arrow from \mathbb{C}^2 to U.

Let $\sigma \colon \mathbb{C}^2 \to U \mathscr{A}$ be a PU-map. We must show that there is a unique MIU-map $\overline{\sigma} \colon C[0,1] \to \mathscr{A}$ such that $\sigma = \overline{\sigma} \circ \rho$.

Writing $a:=\sigma(1,0)$, we have $\sigma(\lambda,\mu)=\lambda a+\mu(1-a)$ for all $\lambda,\mu\in\mathbb{C}$. Note that $(0,0)\leq (1,0)\leq (1,1)$ and thus $0\leq a\leq 1$. Let $C^*(a)$ be the C^* -subalgebra of $\mathscr A$ generated by a. Then $C^*(a)$ is commutative since a is positive (and thus normal). Given a MIU-map $\omega\colon C^*(a)\to\mathbb{C}$ we have $\omega(a)\in [0,1]$ since $0\leq a\leq 1$. Thus $\omega\mapsto\omega(a)$ gives a map $j\colon\Sigma C^*(a)\to[0,1]$, where $\Sigma C^*(a)$ is the spectrum of $C^*(a)$, that is, $\Sigma C^*(a)$ is the set of MIU-maps from $C^*(a)$ to \mathbb{C} with the topology of pointwise convergence. (By the way, the image of j is the spectrum of the *element* a.) The map j is continuous since the topology on $\Sigma C^*(a)$ is induced by the product topology on $\mathbb{C}^{C^*(a)}$. Thus the assignment $h\mapsto h\circ j$ gives a MIU-map $C_j:C_j(0,1)\to C\Sigma C^*(a)$. By Gelfand's representation theorem there is a MIU-isomorphism

$$\gamma: C^*(a) \longrightarrow C\Sigma C^*(a)$$

given by $\gamma(b)(\omega) = \omega(b)$ for all $b \in C^*(a)$ and $\omega \in \Sigma C^*(a)$. Now, define

$$\overline{\sigma} := \gamma^{-1} \circ Cj \colon C[0,1] \longrightarrow \mathbb{C}^*(a) \hookrightarrow \mathscr{A}.$$

(In the language of the functional calculus, $\overline{\sigma}$ maps f to f(a).) We claim that $\overline{\sigma} \circ \rho = \sigma$. It suffices to

show that $C i \circ \rho \equiv \gamma \circ \overline{\sigma} \circ \rho = \gamma \circ \sigma$. Let $\lambda, \mu \in \mathbb{C}$ and $\omega \in \Sigma C^*(a)$ be given. We have

$$(Cj \circ \rho)(\lambda, \mu)(\omega) = (Cj)(\rho(\lambda, \mu))(\omega)$$

$$= \rho(\lambda, \mu)(j(\omega)) \qquad \text{by def. of } Cj$$

$$= \lambda j(\omega) + \mu(1 - j(\omega)) \qquad \text{by def. of } \rho$$

$$= \lambda \omega(a) + \mu(1 - \omega(a)) \qquad \text{by def. of } j$$

$$= \omega(\lambda a + \mu(1 - a)) \qquad \text{as } \omega \text{ is a MIU-map}$$

$$= \omega(\sigma(\lambda, \mu)) \qquad \text{by choice of } a$$

$$= \gamma(\sigma(\lambda, \mu))(\omega). \qquad \text{by def. of } \gamma$$

$$= (\gamma \circ \sigma)(\lambda, \mu)(\omega).$$

It remains to be shown that $\overline{\sigma}$ is the only MIU-map $\tau \colon C[0,1] \to \mathscr{A}$ such that $U\tau \circ \rho = \sigma$. Let τ be such a map; we prove that $\tau = \overline{\sigma}$. By assumption τ and $\overline{\sigma}$ agree on the elements $f \in C[0,1]$ of the form

$$f(x) = \lambda x + \mu(1-x).$$

In particular, $\overline{\sigma}$ and τ agree on the map $h: [0,1] \to \mathbb{C}$ given by h(x) = x.

Now, since $\overline{\sigma}$ and τ are MIU-maps and h generates the C^* -algebra C[0,1] (this is Weierstrass's theorem), it follows that $\overline{\sigma} = \tau$.

Example 3. The image of \mathbb{C}^3 under F will not be commutative, or more formally:

If $\rho: \mathbb{C}^3 \longrightarrow U\mathscr{B}$ is an initial map from \mathbb{C}^3 to U, then \mathscr{B} is not commutative.

Suppose that \mathscr{B} is commutative towards contradiction. Let \mathscr{A} be a C^* -algebra in which there are positive a_1, a_2, a_3 such that $a_1a_2 \neq a_2a_1$ and $a_1 + a_2 + a_3 = 1$.

(For example, we can take \mathscr{A} to be the set of linear operators on \mathbb{C}^2 and let

$$a_1 := \frac{1}{2}P_1$$
 $a_2 := \frac{1}{2}P_+$ $a_3 := I - \frac{1}{2}P_1 - \frac{1}{2}P_+$

where P_1 denotes the orthogonal projection onto $\{(0,x): x \in \mathbb{C}\}$ and P_+ is the orthogonal projection onto $\{(x,x): x \in \mathbb{C}\}$.)

Define $f: \mathbb{C}^3 \to \mathscr{A}$ by, for all $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$,

$$f(\lambda_1,\lambda_2,\lambda_3) = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3$$

Then it is not hard to see that f a PU-map. So as \mathscr{B} is the initial arrow from \mathbb{C}^3 to U there is a (unique) MIU-map $\overline{f}: \mathscr{B} \to \mathscr{A}$ such that $\overline{f} \circ \rho = f$. We have

$$a_{1} \cdot a_{2} = f(1,0,0) \cdot f(0,1,0)$$

$$= \overline{f}(\rho(1,0,0)) \cdot \overline{f}(\rho(0,1,0))$$

$$= \overline{f}(\rho(1,0,0) \cdot \rho(0,1,0))$$

$$= \overline{f}(\rho(0,1,0) \cdot \rho(1,0,0))$$
 because \mathscr{B} is commutative
$$= \overline{f}(\rho(0,1,0)) \cdot \overline{f}(\rho(1,0,0))$$

$$= a_{2} \cdot a_{1}.$$

This contradicts $a_1 \cdot a_2 \neq a_2 \cdot a_1$. Hence \mathscr{B} is not commutative.

Remark 4. Before we prove that the embedding $\mathbf{C}_{\mathrm{MIU}}^* \to \mathbf{C}_{\mathrm{PU}}^*$ has a left adjoint F (see Theorem 5) let us compare what we already know about F with the commutative case. Let $\mathbf{CC}_{\mathrm{MIU}}^*$ denote the category of MIU-maps between commutative C^* -algebras and let $\mathbf{CC}_{\mathrm{PU}}^*$ denote the category of PU-maps between commutative C^* -algebras. From the work in [3] it follows that the embedding $\mathbf{CC}_{\mathrm{MIU}}^* \to \mathbf{CC}_{\mathrm{PU}}^*$ has a left adjoint F' and moreover that $F' \mathscr{A} = C\mathrm{Stat} \mathscr{A}$, where $\mathrm{Stat} \mathscr{A}$ is the topological space of PU-maps from \mathscr{A} to \mathbb{C} with pointwise convergence and $C\mathrm{Stat} \mathscr{A}$ is the C^* -algebra of continuous functions from $\mathrm{Stat} \mathscr{A}$ to \mathbb{C} .

Let $x \in [0,1]$. Then the assignment $(\lambda,\mu) \mapsto x\lambda + (1-x)\mu$ gives a PU-map $\overline{x} \colon \mathbb{C}^2 \to \mathbb{C}$. It is not hard to see that $x \mapsto \overline{x}$ gives an isomorphism from [0,1] to $\mathrm{Stat}\mathbb{C}^2$. Thus $F'\mathbb{C}^2 \cong C[0,1]$. Hence on \mathbb{C}^2 the functor F and its commutative variant F' agree (see Example 2). However, on \mathbb{C}^3 the functors F and F' differ. Indeed, $F'\mathbb{C}^3$ is commutative while $F\mathbb{C}^3$ is not (see Example 3).

Roughly summarised: while in the diagram above the right adjoints commute with the vertical embeddings, the left adjoints do not.

Theorem 5. The embedding $U: \mathbb{C}_{\text{MIII}}^* \longrightarrow \mathbb{C}_{\text{PII}}^*$ has a left adjoint.

Proof. By Freyd's Adjoint Functor Theorem (see Theorem V.6.1 of [6]) and the fact that all limits can be formed using only products and equalisers (see Theorem V.2.1 and Exercise V.4.2 of [6]) it suffices to prove the following.

- (i) The category $C_{\rm MIII}^*$ has all small products and equalisers.
- (ii) The functor $U: \mathbb{C}_{\text{MIU}}^* \longrightarrow \mathbb{C}_{\text{PU}}^*$ preserves small products and equalisers.
- (iii) Solution Set Condition. For every C^* -algebra $\mathscr A$ there is a set I and for each $i \in I$ a PU-map $f_i \colon \mathscr A \to \mathscr A_i$ such that for any PU-map $f \colon \mathscr A \to \mathscr B$ there is an $i \in I$ and a MIU-map $h \colon \mathscr A_i \to \mathscr B$ such that $h \circ f_i = f$.

Conditions (i) and (ii) can be verified with routine so we will spend only a few words on them (and leave the details to the reader). To see that Condition (iii) holds requires a little more ingenuity and so we will give the proof in detail.

(Conditions (i) and (ii)) Let us first think about small products in C_{MIU}^* and C_{PU}^* .

Let *I* be a set, and for each $i \in I$ let \mathcal{A}_i be a C^* -algebra.

It is not hard to see that cartesian product $\prod_{i \in I} \mathscr{A}_i$ is a *-algebra when endowed with coordinate-wise operations (and it is in fact the product of the \mathscr{A}_i in the category of *-algebras with MIU-maps, and with PU-maps).

However, $\prod_{i\in I}\mathscr{A}_i$ cannot be the product of the \mathscr{A}_i as C^* -algebras: there is not even a C^* -norm on $\prod_{i\in I}\mathscr{A}_i$ unless \mathscr{A}_i is trivial for all but finitely many $i\in I$. Indeed, if $\|-\|$ were a C^* -norm on $\prod_{i\in I}\mathscr{A}_i$, then we must have $\|\sigma(i)\| \leq \|\sigma\|$ for all $\sigma\in\prod_{i\in I}\mathscr{A}_i$ and $i\in I$, and so for any sequence i_0,i_1,\ldots of distinct elements of I for which $\mathscr{A}_{i_0},\mathscr{A}_{i_1},\ldots$ are non-trivial, and for every $\sigma\in\prod_{i\in I}\mathscr{A}_i$ with $\sigma(i_n)=n\cdot 1$ for all n, we have $n=\|\sigma(i_n)\|\leq\|\sigma\|$ for all n, so $\|\sigma\|=\infty$, which is not allowed.

Nevertheless, the *-subalgebra of $\prod_{i \in I} \mathscr{A}_i$ given by

$$\bigoplus_{i \in I} \mathscr{A}_i := \{ \sigma \in \prod_{i \in I} \mathscr{A}_i : \sup_{i \in I} \| \sigma(i) \| < +\infty \}$$

is a C^* -algebra with norm given by, for $\sigma \in \bigoplus_{i \in I} \mathscr{A}_i$,

$$\|\sigma\| = \sup_{i \in I} \|\sigma(i)\|.$$

We claim that $\bigoplus_{i \in I} \mathscr{A}_i$ is the product of the \mathscr{A}_i in \mathbb{C}^*_{PU} (and in \mathbb{C}^*_{MIU}).

Let $\mathscr C$ be a C^* -algebra, and for each $i \in I$, let $f_i \colon \mathscr C \to \mathscr A_i$ be a PU-map. We must show that there is a unique PU-map $f \colon \mathscr C \to \bigoplus_{i \in I} \mathscr A_i$ such that $\pi_i \circ f = f_i$ for all $i \in I$ where $\pi_i \colon \bigoplus_{j \in I} \mathscr A_j \to \mathscr A_i$ is the i-th projection. It is clear that there is at most one such f, and it would satisfy for all $i \in I$, and $c \in \mathscr C$, $f(c)(i) = f_i(c)$.

To see that such map f exists is easy if we are able to prove that, for all $c \in \mathcal{C}$,

$$\sup_{i \in I} \|f_i(c)\| < +\infty. \tag{1}$$

Let $i \in I$ be given. We claim that that $||f_i(c)|| \le ||c||$ for any *positive* $c \in \mathscr{C}$. Indeed, we have $c \le ||c|| \cdot 1$, and thus $f_i(c) \le ||c|| \cdot f(1) = ||c|| \cdot 1$, and so $||f_i(c)|| \le ||c||$. It follows that $||f_i(c)|| \le 4 \cdot ||c||$ for any $c \in \mathscr{A}$ by writing $c = c_1 - c_2 + ic_3 - ic_4$ where $c_1, c_2, c_3, c_4 \in \mathscr{C}$ are all positive. (We even have $||f(c)|| \le ||c||$ for all $c \in \mathscr{C}$, but this requires a bit more effort¹) Thus, we have $\sup_{i \in I} ||f_i(c)|| \le 4||c|| < +\infty$. Hence Statement (1) holds.

Thus $\bigoplus_{i \in I} \mathscr{A}_i$ is the product of the \mathscr{A}_i in \mathbf{C}^*_{PU} . It is easy to see that $\bigoplus_{i \in I} \mathscr{A}_i$ is the product of the \mathscr{A}_i in \mathbf{C}^*_{MIU} as well. Hence \mathbf{C}^*_{MIU} has all small products (as does \mathbf{C}^*_{PU}) and $U : \mathbf{C}^*_{MIU} \longrightarrow \mathbf{C}^*_{PU}$ preserves small products.

Let us think about equalisers in $\mathbf{C}^*_{\mathrm{MIU}}$ and $\mathbf{C}^*_{\mathrm{PU}}$. Let \mathscr{A} and \mathscr{B} be C^* -algebras and let $f,g\colon \mathscr{A}\to\mathscr{B}$ be MIU-maps. We must prove that f and g have an equaliser $e\colon \mathscr{E}\to\mathscr{A}$ in $\mathbf{C}^*_{\mathrm{MIU}}$, and that e is the equaliser of f and g in $\mathbf{C}^*_{\mathrm{PU}}$ as well.

Since f and g are MIU-maps (and hence continuous), it is not hard to see that

$$\mathscr{E} := \{ a \in \mathscr{A} : f(a) = g(a) \}$$

is a C^* -subalgebra of \mathscr{A} . We claim that the inclusion $e \colon \mathscr{E} \to \mathscr{A}$ is the equaliser of f,g in \mathbf{C}^*_{PU} . Let \mathscr{D} be a C^* -algebra and let $d \colon \mathscr{D} \to \mathscr{A}$ be a PU-map such that $f \circ d = g \circ d$. We must show that there is a unique PU-map $h \colon \mathscr{D} \to \mathscr{E}$ such that $d = e \circ h$. Note that d maps \mathscr{A} into \mathscr{E} . The map $h \colon \mathscr{D} \to \mathscr{E}$ is simply the restriction of $d \colon \mathscr{D} \to \mathscr{A}$ in the codomain. Hence e is the equaliser of f,g in \mathbf{C}^*_{PU} .

Note that in the argument above h is a PU-map since d is a PU-map. If d were a MIU-map, then h would be a MIU-map too. Hence e is the equaliser of f, g in the category $\mathbf{C}_{\text{MIU}}^*$ as well.

Hence $\mathbf{C}^*_{\mathrm{MIU}}$ has all equalisers and $U : \mathbf{C}^*_{\mathrm{MIU}} \longrightarrow \mathbf{C}^*_{\mathrm{PU}}$ preserves equalisers. Hence $\mathbf{C}^*_{\mathrm{MIU}}$ has all small limits and $U : \mathbf{C}^*_{\mathrm{MIU}} \longrightarrow \mathbf{C}^*_{\mathrm{PU}}$ preserves all small limits.

(Note that while we have seen that $\mathbf{C}_{\mathrm{PU}}^*$ has all small products, and it was easy to see that $\mathbf{C}_{\mathrm{MIU}}^*$ has all equalisers, it is not clear whether $\mathbf{C}_{\mathrm{PU}}^*$ has all equalisers. Indeed, if $f,g\colon\mathscr{A}\to\mathscr{B}$ are PU-maps, then the set $\{a\in\mathscr{A}: f(a)=g(a)\}$ need not be a C^* -subalgebra of \mathscr{A} .)

(Condition (iii)). Let \mathscr{A} be a C^* -algebra. We must find a set I and for each $i \in I$ a PU-map $f_i \colon \mathscr{A} \to \mathscr{A}_i$ such that for every PU-map $f \colon \mathscr{A} \to \mathscr{B}$ there is a (not necessarily unique) $i \in I$ and $h \colon \mathscr{A}_i \to \mathscr{B}$ such that $f = h \circ f_i$.

Note that if $f: \mathscr{A} \to \mathscr{B}$ is a PU-map, then the range of the PU-map f need not be a C^* -subalgebra of \mathscr{B} . (If the range of PU-maps would have been C^* -algebras, then we could have taken I to be the set of all ideals of \mathscr{A} , and $f_I: \mathscr{A} \to \mathscr{A}/J$ to be the quotient map for any ideal J of \mathscr{A} .)

¹See Corollary 1 of [7].

Nevertheless, given a PU-map $f: \mathscr{A} \to \mathscr{B}$ there is a smallest C^* -subalgebra, say \mathscr{B}' , of \mathscr{B} that contains the range of f. We claim that $\#\mathscr{B}' \leq \#(\mathscr{A}^{\mathbb{N}})$ where $\#\mathscr{B}'$ is the cardinality of \mathscr{B}' and $\#(\mathscr{A}^{\mathbb{N}})$ is the cardinality of $\mathscr{A}^{\mathbb{N}}$.

If we can find proof for our claim, the rest is easy. Indeed, to begin note that the collection of all C^* -algebras is not a small set. However, given a set U, the collection of all C^* -algebras $\mathscr C$ whose elements come from U (so $\mathscr C\subseteq U$) is a small set. Now, let $\kappa:=\#(\mathscr A^\mathbb N)$ be the cardinality of $\mathscr A^\mathbb N$ (so κ is itself a set) and take

$$I := \{ (\mathscr{C}, c) \colon \mathscr{C} \text{ is a } C^*\text{-algebra on a subset of } \kappa \text{ and } c \colon \mathscr{A} \to \mathscr{C} \text{ is a PU-map } \}.$$

Since the collection of C^* -algebras $\mathscr C$ with $\mathscr C\subseteq \kappa$ is small, and since the collection of PU-maps from $\mathscr A$ to $\mathscr C$ is small for any C^* -algebra $\mathscr C$, it follows that I is small.

For each $i \in I$ with $i \equiv (\mathscr{C}, c)$ define $\mathscr{A}_i := \mathscr{C}$ and $f_i := c$.

Let $f: \mathscr{A} \to \mathscr{B}$ be a PU-map. We must find $i \in I$ and a MIU-map $h: \mathscr{A}_i \to \mathscr{B}$ such that $h \circ f_i = f$. Let \mathscr{B}' be the smallest C^* -subalgebra that contains the range of f. By our claim we have $\#\mathscr{B}' \leq \#(\mathscr{A}^{\mathbb{N}}) \equiv \kappa$. By renaming the elements of \mathscr{B}' we can find a C^* -algebra \mathscr{C} isomorphic to \mathscr{B}' whose elements come from κ . Let $\varphi: \mathscr{C} \to \mathscr{B}'$ be the isomorphism.

Note that $c := \varphi^{-1} \circ f \colon \mathscr{A} \to \mathscr{C}$ is a PU-map. So we have $i := (\mathscr{C}, c) \in I$. Further, the inclusion $e \colon \mathscr{B}' \to \mathscr{B}$ is a MIU-map, as is φ . So we have:

$$\begin{array}{c|c}
\mathcal{A} & \xrightarrow{f} & \mathcal{B} \\
c & \text{PU} & \text{MIU} & e \\
\mathcal{C} & \xrightarrow{\text{MIU}} & \mathcal{B}'
\end{array}$$

Now, $h := e \circ \varphi \colon \mathscr{C} \to \mathscr{B}$ is a MIU-map with $f = h \circ f_i$. Hence Cond. (iii) holds.

Let us proof our claim. Let \mathscr{A} and \mathscr{B} be C^* -algebras and let $f: \mathscr{A} \to \mathscr{B}$ be a PU-map. Let \mathscr{B}' be the smallest C^* -subalgebra that contains the range of f.

We must show that $\#\mathscr{B}' \leq \#(\mathscr{A}^{\mathbb{N}})$.

Let us first take care of pathological case. Note that if $\mathscr A$ is trivial, i.e. $\mathscr A=\{0\}$, then $\mathscr B'=\{0\}$, so $\#(\mathscr A^\mathbb N)=1=\#\mathscr B'$. Now, let us assume that $\mathscr A$ is not trivial. Then we have an injection $\mathbb C\to\mathscr A$ given by $\lambda\mapsto\lambda\cdot 1$, and thus $\#\mathbb C\le\#\mathscr A$.

The trick to prove $\#\mathscr{B}' \leq \#(\mathscr{A}^{\mathbb{N}})$ is to find a more explicit description of \mathscr{B}' . Let T be the set of terms formed using a unary operation $(-)^*$ (involution) and two binary operations, \cdot (multiplication) and + (addition), starting from the elements of \mathscr{A} . Let $f_T \colon T \longrightarrow \mathscr{B}'$ be the map (recursively) given by, for $a \in \mathscr{A}$, and $s, t \in T$,

$$f_T(a) = f(a)$$

$$f_T(s^*) = (f_T(s))^*$$

$$f_T(s \cdot t) = f_T(s) \cdot f_T(t)$$

$$f_T(s+t) = f_T(s) + f_T(t).$$

²Although it has no bearing on the validity of the proof one might wonder if the simpler statement $\#\mathscr{B}' \leq \#\mathscr{A}$ holds as well. Indeed, if $\#\mathscr{A} = \#\mathbb{C}$ or $\#\mathscr{A} = \#(2^X)$ for some infinite set X, then we have $\#\mathscr{A} = \#(\mathscr{A}^\mathbb{N})$, and so $\#\mathscr{B}' \leq \#\mathscr{A}$. However, not every uncountable set is of the form 2^X for some infinite set X, and in fact, if $\#\mathscr{A} = \Re_{\omega}$, then $\#(\mathscr{A}^\mathbb{N}) > \#\mathscr{A}$ by Corollary 3.9.6 of [2]

Note that the range of f_B , let us call it Ran f_B , is a *-subalgebra of \mathscr{B}' . We will prove that $\#Ranf_B \leq \#\mathscr{A}$. Since f_B is a surjection of T onto Ran f_B it suffices to prove that $\#T \leq \#\mathscr{A}$. In fact, we will show that $\#T = \#\mathscr{A}$.

First note that \mathscr{A} is infinite, and $\mathscr{A} \subseteq T$, so T is infinite as well. To prove that $\#T = \#\mathscr{A}$ we write the elements of T as words (with the use of brackets). Indeed, with $Q := \mathscr{A} \cup \{\text{```}, \text{``+''}, \text{``*'}, \text{``)''}, \text{``('')}\}$ there is an obvious injection from T into the set Q^* of words over Q. Since \mathscr{A} is infinite, and $Q \setminus \mathscr{A}$ is finite we have $\#Q = \#\mathscr{A}$ by Hilbert's hotel. Recall that $Q^* = \bigcup_{n=0}^{\infty} Q^n$. Since Q is infinite, we also have $\#(\mathbb{N} \times Q) = \#Q$ and even $\#(Q \times Q) = \#Q$ (see Theorem 3.7.7 of [2]), so $\#Q = \#(Q^n)$ for all n > 0. It follows that

$$\begin{aligned}
\#(Q^*) &= \#(\bigcup_{n=0}^{\infty} Q^n) \\
&= \#(1 + \bigcup_{n=1}^{\infty} Q) \\
&= \#(1 + \mathbb{N} \times Q) \\
&= \#O.
\end{aligned}$$

Since there is an injection from T to Q^* we have $\#\mathscr{A} \leq \#T \leq \#(Q^*) = \#Q = \#\mathscr{A}$ and so $\#T = \#\mathscr{A}$. Hence $\#\operatorname{Ran} f_B \leq \#\mathscr{A}$.

Since Ran f_B is a *-algebra that contains Ran f, the closure $\overline{\text{Ran} f_B}$ of Ran f_B with respect to the norm on \mathcal{B}' is a C^* -algebra that contains Ran f. As \mathcal{B}' is the smallest C^* -subalgebra that contains Ran f, we see that $\mathcal{B}' = \overline{\text{Ran} f_B}$.

Let S be the set of all Cauchy sequences in Ran f_B . As every point in \mathcal{B}' is the limit of a Cauchy sequence in Ran f_B , we get $\#\mathcal{B}' \leq \#S$. Thus:

$$\#\mathscr{B}' \leq \#S$$

$$\leq \#(\operatorname{Ran} f_B)^{\mathbb{N}} \quad \text{as } S \subseteq (\operatorname{Ran} f_B)^{\mathbb{N}}$$

$$\leq \#(\mathscr{A}^{\mathbb{N}}) \quad \text{as } \#\operatorname{Ran} f_B \leq \#\mathscr{A}.$$

Thus we have proven our claim.

Hence Conditions (i)–(iii) hold and $U: \mathbb{C}_{MIII}^* \longrightarrow \mathbb{C}_{PII}^*$ has a left adjoint.

We have seen that $U: \mathbf{C}^*_{\mathrm{MIU}} \longrightarrow \mathbf{C}^*_{\mathrm{PU}}$ has a left adjoint $F: \mathbf{C}^*_{\mathrm{PU}} \longrightarrow \mathbf{C}^*_{\mathrm{MIU}}$. This adjunction gives a comonad FU on $\mathbf{C}^*_{\mathrm{MIU}}$, which in turns gives us two categories: the Eilenberg–Moore category $\mathscr{EM}(FU)$ of FU-coalgebras and the Kleisli category $\mathscr{K}\ell(FU)$. We claim that $\mathbf{C}^*_{\mathrm{PU}}$ is isomorphic to $\mathscr{K}\ell(FU)$ since $\mathbf{C}^*_{\mathrm{MIU}}$ is a subcategory of $\mathbf{C}^*_{\mathrm{PU}}$ with the same objects.

This is a special case of a more general phenomenon which we discuss in the next section (in terms of monads instead of comonads), see Theorem 9.

2 Kleislian Adjunctions

Beck's Theorem (see [6], VI.7) gives a criterion for when an adjunction $F \dashv U$ "is" an adjunction between \mathbb{C} and $\mathscr{EM}(UF)$. We give a similar (but easier) criterion for when an adjunction "is" an adjunction between \mathbb{C} and $\mathscr{K}\ell(UF)$. The criterion is not new; e.g., it is mentioned in [5] (paragraph 8.6) without proof or reference, and it can be seen as a consequence of Exercise VI.5.2 of [6] (if one realises that an equivalence which is bijective on objects is an isomorphism). Proofs can be found in the appendix.

Notation 6. Let $F: \mathbb{C} \longrightarrow \mathbb{D}$ be a functor with right adjoint U. Denote the unit of the adjunction by $\eta: \mathrm{id}_{\mathbb{D}} \to UF$, and the counit by $\varepsilon: FU \to \mathrm{id}_{\mathbb{C}}$.

Recall that UF is a monad with unit η and as multiplication, for C from C,

$$\mu_C := U \varepsilon_{FC} : UFUFC \longrightarrow UFC.$$

Let $\mathcal{K}\ell(UF)$ be the Kleisli category of the monad UF. So $\mathcal{K}\ell(UF)$ has the same objects as \mathbb{C} , and the morphisms in $\mathcal{K}\ell(UF)$ from C_1 to C_2 are the morphism in \mathbb{C} from C_1 to UFC_2 . Given C from \mathbb{C} the identity in $\mathcal{K}\ell(UF)$ on C is η_C . If C_1, C_2, C_3 , $f: C_1 \to C_2$, $g: C_2 \to C_3$ from \mathbb{C} are given, g after f in $\mathcal{K}\ell(UF)$ is

$$g \odot f := \mu_{C_3} \circ UFg \circ f.$$

Let $V: \mathbb{C} \longrightarrow \mathcal{K}\ell(UF)$ be given by, for $f: C_1 \longrightarrow C_2$ from \mathbb{C} ,

$$Vf := \eta_{C_2} \circ f \colon C_1 \longrightarrow UFC_2.$$

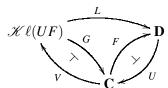
Let $G: \mathcal{K}\ell(UF) \longrightarrow \mathbb{C}$ be given by, for $f: C_1 \longrightarrow UFC_2$ from \mathbb{C} ,

$$Gf := \mu_{C_2} \circ UFf : UFC_1 \longrightarrow UFC_2.$$

The following is Exercise VI.5.1 of [6].

Lemma 7. Let $F: \mathbb{C} \longrightarrow \mathbb{D}$ be a functor with a right adjoint U.

Then there is a unique functor $L: \mathcal{K}\ell(UF) \longrightarrow \mathbf{D}$ (called the comparison functor) such that $U \circ L = G$ and $L \circ V = F$ (see Notation 6).



Definition 8. Let **C** and **D** be categories.

- (i) A functor $F: \mathbb{C} \longrightarrow \mathbb{D}$ is called *Kleislian* when it has a right adjoint U and the functor $L: \mathcal{K}\ell(UF) \longrightarrow \mathbb{D}$ from Lemma 7 is an isomorphism.
- (ii) We say that **D** is Kleislian over **C** when there is a Kleislian functor $F: \mathbf{C} \longrightarrow \mathbf{D}$.

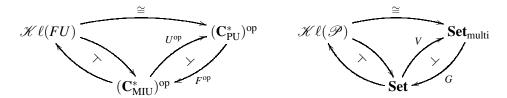
Theorem 9. Let $F: \mathbb{C} \longrightarrow \mathbb{D}$ be a functor with a right adjoint U. The following are equivalent.

- (i) F is Kleislian (see Definition 8).
- (ii) F is bijective on objects (i.e. for every object D from \mathbf{D} there is a unique object C from \mathbf{C} such that FC = D).

Corollary 10. The embedding $U^{op}: (\mathbf{C}_{MIII}^*)^{op} \longrightarrow (\mathbf{C}_{PII}^*)^{op}$ is Kleislian (see Def. 8).

Proof. By Theorem 9 we must show that U^{op} has a left adjoint and is bijective on objects. Since the embedding $U: \mathbf{C}^*_{\mathrm{MIU}} \to \mathbf{C}^*_{\mathrm{PU}}$ has a *left* adjoint $F: \mathbf{C}^*_{\mathrm{PU}} \to \mathbf{C}^*_{\mathrm{MIU}}$ it follows that $F^{op}: (\mathbf{C}^*_{\mathrm{PU}})^{op} \to (\mathbf{C}^*_{\mathrm{MIU}})^{op}$ is the *right* adjoint of U^{op} . Thus U^{op} has a left adjoint. Further, as $\mathbf{C}^*_{\mathrm{MIU}}$ and $\mathbf{C}^*_{\mathrm{PU}}$ have the same objects, U is bijective on objects, and so is U^{op} . Hence U^{op} is Kleislian.

In summary, the embedding $U: \mathbf{C}^*_{\mathrm{MIU}} \longrightarrow \mathbf{C}^*_{\mathrm{PU}}$ has a left adjoint F (and so $F^{\mathrm{op}}: (\mathbf{C}^*_{\mathrm{MIU}})^{\mathrm{op}} \to (\mathbf{C}^*_{\mathrm{PU}})^{\mathrm{op}}$ is right adjoint to U^{op}), and the unique functor from the Kleisli category $\mathscr{K}\ell(FU)$ of the monad FU on $(\mathbf{C}^*_{\mathrm{MIU}})^{\mathrm{op}}$ to $(\mathbf{C}^*_{\mathrm{PU}})^{\mathrm{op}}$ that makes the two triangles in the diagram below on the left commute is an isomorphism.



For the category $\mathbf{Set}_{\text{multi}}$ of multimaps between sets used in the introduction to describe the semantics of non-deterministic programs the situation is the same, see the diagram above to the right.

(The functor V is the obvious embedding. The right adjoint G of V sends a multimap f from X to Y to the function $Gf \colon \mathscr{P}(X) \to \mathscr{P}(Y)$ that assigns to a subset $A \in \mathscr{P}(X)$ the image of A under f. Note that $GV = \mathscr{P}$.)

3 Discussion

3.1 Variations

Example 11 (Subunital maps). Let \mathbf{C}_{PsU}^* be the category of C^* -algebras and the positive linear maps f between them that are *subunitial*, i.e. $f(1) \leq 1$. The morphisms of \mathbf{C}_{PsU}^* are called *PsU-maps*.

It is not hard to see that the products in \mathbf{C}^*_{PsU} are the same as in \mathbf{C}^*_{MIU} , and that the equaliser in \mathbf{C}^*_{MIU} of a pair f,g of MIU-maps is the equaliser of f,g in \mathbf{C}^*_{PsU} as well. Thus the embedding $U: \mathbf{C}^*_{MIU} \longrightarrow \mathbf{C}^*_{PsU}$ preserves limits. Using the same argument as in Theorem 5 but with "PU-map" replaced by "PsU-map" one can show that U satisfies the Solution Set Condition. Hence U has a left adjoint by Freyd's Adjoint Function Theorem, say $F: \mathbf{C}^*_{PsU} \longrightarrow \mathbf{C}^*_{MIU}$.

Function Theorem, say $F: \mathbf{C}^*_{PsU} \longrightarrow \mathbf{C}^*_{MIU}$. Since \mathbf{C}^*_{PsU} has the same objects as \mathbf{C}^*_{MIU} (namely the C^* -algebras) the functor $U^{op}: (\mathbf{C}^*_{MIU})^{op} \longrightarrow (\mathbf{C}^*_{PsU})^{op}$ is bijective on objects and thus Kleislian (by Th. 9).

Hence $(\mathbf{C}_{PSU}^*)^{op}$ is Kleislian over $(\mathbf{C}_{MIU}^*)^{op}$.

Example 12 (Bounded linear maps). Let \mathbb{C}_P^* be the category of positive bounded linear maps between C^* -algebras. We will show that $(\mathbb{C}_P^*)^{\mathrm{op}}$ is *not* Kleislian over $(\mathbb{C}_{\mathrm{MIU}}^*)^{\mathrm{op}}$. Indeed, if it were then $(\mathbb{C}_P^*)^{\mathrm{op}}$ would be cocomplete, but it is not: there is no ω -fold product of \mathbb{C} in \mathbb{C}_P^* . To see this, suppose that there is a ω -fold product \mathscr{P} in \mathbb{C}_P^* with projections $\pi_i \colon \mathscr{P} \to \mathbb{C}$ for $i \in \omega$. Since π_i is a bounded linear map for $i \in \omega$, it has finite operator norm, say $\|\pi_i\|$. By symmetry, $\|\pi_i\| = \|\pi_j\|$ for all $i, j \in \omega$. Write $K := \|\pi_0\| = \|\pi_1\| = \|\pi_2\| = \cdots$. Define $f_i \colon \mathbb{C} \to \mathbb{C}$ by $f_i(z) = iz$ for all $z \in \mathbb{C}$ and $i \in \omega$. Then f_i is a positive bounded linear map for each $i \in \omega$. Since \mathscr{P} is the ω -fold product of \mathbb{C} , there is a (unique positive) bounded linear map $f \colon \mathbb{C} \to \mathscr{P}$ such that $\pi_i \circ f = f_i$ for all $i \in \omega$. For each $N \in \omega$ we have

$$N = ||f_N(1)|| \le ||f_N|| = ||\pi_N \circ f|| \le ||\pi_N|| \, ||f|| = K \, ||f||.$$

Thus K||f|| is greater than any number, which is absurd.

Example 13 (Completely positive maps). For clarity's sake we recall what it means for a linear map f between C^* -algebras to be completely positive (see [8]). For this we need some notation. Given a C^* -algebra \mathscr{A} , and $n \in \mathbb{N}$ let $M_n(\mathscr{A})$ denote the set of $n \times n$ -matrices with entries from \mathscr{A} . We leave it to the

reader to check that $M_n(\mathscr{A})$ is a *-algebra with the obvious operations. In fact, it turns out that $M_n(\mathscr{A})$ is a C^* -algebra, but some care must be taken to define the norm on $M_n(\mathscr{A})$ as we will see below. Now, a linear map $f: \mathscr{A} \longrightarrow \mathscr{B}$ is called *completely positive* when $M_n f$ is positive for each $n \in \mathbb{N}$, where $M_n f: M_n(\mathscr{A}) \longrightarrow M_n(\mathscr{B})$ is the map obtained by applying f to each entry of a matrix in $M_n(\mathscr{A})$. Of course, " $M_n f$ is positive" only makes sense once we know that $M_n(\mathscr{A})$ and $M_n(\mathscr{B})$ are C^* -algebras.

Let \mathscr{A} be a C^* -algebra. We will put a C^* -norm on $M_n(\mathscr{A})$. Let \mathscr{H} be a Hilbert space and let $\pi \colon \mathscr{A} \longrightarrow \mathscr{B}(\mathscr{H})$, be an isometric MIU-map. We get a norm $\|-\|_{\pi}$ on $M_n(\mathscr{A})$ given by for $A \in M_n(\mathscr{A})$,

$$||A||_{\pi} = ||\xi((M_n\pi)(A))||,$$

where $\xi((M_n\pi)(A))$: $\mathscr{H}^{\oplus n} \to \mathscr{H}^{\oplus n}$ is the bounded linear map represented by the matrix $(M_n\pi)(A)$, and $\|\xi((M_n\pi)(A))\|$ is the operator norm of $\xi((M_n\pi)(A))$ in $\mathscr{B}(\mathscr{H}^{\oplus n})$.

It is easy to see that $\|-\|_{\pi}$ satisfies the C^* -identity, $\|A^*A\|_{\pi} = \|A\|_{\pi}^2$ for all $A \in M_n(\mathscr{A})$. It is less obvious that $M_n(\mathscr{A})$ is complete with respect to $\|-\|_{\pi}$. To see this, first note that $\|A_{ij}\| \leq \|A\|_{\pi}$ for all i, j. So given a Cauchy sequence A_1, A_2, \ldots in $M_n(\mathscr{A})$ we can form the entrywise limit A, that is, $A_{ij} = \lim_{m \to \infty} A_{ij}$. We leave it to the reader to check that A_{ij} is the limit of A_1, A_2, \ldots , and thus $M_n(\mathscr{A})$ is complete with respect to $\|-\|_{\pi}$. Hence $M_n(\mathscr{A})$ is a C^* -algebra with norm $\|-\|_{\pi}$.

The C^* -norm $\|-\|_{\pi}$ does not depend on π . Indeed, let \mathscr{H}_1 and \mathscr{H}_2 be Hilbert spaces and let $\pi_1 : \mathscr{A} \longrightarrow \mathscr{B}(\mathscr{H}_1)$ and $\pi_2 : \mathscr{A} \longrightarrow \mathscr{B}(\mathscr{H}_2)$ be isometric MIU-maps; we will show that $\|-\|_{\pi_1} = \|-\|_{\pi_2}$. Recall that the norm $\|-\|_{\pi_i}$ induces an order \leq_{π_i} on $M_n(\mathscr{A})$ given by $0 \leq_{\pi_i} A$ iff $\|A-\|A\|_{\pi_i}\|_{\pi_i} \leq \|A\|_{\pi_i}$ where $A \in M_n(\mathscr{A})$. Since $\|A\|_{\pi_i}^2 = \inf\{\lambda \in [0,\infty) \colon A^*A \leq_{\pi_i} \lambda\}$ for all $A \in M_n(\mathscr{A})$, to prove $\|-\|_{\pi_1} = \|-\|_{\pi_2}$ it suffices to show that the orders \leq_{π_1} and \leq_{π_2} coincide. But this is easy when one recalls that $A \in M_n(\mathscr{A})$ is positive iff A is of the form B^*B for some $B \in M_n(\mathscr{A})$.

The completely positive linear maps that preserve the unit are called *CPU-maps*. Let \mathbf{C}_{CPU}^* be the category of CPU-maps between C^* -algebras. Since $M_n(f)$ is a MIU-map when f is a MIU-map and a MIU-map is positive, we see that any MIU-map is completely positive. Thus \mathbf{C}_{MIU}^* is a subcategory of \mathbf{C}_{CPU}^* . We claim that $(\mathbf{C}_{CPU}^*)^{op}$ is Kleislian over $(\mathbf{C}_{MIU}^*)^{op}$.

Let us show that U preserves limits. To show that U preserves equalisers, let $f,g: \mathscr{A} \longrightarrow \mathscr{B}$ be MIUmaps. Then $\mathscr{E} := \{x \in \mathscr{A} : f(x) = g(x)\}$ is a C^* -subalgebra of \mathscr{A} and the embedding $e: \mathscr{E} \to \mathscr{A}$ is an isometric MIU-map. Then e is the equalisers of f,g in $\mathbf{C}^*_{\mathrm{MIU}}$; we will show that e is the equaliser of f,g in $\mathbf{C}^*_{\mathrm{CPU}}$. Let \mathscr{C} be a C^* -algebra, and let $c: \mathscr{C} \to \mathscr{A}$ be a CPU-map such that $f \circ c = g \circ c$ Let $d: \mathscr{C} \to \mathscr{E}$ be the restriction of c. It turns out we must prove that d is completely positive. Let $n \in \mathbb{N}$ be given. We must show that $M_nd: M_n\mathscr{C} \to M_n\mathscr{E}$ is positive. Note that M_ne is an injective MIU-map and thus an isometry. So in order to prove that M_nd is positive it suffices to show that $M_ne \circ M_nd = M_n(e \circ d) = M_nc$ is positive, which it is since c is completely positive. Thus e is the equaliser of f,g in $\mathbf{C}^*_{\mathrm{CPU}}$. Hence U preservers equalisers.

To show that U preserves products, let I be a set and for each $i \in I$ let \mathscr{A}_i be a C^* -algebra. We will show that $\bigoplus_{i \in I} \mathscr{A}_i$ is the product of the \mathscr{A}_i in $\mathbf{C}^*_{\mathrm{CPU}}$. Let \mathscr{C} be a C^* -algebra, and for each $i \in I$, let $f_i \colon \mathscr{C} \to \mathscr{A}_i$ be a CPU-map. As before, let $f \colon \mathscr{C} \to \bigoplus_{i \in I} A_i$ be the map given by $f(x)(i) = f_i(x)$ for all $i \in I$ and $x \in \mathscr{C}$. Leaving the details to the reader it turns out that it suffices to show that f is completely positive. Let $n \in \mathbb{N}$ be given. We must prove that $M_n f \colon M_n(\mathscr{C}) \longrightarrow M_n(\bigoplus_{i \in I} \mathscr{A}_i)$ is positive. Let $\varphi \colon M_n(\bigoplus_{i \in I} \mathscr{A}_i) \longrightarrow \bigoplus_{i \in I} M_n(\mathscr{A}_i)$ be the unique MIU-map such that $\pi_i \circ \varphi = M_n \pi_i$ for all $i \in I$. Then φ is a MIU-isomorphism and thus to prove that $M_n f$ is positive, it suffices to show that $\varphi \circ M_n f$ is positive. Let $i \in I$ be given. We must prove that $\pi_i \circ \varphi \circ M_n f$ is positive. But we have $\pi_i \circ \varphi \circ M_n f = M_n \pi_i \circ M_n f = M_n (\pi_i \circ f) = M_n f_i$, which is positive since f is completely positive. Thus $\bigoplus_{i \in I} \mathscr{A}_i$ is the product of the \mathscr{A}_i in C^*_{CPU} and hence U preserves limits.

With the same argument as in Theorem 9 the functor U satisfies the Solution Set Condition and thus U has a left adjoint. It follows that $U^{\mathrm{op}} \colon (\mathbf{C}^*_{\mathrm{MIU}})^{\mathrm{op}} \longrightarrow (\mathbf{C}^*_{\mathrm{CPU}})^{\mathrm{op}}$ is Kleislian.

Example 14 (W^* -algebras). Let $\mathbf{W}_{\mathrm{NMIU}}^*$ be the category of von Neumann algebras (also called W^* -algebras) and the MIU-maps between them that are normal, i.e., preserve suprema of upwards directed sets of self-adjoint elements. Let $\mathbf{W}_{\mathrm{NPU}}^*$ be the category of von Neumann and normal PU-maps. Note that $\mathbf{W}_{\mathrm{NMIU}}^*$ is a subcategory of $\mathbf{W}_{\mathrm{NPU}}^*$. We will prove that $(\mathbf{W}_{\mathrm{NPU}}^*)^{\mathrm{op}}$ is Kleislian over $(\mathbf{W}_{\mathrm{NMIU}}^*)^{\mathrm{op}}$.

It suffices to show that U has a left adjoint. Again we follow the lines of the proof of Theorem 5. Products and equalisers in W^*_{NMIU} are the same as in C^*_{MIU} . It is not hard to see that the embedding $U: W^*_{NMIU} \longrightarrow W^*_{NPU}$ preserves limits. To see that U satisfies the Solution Set Condition we use the same method as before: given a von Neumann algebra \mathscr{A} , find a suitable cardinal κ such that the following is a solution set.

```
I := \{ (\mathscr{C}, c) \colon \mathscr{C} \text{ is a von Neumann algebra on a subset of } \kappa and c \colon \mathscr{A} \longrightarrow \mathscr{C} \text{ is a normal PU-map } \},
```

Only this time we take $\kappa = \#(\wp(\wp(\mathscr{A})))$ instead of $\kappa = \#(\mathscr{A}^{\mathbb{N}})$. We leave the details to the reader, but it follows from the fact that given a subset X of a von Neumann algebra \mathscr{B} the smallest von Neumann subalgebra \mathscr{B}' that contains X has cardinality at most $\#(\wp(\wp(X)))$. Indeed, if \mathscr{H} is a Hilbert space such that $\mathscr{B} \subseteq \mathscr{B}(\mathscr{H})$ (perhaps after renaming the elements of \mathscr{B}), then \mathscr{B}' is the closure (in the weak operator topology on $\mathscr{B}(\mathscr{H})$) of the smallest *-subalgebra containing X. Thus any element of \mathscr{B}' is the limit of a filter — a special type of net, see paragraph 12 of [9] — of *-algebra terms over X, of which there are no more than $\#(\wp(\wp(X)))$.

By a similar reasoning one sees that the opposite $(\mathbf{W}_{NCPsU}^*)^{op}$ of the category of normal completely positive subunital linear maps between von Neumann algebras is Kleislian over $(\mathbf{W}_{NMIU}^*)^{op}$. The existence of the adjoint to the inclusion $\mathbf{W}_{NMIU}^* \to \mathbf{W}_{NCPsU}^*$ is key in our construction of a model of Selinger and Valiron's quantum lambda calculus by von Neumann algebras, see [1].

3.2 Concrete description

In this note we have shown that the embedding $U \colon \mathbf{C}^*_{\mathrm{MIU}} \longrightarrow \mathbf{C}^*_{\mathrm{PU}}$ has a left adjoint F, but we miss a concrete description of $F\mathscr{A}$ for all but the simplest C^* -algebras \mathscr{A} . What constitutes a "concrete description" is perhaps a matter of taste or occasion, but let us pose that it should at least enable us to describe the Eilenberg-Moore category $\mathscr{E}\mathscr{M}(FU)$ of the comonad FU. More concretely, it should settle the following problem.

Problem 15. Writing **BOUS** for the category of positive linear maps that preserve the unit between Banach order unit spaces, determine whether $\mathscr{EM}(FU) \cong \mathbf{BOUS}$.

(An order unit space is an ordered vector space V over \mathbb{R} with an element 1, the order unit, such that for all $v \in V$ there is $\lambda \in [0, \infty)$ such that $-\lambda \cdot 1 \leq v \leq \lambda \cdot 1$. The smallest such λ is denoted by ||v||. See [4] for more details. If $v \mapsto ||v||$ gives a complete norm, V is called a Banach order unit space.)

3.3 MIU versus PU

A second "problem" is to give a physical description (if there is any) of what it means for a quantum program's semantics to be a MIU-map (and not just a PU-map). A step in this direction might be to define for a C^* -algebra \mathscr{A} , a PU-map $\varphi \colon \mathscr{A} \to \mathbb{C}$, and $a, b \in \mathscr{A}$ the quantity

$$Cov_{\varphi}(a,b) := \varphi(a^*b) - \varphi(a)^*\varphi(b)$$

and interpret it as the covariance between the observables a and b in state φ of the quantum system \mathscr{A} . Let $T: \mathscr{A} \longrightarrow \mathscr{B}$ be a PU-map between C^* -algebras (so perhaps T is the semantics of a quantum program). Then it is not hard to verify that T is a MIU-map if and only if T preserves covariance, that is,

$$Cov_{\varphi}(Ta, Tb) = Cov_{\varphi \circ T}(a, b)$$
 for all $a, b \in \mathscr{A}$.

4 Acknowledgements

Example 2 and Example 3 were suggested by Robert Furber. I'm grateful that Jianchao Wu and Sander Uijlen spotted several errors in a previous version of this text. Kenta Cho realised that the results of this paper might be used to construct a model of the quantum lambda calculus. I thank them, and Bart Jacobs, Sam Staton, Wim Veldman, and Bas Westerbaan for their help.

Funding was received from the European Research Council under grant agreement No 320571.

References

- [1] Kenta Cho and Abraham Westerbaan, *Von neumann algebras form a model for the quantum lambda calculus*, arXiv:1603.02133v1 [cs.LO] (2016).
- [2] Keith Devlin, The joy of sets: fundamentals of contemporary set theory, Springer, 1993.
- [3] Robert Furber and Bart Jacobs, *From Kleisli categories to commutative C*-algebras: Probabilistic Gelfand duality*, Algebra and Coalgebra in Computer Science, Springer, 2013, pp. 141–157.
- [4] Richard V. Kadison, *A representation theory for commutative topological algebra*, no. 7, American Mathematical Society, 1951.
- [5] Stephen Lack, A 2-categories companion, Towards higher categories, Springer, 2010, pp. 105–191.
- [6] Saunders Mac Lane, Categories for the working mathematician, vol. 5, springer, 1998.
- [7] B. Russo and H. A. Dye, *A note on unitary operators in C*-algebras*, Duke Mathematical Journal **33** (1966), no. 2, 413–416.
- [8] W. Forrest Stinespring, *Positive functions on C*-algebras*, Proceedings of the American Mathematical Society **6** (1955), no. 2, 211–216.
- [9] Stephen Willard, General topology, Courier Dover Publications, 2004.

A Additional Proofs

Proof of Lemma 7. Define LC := FC for all objects C of $\mathcal{K}\ell(UF)$ and

$$Lf := \varepsilon_{FC}, \circ Ff$$

for $f: C_1 \longrightarrow UFC_2$ from **C**. We claim this gives a functor $L: \mathcal{H}\ell(UF) \longrightarrow \mathbf{D}$.

(*L preserves the identity*) Let *C* be an object of $\mathcal{K}\ell(UF)$, that is, an object of **C**. Then the identity on *C* in $\mathcal{K}\ell(UF)$ is η_C . We have $L(\eta_C) = \varepsilon_{FC} \circ F \eta_C = \mathrm{id}_{FC}$.

(*L preserves composition*) Let $f: C_1 \longrightarrow UFC_2$ and $g: C_2 \longrightarrow UFC_3$ from \mathbb{C} be given. We must prove that $L(g \odot f) = Lg \circ Lf$. We have:

$$\begin{array}{ll} L(g\odot f) \ = \ L(\mu_{C_3}\circ UFg\circ f) & \text{by def. of } g\odot f \\ \\ = \ \varepsilon_{FC_3}\circ F\mu_{C_3}\circ FUFg\circ Ff & \text{by def. of } L \\ \\ = \ \varepsilon_{FC_3}\circ FU\varepsilon_{FC_3}\circ FUFg\circ Ff & \text{by def. of } \mu_{C_3} \\ \\ = \ \varepsilon_{FC_3}\circ Fg\circ \varepsilon_{FC_2}\circ Ff & \text{by nat. of } \eta \\ \\ = \ Lg\circ Lf & \text{by def. of } L \end{array}$$

Hence *L* is a functor from $\mathcal{K}\ell(UF)$ to **D**.

Let us prove that $U \circ L = G$. For $f: C_1 \longrightarrow UFC_2$ from \mathbb{C} we have

$$ULf = U(\varepsilon_{FC_2} \circ Ff)$$
 by def. of L
 $= U\varepsilon_{FC_2} \circ UFf$
 $= \mu_{C_2} \circ UFf$ by def. of μ_{C_2}
 $= Gf$ by def. of Gf .

Let us prove that $L \circ V = F$. For $f: C_1 \longrightarrow C_2$ from \mathbb{C} be given, we have

$$LVf = L(\eta_{C_2} \circ f)$$
 by def. of V
 $= \varepsilon_{FC_2} \circ F \eta_{C_2} \circ F f$ by def. of L
 $= Ff$ by counit—unit eq.

We have proven that there is a functor $L \colon \mathscr{K}\ell(UF) \to \mathbf{D}$ such that $U \circ L = G$ and $L \circ V = F$. We must still prove that it is as such unique.

Let $L': \mathscr{K}\ell(UF) \to \mathbf{D}$ be a functor such that $U \circ L' = G$ and $L' \circ V = F$. We must show that L = L'. Let us first prove that L' and L agree on objects. Let C be an object of $\mathscr{K}\ell(UF)$, i.e., C is an object of \mathbf{C} . Since $L' \circ V = F$ and VC = C we have L'C = L'VC = FC = LC. Now, let $f: C_1 \to UFC_2$ from \mathbf{C} be given (so f is a morphism in $\mathscr{K}\ell(UF)$ from C_1 to C_2). We must show that $L'f = LU \equiv \varepsilon_{FC_2} \circ Ff$. Note that since F is the left adjoint of U there is a unique morphism $\overline{f}: FC_1 \to FC_2$ in \mathbf{D} such that $U\overline{f} \circ \eta_{C_1} = f$. To prove that L'f = Lf, we show that both Lf and L'f have this property. We have

$$UL'f \circ \eta_{C_1} = Gf \circ \eta_{C_1}$$
 as $U \circ L' = G$ by assump.
 $= \mu_{C_2} \circ UFf \circ \eta_{C_1}$ by def. of G
 $= \mu_{C_2} \circ \eta_{UFC_2} \circ f$ by nat. of η
 $= f$ as UF is a monad.

By a similar argument we get $ULf \circ \eta_{C_1} = f$. Hence Lf = L'f.

Proof of Theorem 9. We use the symbols from Notation 6.

(i) \Longrightarrow (ii) Suppose that L is an isomorphism. We must prove that F is bijective on objects. Note that $F = L \circ V$, so it suffices to show that both L and V are bijective on objects. Clearly, L is bijective on objects as L is an isomorphism, and $V \colon \mathbf{C} \longrightarrow \mathscr{K}\ell(UF)$ is bijective on objects since the objects of $\mathscr{K}\ell(UF)$ are those of \mathbf{C} and VC = C for all C from \mathbf{C} .

(ii) \Longrightarrow (i) Suppose that (ii) holds. We prove that L is an isomorphism by giving its inverse. Let D be an object from \mathbf{D} . Note that since F is bijective on objects there is a unique object C from \mathbf{C} such that FD = C. Define KC := D.

Let $g: D_1 \to D_2$ from **D** be given. Note that by definition of K we have:

$$KD_1 \xrightarrow{\eta_{KD_1}} UFKD_1 = UD_1 \xrightarrow{Ug} UD_2 = UFKD_2$$

Now, define $Kg: KD_1 \to UFKD_2$ in **D** by $Kg := Ug \circ \eta_{KD_1}$.

We claim that this gives a functor $K: \mathbf{D} \longrightarrow \mathcal{K}\ell(UF)$.

(K preserves the identity) For an object D of \mathbf{D} we have

$$Kid_D = Uid_D \circ \eta_{KD} = \eta_{KD},$$

and η_{KD} is the identity on KD in $\mathcal{K}\ell(UF)$.

(*K preserves composition*) Let $f: D_1 \longrightarrow D_2$ and $g: D_2 \longrightarrow D_3$ from **D** be given. We must prove that $K(g \circ f) = K(g) \odot K(f)$. We have

$$K(g) \odot K(f) = \mu_{KD_3} \circ UFKg \circ Kf$$
 by def. of \odot

$$= \mu_{KD_3} \circ UFUg \circ UF\eta_{KD_2} \circ Uf \circ \eta_{KD_1}$$
 by def. of K

$$= U\varepsilon_{D_3} \circ UFUg \circ UF\eta_{KD_2} \circ Uf \circ \eta_{KD_1}$$
 by def. of μ

$$= Ug \circ U\varepsilon_{D_2} \circ UF\eta_{KD_2} \circ Uf \circ \eta_{KD_1}$$
 by nat. of ε

$$= Ug \circ Uf \circ \eta_{KD_1}$$
 by counit—unit eq.
$$= K(g \circ f)$$
 by def of K .

Hence K is a functor from \mathbf{D} to $\mathcal{K}\ell(UF)$. We will show that K is the inverse of L. For this we must prove that $K \circ L = \mathrm{id}_{\mathbf{D}}$ and $L \circ K = \mathrm{id}_{\mathcal{K}\ell(UF)}$.

For a morphism $g: D_1 \longrightarrow D_2$ from **D**, we have

$$LKg = L(Ug \circ \eta_{KD_1})$$
 by def. of K
 $= \varepsilon_{FKD_2} \circ FUg \circ F\eta_{KD_1}$ by def. of L
 $= g \circ \varepsilon_{FKD_1} \circ F\eta_{KD_1}$ by nat. of ε
 $= g$ by counit—unit eq.

For a morphism $f: C_1 \longrightarrow UFC_2$ in **C** we have

$$KLf = K(\varepsilon_{FC_2} \circ Ff)$$
 by def. of L
 $KLfdd = U\varepsilon_{FC_2} \circ UFf \circ \eta_{KFC_1}$ by def. of K
 $= U\varepsilon_{FC_2} \circ \eta_{UFC_2} \circ f$ by nat. of η
 $= f$ by counit—unit eq.

Hence K is the inverse of L, so L is an isomorphism.