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A GENERALISATION OF MEASURE AND INTEGRAL

ABSTRACT. Measure and integral are two closely related, but distinct objects
of study. Nonetheless, they are both real-valued lattice valuations: order pre-
serving real-valued functions ¢ on a lattice L which are modular, i.e.,

w(z) +oy) = ez Ay) +eEVy) (z,y € L).

We unify measure and integral by developing a theory for lattice valuations.
We allow these lattice valuations to take their values from the reals, or any
suitable ordered Abelian group.
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PREFACE

In the summer of 2009 Bas Westerbaan and I worked out an overly general approach
to the introduction of the Lebesgue measure and the Lebesgue integral with the
help of dr. A.C.M. van Rooij. The theory that is presented in this thesis is based
on the work done in that summer.

Since I was fortunate enough to be offered a Ph.D.-position, this thesis was
written under time constraints. Hence the text is not nearly as polished as I would
like it to be, and the proofs of some statements have been left to the reader. I hope
the reader will be able to ignore the rough edges and enjoy this fresh view on the
old subject of measure and integration.

I would like to thank all my teachers for showing me the beauty of mathematics.
In particular, I thank dr. Mai Gehrke for showing me its elegance, dr. Wim Veldman
for showing me its content, and dr. Henk Barendregt for showing me how it is
written. Furthermore, I am most grateful to dr. A.C.M. van Rooij for his never
relenting willingness to answer my questions and note my errors.
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The theory of integration, because of its central role in
mathematical analysis and geometry, continues to afford

opportunities for serious investigation.
— M.H. STONE, 1948, [4]
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1. INTRODUCTION

There are many ways (some more popular than others) to introduce the Lebesgue
measure and the Lebesgue integral. For the purposes of this introduction, we define
the Lebesgue measure and integral in such a way that the similarity between them
is obvious. This similarity is the basis of this thesis. We leave it to the reader to
compare the definitions below to those that are familiar to him/her.

Definition 1. The Lebesgue measure uc: Az — R is the smallest] w:A—=R
where A is a subset of p(R) that has the following properties.
(i) Let a,b € R with @ <b. Then [a,b] € A and (a,b) € A, and

u(la;b]) = p((a,b)) = b—a.
(ii) (Monotonicity) Let A, B € A. Then u(A) < u(B) when A C B.
(i) (Modularity) Let A,B € A. Then ANB € Aand AUB € A, and
p(ANB) + n(AUB) = u(A) + p(B).

(iv) (II-Completeness) Let A1 2 Ay D --- from A be given.
Assume that the set { (A1), p(A2), ...} has an infimum, A, u(A,).
Then we have (1, A, € A. Moreover,

w((yAn) = N, 1(An).
(v) (X-Completeness) Let Ay C Ap C -+ from A be such that \/, u(A,,) exists.
Then we have | J,, 4,, € A. Moreover,
#(UyAn) =V, i(An).

(vi) (Convezity) Let A C Z C B be subsets of R.
Assume that A, B € A and p(A) = pu(B).
Then we have Z € A and p(A) = pu(Z) = u(B).

Definition 2. The Lebesgue integral ¢.: F — R is the smallest p: FF — R

where F' is a subset of [—oo, Jroo]]R that has the following properties.

(i) Let a,b,A € R with a <b. Then A- 15 € F and A1, € F, and

P(A1ap) = oA 1ap) = A-(b—a).
(ii) (Monotonicity) Let f,g € F. Then ¢(f) < ¢(g) when f < g.
(i) (Modularity) Let f,g € F. Then fAg € F and fV g€ F, and
e(fAg) +e(fVg) = o(f) + ¢(g).
(iv) (II-Completeness) Let fi > fo > --- from F be such that A, ¢(fn) exists.
Then we have A, f, € F. Moreover,

P(Anfn) = Npe(fn)-

Here A, fn is the infimum of { f1, f2, ...} in [—oo, +oo]R; more concretely,
it is the pointwise infimum, i.e., (A, fn)(x) = A\, fn(x) for all z € R.

(v) (3-Completeness) Let fi < fa <--- from F be such that \/, ¢(f,) exists.
Then we have \/,, f, € F. Moreover,

e(Vnfn) = Vyolfn)-

(vi) (Convezity) Let f < z < g be [—00, +00]-valued functions on R.
Assume that f,g € F and ¢(f) = ¢©(g).
Then we have z € F and ¢(f) = ¢(2) = ¢(g).

L«gmallest” with respect to the following order. We say that ui is extended by pe2 where
pi: A; = Rand A; C p(R) provided that A; C Az, and p1(A) = p2(A) for all A € A;.
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In this thesis we present an abstract theory based on the properties (Monotonicity),
(Modularity), (II-Completeness), (3-Completeness) and (Convexity) and we try to
fit some of the results of measure and integration theory in this framework.

1.1. Valuations. We begin by considering (Monotonicity) and (Modularity).

Maps with these two properties are called (lattice) valuations. More precisely,
let L be a lattice, and let E be an ordered Abelian group (e.g. R, see Appendix [A]).
A map ¢: L — F is a valuation if it is order preserving and modular, i.e.,

o) + ¢ly) = pl@Ay) + pl@aVy)  (v,y€L).

Of course, the Lebesgue measure p and the Lebesgue integral ¢, are valuations,
and there are many more examples. We study valuation in Section

1.2. Valuation Systems. Let us now look at (II-Completeness). For the Lebesgue
measure it involves intersections, “(,, 4,”, i.e., infima in p(R). Similarly, for the
Lebesgue integral it involves pointwise infima, “/\, f,”, i.e., infima in [—oo, +oo]R.
In order to generalise the notion of (II-Completeness) to any valuation ¢: L — E
we involve a ‘surrounding’ lattice, V. That is, we will define what it means for an
object of the following shape to be II-complete (see Definition [77]).

VOLS E

We call these objects valuation systems, and we study them in Section [4]
The Lebesgue measure and the Lebesgue integral give us valuation systems:

GRD A5 R and  [—o0,400]® D Fr 25 R.

Of course these valuation systems are II-complete by (II-Completeness).
They are also X-complete, which is a generalisation of (X-Completeness).

Finally, (Convexity) can easily be generalised to valuation systems as well. We
will define what it means for a valuation system to be convex in Definition We
study these convex valuation systems in Subsection [£4]

Now that we have introduced the main objects of study, valuations and valuation
systems, let us spend some words on the theorems that we will prove.

1.3. Completion and Convexification. Recall that we defined the Lebesgue
measure iz as the smallest map p: A — R that has properties |[(i)H(vi)l It is
important to note that it is not obvious at all that such a map exists. While it is
relatively easy to see that if there is a map pu: A — R that has properties |(1)H(vi)}
then there is also a smallest one, it takes quite some effort to prove that there is
any map u: A — R with properties |(1)H(vi)| to begin with.

One could call this statement the Eztension Theorem for the Lebesgue measure.
Similarly, to define ¢, we need an Extension Theorem for the Lebesgue integral.

We will generalise (a part) of these two theorems to the setting of valuations.
To see how we could do this, note that to prove the Extension Theorem for the
Lebesgue measure, one could take the following three steps.

(i) Find the smallest map ps: As — R that has properties|(i)H (%))
This is not too difficult. Let S be the family of subsets of R of the

form [a,b] or (a,b) where a,b € R with a < b. Let Ag be the set of all
unions of finite disjoint subsets of S, and let us: Ag — R be given by

ps(hU---Uly) = [Lf + - + [In],

where I1,..., Iy € S with I,, N [,,, = @ when n # m.
Of course, it requires some calculations to see that such a map ug exists,

and that pug will have the properties |(i)H(iii)| (see Example [10Q]).
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(i) Extend pgs to the smallest map Tis: As — R that has properties @
This is the most interesting and the most difficult step. To give an idea
of how one could try obtain such Jig, consider the following ‘algorithm’.
Let p: A — R be a variable. To begin, set u := us.
(x) For all A, Ag,... from A do the following.
o If Ay DAy O --- and A\, u(A,) exists and [, A, ¢ A,
then add (,, A, to A, and set u(),, An) == A, 1(An).
o If A} C Ay C--- and \/,, u(Ay) exists and | J,, An ¢ A,
then add (J,, A, to A, and set u(U,, An) ==V, 1t(An).

If u was changed, repeat (x).

There are many problems with this ‘algorithm’. Perhaps the most serious
problem is, loosely speaking, that the same set A may be obtained in several
ways and it is not clear that p(A) would be given the same value each time.
Note that the ‘algorithm’ resembles the definition of the Borel sets. In
fact, g will be the family of all Borel subsets of R with finite measure.
(iii) Eaxtend fig to the smallest map ur: Ae — R that has properties|(i)H(vi)l
This is straightforward. Simply define A, to be the family of all subsets
of R that are ‘sandwiched’ between elements of Ag, that is, all Z € p(R)
for which there are A, B € As such that A C Z C B and fig(A) = 1s(B).
Now, define pz: Az — R by pe(Z) = ms(A) for Z and A as above.

We have sketched how to get the Lebesgue measure us: Az — R in three steps,

***** U — — = - — > — — = — — > [ir.

We will generalise step and step to the setting of valuations. More precisely:

(i) Let V 2 L% E be a valuation system. We will give a necessary and
sufficient condition, namely V 2 L % E is extendible (see Definition [IZT]),
for the existence of a smallest valuation @: L — F which extends ¢ where L
is a sublattice of V' such that the valuation system V 2O L% E is both
IT-complete and X-complete (see Lemma and Proposition [[48]).

We will call @ the completion of ¢ (relative to V).

(ii) Let V O L% E be a valuation sytem. We will prove the following.

There is smallest valuatign ¢®: L* — E extending ¢ with L® a sublattice
of V such that V' O L¢ % . Eis convex (see Propisition [BH]).

Moreover, V. D L* 25 E is II-complete and X-complete provided that
V O L% E is II-complete and Y-complete (see Proposition [8g).

We will call ¢* the convezification of ¢ (relative to V).

By the discussion above we see that the Lebesgue measure u, is the convexification
of the completion of ug relative to p(R):

completion convexification

Similarly, the Lebesgue integral ¢, is the convexification of the completion of ¢g
relative to [—oo, —l—oo]R, where pg: Fs — R is the obvious valuation on the set of
step functions Fs (see Example[TH). So we get the following diagram.
completion J— convexification
pPS———— - - - - ps—— - - - - -~ >=Pr

Let us note that $s: Fs — R will be the restriction of the Lebesgue integral to the
set Fg of Lebesgue integrable Baire functions. We will not prove this.

We belief that the completion is the most important step, and that the convex-
ification is mere decoration. In line with this believe, we spend most words on the
completion, and we leave it to the reader to think about the convexification.
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1.4. Closedness under Operations. We have found an abstract method to get
the Lebesgue measure po and the Lebesgue integral . However, such a method
is nothing but a curiosity if we cannot use it to derive some basic properties of j
and .. One such property might be:

If f,g € RR are Lebesgue integrable,
then f 4 g is Lebesgue integrable,
and o (f +9) = oc(f) +¢c(9)-

So, roughly speaking, ¢, is closed under the operation “+”. Instead of this, we will
prove that g is closed under the operation “+”. We leave it to the reader to use
this to prove that the convexification of @g, i.e. ¢, is closed under “+” as well.

More generally, in Section 6l we will prove some statements of the following shape.
If V2 L% Eis a valuation system, and  is closed under some operation in some
sense, then the completion @ is closed under the same operation as well.

1.5. Convergence Theorems. An important part of the theory of integration is
that of the convergence theorems. So we have studied whether these make sense
in the setting of valuations. We will show in Subsection that it is possible to
formulate and prove the Lemma of Fatou and Lebesgue’s Dominated Convergence
Theorem for complete valuation systems. Interestingly, the surrounding lattice V'
will play no role. This leads to the study of complete valuations (as opposed to
complete valuation systems), see Section [3] for more details.

1.6. Fubini’s Theorem. Another important part of the theory of integration is
Fubini’s Theorem. Unfortunately, it seems that that it not possible to make sense
of Fubini’s Theorem in the general setting of valuations.

Nevertheless, in Section [ we will split the proof of Fubini’s Theorem for the
Lebesgue integral into two parts. The first part concerns step functions and is
specific to the Lebesgue integral, while the second part is a consequence of a general
extension theorem for valuations (see Theorem [T99).

1.7. Extendibility. We have remarked that a valuation system V 2 L% E has
a completion if and only if ¢ is extendible. As the reader will see in Subsection
the definition of “p is extendible” is rather involved.

Fortunately, the situation is simpler for some choices of E. We say that E is
benign if for every valuation system V O L% E we have that ¢ is extendible iff

Let a; > ag > --- in L with A, ¢(an) exists be given.
Let by < by <--- in L with \/, (by,) exists be given.
Then we have the following implication.

/\nan < ann = ‘P(/\nan) < @(ann)v

Here, A, ay is the infimum of a; > az > --- in V,
and \/, by, is the supremum of by < by <--- in V.

We will prove that R is benign. More generally, we will prove in Section [ any
ordered Abelian group FE that has a suitable unformity (see Def. [[G])) is benign.

1.8. Attribution. Some work of others has been included in this master’s thesis.

(i) An early version of the theory in Section [ has been developed together
with Bas Westerbaan, and some of his work is undoubtedly still there.
(ii) The proof of the Borel Hierarchy Theorem in Subsection 5.4l is an adapta-
tion of the work by Wim Veldman [6].
(iii) Countless improvements were suggested by dr. A.C.M. van Rooij. Most
notably, he strengthened Lemma [I79 to its current form, and he suggested
that I should restrict the theory to lattice valuations.
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Aside from the things mentioned above, and that which is common knowledge, and
unless stated otherwise, every definition and proof in this thesis is my own.

Nevertheless, I do not want to claim that any part of my work is original as well,
because that would be mere gambling. Indeed, recently I discovered an article [I]
on the foundation of integration in which valuations are used as well.

1.9. Prerequisites. We have tried to keep this text as accessible as possible.

We assume that the reader is familiar with the ordinal numbers and is comfortable
with the basic notions of order theory (suprema, infima, lattices, etc., see [3]).

We have attached some material on ordered Abelian groups, in Appendix [Al
While some knowledge about measure, integral, topology, uniform spaces, Borel
sets, and Riesz spaces will helpful as well, we hope this will not be necessary.

1.10. Notation. Let us take this opportunity to fix some notation.
(i) We write N={1,2,...} and w ={0,1,2,...}.
(ii) We will use the symbol “\/” for suprema, and the symbol “A” for infima,
as the symbol “>"” is used for sums, and the symbol “[]” for products.
(iii) Given z € R we say that x is positive when z > 0.
Given x € R we say that x is strictly positive when x > 0.
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2. VALUATIONS

Both the Lebesgue measure and Lebesgue integral are wvaluations. In fact they
are both complete valuations (see Section [3). While the better part of this thesis
involves complete valuations, much can already be said about valuations.

In this section we study the elementary properties of valuations. We start with
some examples in Subsection 2.1l We study the distance induced by a valuation ¢,

do(z,y) = @(zVy) — ez Ay),
in Subsection Finally, we study the equivalence induced by this distance,
rry <= dy(z,y) =0,

in Subsection 2.3 The notion of distance is especially important.
We end the section some exotic examples (in Subsection 2.4]).

2.1. Introduction.

Definition 3. Let L be a lattice. Let E an ordered Abelian group (see Section [A]).
Let ¢: L — E be a map. We say that

(i) ¢ is modular provided that
pland) + e(aVb) = ¢a) + ¢(b)  (a,b€L);

(ii) ¢ is a valuation provided that ¢ is modular and order preserving.
Example 4. Let F be the set of finite subsets of N, and for each A € F, let #(A)
be the number of elements of A. Then we have

#(ANB) + #(AUB) = #(4) + #(B) (A, BeF),
so obviously the map F — N given by by A — #(A) is a valuation.

Example 5. Let A, be the set of Lebesgue measurable subsets of R with finite
Lebesgue measure. Then A, is a lattice of subsets of R. Given A € A, let pg(A)
denote the Lebesgue measure of A. Then A C B = pu,(A) < pue(B), and

pe(ANB) + pe(AUB) = pe(A) + pe(B),
where A, B € Az. So . is a valuation.

Remark 6. Valuations have been known for a long time, see [2].

Example 7. Let F; be the set of Lebesgue integrable functions on R. When we
write “function on R” we mean a map f: R — [—o0, +00]. Allowing the infinite
values 400 and —oo might make the story a bit more complicated in the short run,
but it will turn out to be a convenient choice later on (see Remark B8]).

The set F is a lattice under pointwise ordering, and Fz NRE is a lattice ordered
Abelian group. The assignment f — [ f yields an order preserving map

(p£ZF£—>R

that is group homomorphism restricted to Fy N RE.
It takes some work see that ¢, is modular (and hence a valuation).
First, note that for x,y € R, we have

min{z,y} + max{z,y} = = + y.
So given f,g € Fr NRE, we have f Ag+ fV g = f + g, and hence
ec(fAg) + ec(fVg) = ec(fAg+fVyg)
= ¢c(f+9) (1)
= oc(f) + eclg)

So we see that ¢, is modular on Fy NRE.



A GENERALISATION OF MEASURE AND INTEGRAL 15

To see that ¢, is modular on F, we need some observations.

(i) Let f € Fz. Then the set of € R such that f(z) = 400 or f(z) = —o0 is
negligible. Define fg: R — R by, for z € R,

fale) = {f(:c) if f(z) €R

0 otherwise.

Then f(z) = fr(z) for almost all x € R.
(ii) Let f1, fo € Fr be given and assume fi(x) = fo(z) for almost all x € R.
(We denote this by f1 ~ f2.) Then we have ¢, (f1) = pc(f2).
(i) Let f1, fo € Fr with f1 = fo be given, and let g € F.
Then fiAg~ foAgand f1Vg=g2Vyg.
Now, let f,g € Fr be given. To prove that ¢, is modular, we must show that

oc(f) +eclg) = ec(fAg) + oc(fVy).

Indeed, we have:

oc(f) + ¢cl9) = ¢c(fe) + oloe) by [()] and [(ED)
= oc(frAgr) + @c(feVgr) by Statement (1)
= @c(fAgr) + oc(fV gr) see [(iii))

soc(ng) + ec(fVy)
Hence the Lebesgue integral ¢, : Fr — R is a valuation.

Example 8. Let C be a chain, i.e. a totally ordered set. Then C is a lattice with
a A'b=min{a,b}, a Vb= max{a,b}.
One quickly sees that any map f: C — E to an ordered Abelian group is modular.
Example 9. Let X be a set and let A be a ring of subsets of X. That is,
ANB, AU B, A\B

are in A for all A, B € A. Then clearly A is a lattice.

Let E be an ordered Abelian group and let pu: A — E be a map. Recall that p
is additive if pu(A) + u(B) = (AU B) for all A, B € A with ANB = @.

If 1 is additive, then p is modular. Indeed, let A, B € A be given. We need to
prove that p(A) + u(B) = u(AN B) + p(A U B) assuming p is additive. We have

w(A)+u(B) = n(ANB U A\B) + u(B)
= uw(ANB) + u(A\B) + u(B) since ANB N A\B=g
= u(ANB) + u(A\B U B) since A\B N B=g
= (AN B) + u(AUB).
Recall that p is positive whenever pu(A) € ET for all A € A.
If 1 s additive and positive, then p is a valuation. Since p is additive, p is

modular. It remains to be shown (see Definition [B]) that p is order preserving.
Let A C B from A be given in order to prove pu(A) < u(B). We have

(B\A) U A = B, (B\A)N A = @.
So by additivity, u(B) = u(B\A) + pu(A). Then u(B) > u(A), since u(B\A) > 0.

Example 10. We describe a ring of subsets of R and a positive and additive
map us: As — R that will eventually lead to the Lebesgue measure.
Let S be the set of all subsets of R of the form, with a < b from R,

(a,b) or [a, b].
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Let Ag be the ring generated by S. Every element A of Ag is of the form
L U---Uly
where Iy,...,In € S are disjoint. Let ug(A) be given by
pi(A) = Ll + -+ In].
One can verify that the number pug(A) only depends on A and not on the choice

of I,...,In. Hence we obtain a map us: As — R. Almost by definition pug is
additive and positive. Hence pg: Ag — R is a valuation (see Example [)).

In Example [l we saw a group homomorphism that is modular, namely the
Lebesgue integral ¢, restricted to RE. In fact any group homomorphism on a
lattice ordered Abelian group is modular (see Corollary [[3|(i)).

Example 11. Let R be a lattice ordered Abelian group. Then the identity map idg
is a valuation. Indeed, idg is modular by Lemma[212] and clearly order preserving.

Lemma 12. Suppose we have the following situation.

Ay S R

where L, L' are lattices, E, E' are ordered Abelian groups, f is a lattice homomor-
phism, @ a map, and g is a group homomorphism. Then

(i) go o f is modular provided that ¢ is modular;

(i) go o f is a valuation provided that ¢ is a valuation and g is positive.

Proof. Suppose ¢ is modular. Let a,b € L' be given. Writing ¢’ = gopo f,
we need to prove that ¢'(a Ab) + ¢'(a Vv b) = ¢'(a) + ¢'(b). We have

¢'(a) +¢'(0) = g(p(f(a)) + g( (f(0)))
= 9( <p(f( e(f(b))
= g(o(f(a ) ()) e(f(a)V f(b))
= g(p(f(@anb)) + ¢(f(aVd)))
= g(p(fland))) + g(p(fla Vb))

= ¢ (anb)+ ¢ (aVD)

Suppose ¢ is a valuation and g is positive. We need to prove that ¢’ := goyo f
is a valuation. By part we know that ¢’ is modular. It remains to be shown
that ¢’ is order preserving. This is easy: g, ¢, and f are all order preserving. So
¢’ = gowo f must be order preserving too. (]

Corollary 13. Let R be a lattice ordered Abelian group.

(i) Let L be a lattice. Any lattice homomorphism f: L — R is a valuation.
(i) Let E be an ordered Abelian group and g: R — E a group homomorphism.
Then g is modular. Moreover, if g is positive, then g is a valuation.

Proof. Apply Lemma [I2] to the following situations.

L—top R R R R R E

(Recall that idg is a valuation, see Example [T1) O

idr idr idr g

Example 14. Let X be a set. We say that F' C RX is Riesz space of functions if

f\/ga f/\ga f+ga )‘f
are all in F" where f,g € F' and A € R. Then F is a lattice ordered Abelian group.
Let E be an ordered Abelian group and let ¢: F — E be a positive linear map.
We see that ¢ is a valuation by Corollary



A GENERALISATION OF MEASURE AND INTEGRAL 17

Example 15. We describe a Riesz space of functions Fg on R and a positive linear
map ¢s: Fs — R that will eventually lead to the Lebesgue integral.

A step function is a function f: R — R for which there are 51 < s9 < -+ < sy
in R such that f is constant on each (s, $Sp+1) and f is zero outside [s1, sy].

Let Fgs be the set of step functions. One can easily see that Fg is a Riesz space
of functions. Let f € Fg. Let s1 < so < --- < sy be such that f is constant, say
¢n € R, on (8p, Sn+1) and f is zero outside [s1, sy]. One can prove that

N-1
Z Cp * (SnJrl - Sn) (2)

does not depend on the choice of s; < s9 < -+ < sy. So Expression [2)) gives a
map @s: Fg — R. This map is easily seen to be linear.
Consequently, ¢g: Fs — R is a valuation (see Example [T4]).

We end this subsection with some tame examples of valuations we need later on.

Example 16. Let I = {1,2}. For each i € I, let L; be a lattice, E; an ordered
Abelian group, and ¢;: L; — FE; a valuation. Then the map

(p1Xg021L1XL2HE1XE2,

given by (1 X @2)(a1,az) = (p1(a), p2(b)) for all a; € L;, is a valuation.
We call the valuation @1 X 2 the product of ¢ and ¢o. Of course, one can
similarly define a product of an I-indexed family of valuations for any set I.

Example 17. Let L be a lattice. If we reverse the order on L, i.e., consider the
partial order on L given by a <pop b <= a > b, then if a subset S C L has a
supremum, \/ S, then \/ S is the infimum of S with respect to <°P. So we see that
<°P gives us a lattice, L°P. (The opposite lattice.)

Let E be an ordered Abelian group. If we reverse the order on E, we obtain
an ordered Abelian group E°P with the same group structure, but whose positive
elements, (E°P)™T, are precisely the negative elements of E.

Let ¢: L — E be a modular map (see Definition Bl). Then one quickly sees
that ¢ is also modular considered as a map L°? — E. However, ¢: L°? — FE is a
valuation (that is, also order preserving) if and only if ¢: L — E is order reversing,
ie,a<b = ¢(a) > @) for all a,b € L.

Of course, if ¢: L — E is a valuation, then ¢ is a valuation L°P — E°P.

2.2. Distance Induced by a Valuation. In this subsection, we derive some facts
concerning the following notion of distance induced by a valuation.

Definition 18. Let E be an ordered Abelian group. Let L be a lattice.
Let ¢: L — E be a valuation. Define d,: L x L — E by

dy(a,b) = ¢(aVb)—@(anbd) (a,b e L).

To give the name “distance” for d, some credibility, we will prove that d is a
pseudometric (see Lemma [2T]). After that, we turn our attention to the following
fact, which we will use often. Given a € L, the map x — a Az is a contraction, i.e.,

do(anz, any) < do(z,y) (x,y € L).
In fact, we will prove the following, stronger, statement (see Lemma [23]).
do(ahz,aNy) + de(aVa,aVy) < dy(z,y) (z,y € L).

Before we do all this, let us consider some examples.
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Example 19. Let F be an ordered Abelian group. Let F' be a Riesz space of
functions, and let ¢: F' — E be a positive and linear map (see Example [14]).
Let f,g € F be given. The distance between f and g is the usual one,

do(f,9) = IIf —glli = (If —gl).

To see this, note that since ¢ is linear, we have

do(fr9) = o(fVg)—w(fAg) = o(fVg—FfNg).

Further, since we have the identity max{z,y} — min{z,y} = |z — y| for reals z,y,
we have the identity fV g — f A g=|f — g| for functions.

Example 20. Let E be an ordered Abelian group. Let A be a ring of sets, and let
w: A — F be a positive additive map (see Example[d)). Let A, B € A. We have

where A6 B := A\B U B\A is the symmetric difference of A and B. To see this,
note that AU B is the disjoint union of A © B and AN B. So since pu is additive,

w(AUB) = pu(Ae B)+ u(ANB).

Lemma 21. Let E be an ordered Abelian group.
Let L be a lattice, and let p: L — E be a valuation.
Let a,b,z € L be given. We have:
(i) dy(a,b) > 0

(it) dy(a,a) =0

(iii) d,y(a,b)

(iv) d,(a.b)
Proof. Only point requires some work. Let a,b,z € L be given. We want to
show that dy(a,b) < dy(a,z) + dy(2,b). In other words:

= dy(b,a)
S d%@(a’az) =+ dtp(zvb)

3

elaVd) + planz) + p(zAb) < plaVz)+ o(zVb) + plaNbd). (3)
By modularity, the left-hand side equals
elaVvd) + p((anz)V(bA2)) + elaNbA 2).
On the other hand, using modularity the right-hand side of Inequality [B]) becomes
elaVvbVz)+ e((aVz)ADBVz2))+ plaAbd).

Note that aVb < aVbVz,and (aAz)V (bAz) <z < (aVz)A(Vz),and
aAbAz<aAb,so that the monotonicity of ¢ yields Inequality (3). (I

It is possible that dy(a,b) = 0 while a # b (see Example 27). So in general, d,, is
not a metric (but merely a pseudometric). Those ¢ for which d, is a metric turn
out to be useful. So let us give them a name.

Definition 22. Let L be a lattice. Let E be an ordered Abelian group.
Let ¢: L — E be a valuation. We say ¢ is Hausdorff provided that

dy(a,b)=0 = a=b (a,be L).
We return to Hausdorff valuations in Subsection

Lemma 23. Let E be an ordered Abelian group.
Let L be a lattice, and ¢: L — E a valuation. We have, for a,b,z € L,

do(a Nz, bANz) + dy(aVz,bVz) < dy(a,b).
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Proof. By expanding Definition [[8 we see that we need to prove that

elaVvbVz)+ e((anz)V(bAZ)) + olaAb)
< plaVd)+e((avz)ADVz)) + elaNbAz)

(4)
By modularity, the left-hand side equals
wlavbVvz)+ o(lanz)V(bAzZ)V(aAb)) + elaNbA((aNz)V (DA =2))).

To simplify the above expression, we prove that a AbA ((aAz)V(bAzZ) =aAbAz.
To this end, note that a Az < (aAz)V (bAz) < zso that

aANbANz =aAbA(aNz) <aAbA((anz)V(DAZ)) < aAbAz.

Hence the left-hand side of Inequality (@) equals

wlavVbVvz) + e((anz)V(bAZ)V(aAb)) + (aNbAz).
In a similar fashion, one can show that the right-hand side of Inequality @) equals

wlavbVvz)+ o((avz)ANbVz)A(aVbd)) + plaNbAz).
So in order to prove Inequality (@), we must show that

e((anz)V(bAZ)V(and)) < p((aVz)ADVz)A(aVDb)).
Since ¢ is order preserving, it suffices to show that
(anz)V(OAZ)V(aAd) < (aVz)ADVz)A(aVDd).
Writing ¢; = a, co = b, and c3 = 2z, we must prove that
\/#jci/\cj < /\k#ck\/q.

That is, we must show that ¢; A c; < ¢ V ¢¢ for given i # j and k # £. Now, note

#{i, 53 0k, ) + 40,5, k. 0 = #{i 5} + 4k ;= 4

Since #{i,7,k, ¢} < 3, we see that #{i,7} N {k,£} > 1. So pick m € {i,j} N {k, ¢}.
Then ¢; Acj < em < e Ve, [l

Lemma 24. Let E be an ordered Abelian group.
Let L be a lattice, and ¢: L — E a valuation. Then we have

do(a Nw,bAz) + dy(aVw,bVz) < dy(a,b) + dy(w, 2),
where a,b,w,z € L.
Proof. By the triangle inequality (point of Lemma [2T]), we have
do(aNw, bAz) < do(ahw, bAw) + do(bAw, bA2),

)
do(aVw,bVz) < do(aVw, bVw)+ do(bVw, bV z). 5)

On the other hand, Lemma 23] gives us
do(a Nw,bAw)+dy(aVwbVw) < dy(a,b), 6
de(bAw,bA2)+dp,(bVw,bVz) < dy(w,z) (6)

The sum of the right-hand sides of Equation (&) equals the sum of the left-hand sides
of Equation (6)). Hence dy(a Aw,bAz)+dy(aVw,bVz) <dy(a,b)+dy(w,z). O
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2.3. Equivalence Induced by a Valuation. In measure theory two functions
are considered equivalent if they are equal almost everywhere.
In this subsection, we extend this notion of equivalence to valuations.

Definition 25. Let E be an ordered Abelian group. Let L be a lattice.

Let ¢: L — FE be a valuation. We define = to be the binary relation on L given by
ar~b <= dy(a,b)=0 (a,b e L).

Remark 26. ¢ is Hausdorff (see Definition 22)) iff a = b <= a =b.

Example 27. We consider the Lebesgue integral o : Fr — R (see Example [7]).
Let f,g € Fx NRER be given. By Example [[9 we know that

f~g <<= oc(lf—gl)=0. (7)

In fact, Statement (@) holds for all f,g € Fr, as the reader can verify using the
remarks made in Example [1
Now, for any h € F with h > 0, we have that

oc(h) =0 <= h(x)=0 for almost all z.
So we see that we have, for f,g € Fr,
frg <= f(z)=g(x) for almost all .
So “x" is equality almost everywhere when ¢ = ¢, as was intended.
Proposition 28. Let E be an ordered Abelian group. Let L be a lattice.
Let o: L — E be a valuation. Let ~ be as in Definition [24.

(i) The relation = is an equivalence.
(i) Let a1,as € L with with a1 = ag be given. Then p(a1) = p(az).
(iii) Let a1,as € L with a1 = ag, and let by,be € L with by = by be given. Then

0,1/\()1%(12/\()2 and al\/blwag\/bg.
(iv) Let ai,a9 € L with a1 /= az, and let by, by € L with by = by be given. Then
dw(al,bl) = d¢(a2,b2).

Proof. The relation = is clearly reflexive and symmetric. So to prove = is an
equivalence relation, we will only show that = is transitive. Let a,b,c € L with
a =~ b~ ¢ be given. We must show that a ~ c¢. Or in other words, d,(a,c) = 0.

By Lemma 21| points|(i)| and we get
0 < dy(a,c) < dy(a,b) +dy(b,c). (8)
But d,(a,b) = 0 and dy(b,c) = 0, since a = b and b = ¢, respectively.
So we see that Statement (8) implies d,(a,c) = 0. Hence a = c.
Let a1, a2 € L with a1 = as be given. We must prove ¢(a1) = ¢(az).
Let i € {1,2} be given. Note that a; A az < a; < ay V az. So we have
plar Nag) < @lai) < plarV ag). (9)
Since dy(a1,a2) = 0, we know that p(a; V a2) = ¢(a1 A az). So Statement (@)
implies that ¢(a; V az) = ¢(a;) = p(a1 A az). Hence ¢(a1) = ¢(asz).

Let a1,as € L with a1 = a2 be given. Let b1,bs € L with b1 = by be given.
We will only show that a; A by & as A ba; the proof of a; V by =~ as V by is similar.
Note that we have the following inequalities by Lemma IZEE and Lemma

0 S dw(al/\bl,ag/\bg) < d¢(a1,b1)+d¢(a2,b2) (10)

Since a1 =~ a2 and by & by, we have dy(a1,b1) = 0 and dy (a2, b2) = 0, respectively.
Hence Statement (I0) implies dy,(a1 A b1, a2 Ab2) =0. So a1 Aby =~ as A ba.
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Let ai,as € L with a1 = as be given. Let b1,bs € L with b = by be given.

We must prove that dy(a1,b1) = dy(asz,b2). Note that by point we have
a1 ANb1 = as N by and a1 Vb = asV bs.
So by point of this lemma, we get
w(ar Abr) = p(az A ba) and w(a1 Vb1) = p(az V ba).
So if we unfold Definition [I8, we see that
dy(a1,b1) = w(arVbi) — a1V bi)
= @(az Vb2) —p(az Vb)) = dy(az,b2). O

When studying the Lebesgue integrable functions, F, it is sometimes convenient
to consider the space L' = F/~ of integrable functions modulo equality almost

everywhere (see Example 7). Of course, one can consider the space L/~ for any
valuation ¢: L — E. We list some of the properties of L/~ in Proposition 29

Proposition 29. Let E be an ordered Abelian group.
Let L be a lattice. Let p: L — E be a valuation. Let = be as in Definition [2].
Let L/~ denote the quotient set, and let q: L — L/~ be the quotient map. Then:

(i) The set L/~ is lattice if the operations are given by
gaAqgb = qla AD), qgaVgb = q(aVb) (a,b e L).

Then, in particular, q: L — L/~ is a lattice homomorphism.
(i) There is a unique map p/~: L/~ — E such that

(v/=)(q(a)) = ¢(a) (a €L).
Moreover, the map ¢/~ is a valuation.
(iii) We have dy/~(qa, gb) = dy(a,b) for all a,be L.
(iv) We have dy/~(a,b) =0 = a=0 forall a,beL/~.

Proof. Follows from Proposition We leave the verification to the reader. O

Remark 30. Note that ¢/~ is Hausdorff (see Definition 22)) by Proposition 2(iv)|

2.4. More Examples. Valuations also appear outside measure theory.
We begin with an example from elementary number theory.

Example 31. Recall that Euler’s totient function ¢ is given by, for n € N,
pn) = #H{ze{l,....,n}: ged{z,n} =1}

We will prove that ¢ is a valuation ‘with respect to the division order’.
More precisely, we consider ¢ to be a map

¢: N— Q°,
where Q° is the set of strictly positive rational numbers. Write, for ¢,r € Q°,
gsr <= dneN[¢g-n =r].
We order the sets N and Q° by “<”. They are both lattices with
aNb = ged{a,b}, aVb = lem{a,b}.

“wn

Moreover, Q° is an ordered Abelian group under the normal multiplication
Before we prove that ¢ is a valuation, we make a useful observation: for n € N,

p(n) = #Ly, (11)

Here Z,, is the set of integers modulo n, and Z; are the invertible elements of Z,.
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To see that Equation (II)) holds, note that for x € Z, we have
ged{z,n} =1 < Fa,beZ, ar+bn =1 by Bézout’s Lemma
<~ da,beZ, ax =1—bn
= da€Z, [a],-[z], =1
= [z], € Zj,
where [—],,: Z — Z,, is the quotient map.

Let us now prove that ¢ is a valuation. We first prove that ¢ is order preserving.
Let m,n € N with m < n be given. We must show that ¢(m) < ¢(n).

Note that there is a unique ring homomorphism h: Z,, — Z,, given by, for x € Z,

h([2n) = [2]m-

Note that h is surjective, and that [z],, if invertible iff [z],, is invertible for z € Z.
So we see that if we restrict h to Z}, we get a surjective group homomorphism

h: 7 — L%,
By Lagrange’s Theorem we know that
#L7, - dker(h) = #I7,
where ker(h) := {a € Z,: h(a) =0} is the kernel of h. Thus
p(m) = #ZLy, < #L;, = p(n).

Hence ¢ is order preserving.
It remains to be shown that ¢ is modular. That is, for m,n € N,

p(ged{m,n}) - p(lem{m,n}) = @(m) - ¢(n). (12)
We first prove a special case, namely, that for m,n € N with ged{m,n} =1,
p(m-n) = @(m) - p(n). (13)

By the Chinese Remainder Theorem we have the following isomorphism of rings.
Loy, X Loy, = Lopom
As a consequence, we get the following isomorphism of groups.
Z,, XLy = 7T .
If we count the number of elements in the above groups we see that
Hlog, - # Ly = F Ly
Hence Equation (I3]) holds (see Equation (I)).

Let m,n € N be given. We prove that Equation (I2)) holds.
By the Fundamental Theorem of Arithmatic, we have

m = H pw(p), n = H pv(p),
p€EP pEP
where v,w: P — {0,1,2,...} have finite support, and P are the primes. Hence
om) = [ @™,  om) =[] »@"®),
p€EP pEP

by Equation (I3), because ged{pt*, ph2} =1 for all p; # po from P and ky, ks € N.
Let p € P be given. Note that either w(p) < v(p) or v(p) < w(p). Hence,

(p(pw(p)) . (p(pv(p)) - (p(pmin{w(p)vv(p)}) . (p(pmax{w(p),v(p)} ). (14)
This gives us the following equality.

m-n — H o(pmintw®) vty H o praxtw®.ve)}y
p€EP pEP
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Note that ged{m,n} =[] cp prin{w®) v} 50 we have
p(ged{m,n}) = [] w(pmintw@e®h),
peP
Similarly, we have
pllemfm,n}) = [ e(pretowewn)
peP
If we apply the above equalities to Equation (I4]) we get
p(m) - p(n) = @(ged{m,n}) - p(lem{m,n}).
So ¢ is modular. Hence Euler’s totient function ¢ is a valuation.

Up to this point we have only seen valuations on distributive lattices. We will now
give an example of a valuation on a non-distributive lattice.

Example 32. Let W be a vector space. Let L be the set of finite-dimensional linear
subspaces of W ordered by inclusion. Then L is a lattice, and for all A, B € L,
ANB = ANB, AVB = (AUB),
where (S) denotes the smallest linear subspace containing S. We have
dim(A A B) + dim(AV B) = dimA + dim B (A,B e L).

To see this, apply the dimension theorem to the map f: A x B — AV B given by
(a,b) — a + b. Hence the assignment A — dim A gives a valuation dim: L — N.

The lattice L might be distributive. For instance, if W = {0}. This occurs only
seldom: if W contains two linearly independent vectors, then L is non-distributive.

Indeed, let v1,v9 € W be linearly independent vectors and consider w := v1 +vs.
One can verify that v;, w are linearly independent too. So (v;) N (w) = {0}. Hence

(w) A ({01} V (v2)) = (vr,09) # {0} = ((w) A(v)) V ((w) A (v2)).

It is interesting to note that there are some ‘connections’ between modular maps
(see Definition B) and modular lattices. Recall that a lattice L is modular if

(V(anu) = (UVa)Au
for all £,u,a € L with £ < u. One such connection is given by the following lemma.

Lemma 33. Let E be an ordered Abelian group. Let L be a lattice.
Let ¢: L — E be a modular map. Let {,u € L with £ < u be given. We have

o(lV(anu)) = o(({Va)Au) (a € L). (15)
Proof. The trick is to consider the expression ¢(¢) 4+ ¢(a)+ ¢(u). On the one hand,
e(0) +p(a) +o(u) = el Aa)+ (L Va)+ o(u)
= plAa)+p((lVa)ru)+olaVu),
where we have used modularity twice. On the other hand,
e(0) + ¢(a) + o(u) = @) + planu)+elaVu)
= ol Na)+p(LV(aAu))+ plaVu).
The difference, p( (¢ Va) Au) — (£ V (a Au)), must be zero. O
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3. COMPLETE VALUATIONS

We now turn to the study of complete valuations (see Definition [B5). Among all val-
uations the complete valuations resemble the Lebesgue measure and the Lebesgue
integral most closely. To support this claim, we will prove generalisations of some
of the classical convergence theorems of integration in Subsection

But first, we give some examples of complete valuations in Subsection Bl

After that, we study a notion of completeness for an ordered Abelian group F,
called R-completeness, in Subsection 3.2] which will be useful later on.

The notion of complete valuation is not at the end of the road. We will study
the slightly more sophisticated valuation systems (see Definition [[2) and complete
valuation systems (see Definition [[7)) in Section [

3.1. Introduction.

Definition 34. Let E be an ordered Abelian group.
Let L be a lattice, and let ¢: L — F be a valuation.

Consider a sequence a; > as > --- from L. We say
a1 > ag > -+ is p-convergent if N, p(an) exists.
Similarly, if by < by < --- is a sequence in L, then

b1 < by < .-+ is p-convergent if V., ¢(by) exists.

Definition 35. Let E be an ordered Abelian group. Let L be a lattice.
Let ¢: L — E be a valuation. We say ¢ is [I-complete if

ai > as > - - - p-convergent = A\, on exists, and (A, an) = A,¢(an).
We say ¢ is YX-complete if

b1 <by <---p-convergent = \/ b, exists, and @(\/,bn)=V,e0n).
We say ¢ is complete if ¢ is both II-complete and ¥-complete.

Example 36. The Lebesgue measure i, (see Example[) is a complete valuation.
We must show that uz is both II-complete and ¥-complete (see Definition [35)).
Let us prove p. is 3-complete. Let By € By C -+ in Az be puc-convergent. We
must prove that \/, By, exists in A, and that pz(\,, Bn) =V, 1ic(Bn).
Note that |J,, By, is Lebesgue measurable, and that | J,, By has (finite) Lebesgue
measure \/, f1z(By). Hence we have |J,, B, € Ag, and,

pe(U, Bn) = V,pc(Bn). (16)

So we are done if we prove that | J,, B, = \/,,Bn. Since |J,, By, is the smallest subset

of R containing all B,, (i.e. |J, Bn is the supremum of the B, in pR), U, By is

also the smallest subset of finite Lebesgue measure containing all B,, (i.e. J,, By is

the supremum of the B,, in Agz). So |J,, Bn = V,,Bn. Hence p. is X-complete.
Using an easier reasoning one can prove that o is II-complete.

Example 37. The Lebesgue integral ¢, (see Example[7)) is a complete valuation.
We must show that ¢, is both II-complete and ¥-complete (see Definition B3).

Let us prove o, is X-complete. Let f1 < fo <--- in F; be p-convergent. We
must prove that \/n fn exists in F, and that

Of course, this follows immediately from Levi’s Monotone Convergence Theorem,;
the supremum \/,, f, in F is simply the pointwise supremum (which is the supre-
mum of f; < fo <.+ in [—o0, +oo]R). So we see @ is 3-complete.

With a similar argument one can see that ¢, is II-complete.
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Remark 38. Note that the restriction of ¢, to F N RR is not complete.
Indeed, consider for instance the following sequence.

1~1{0} < 2~1{0} < 3~1{0} < ...

It is p,-convergent in Fr NRE, but it has no supremum in RE.
On the other hand, it does have a supremum in Fg, namely +o00 - 11¢y.

Because of the above observation, we work with the [—o0, +00]-valued Lebesgue
integrable functions instead of the R-valued Lebesgue integrable functions.

Example 39. The valuation pug (see Example [I0) is not complete.
To see this, we consider the sets Ai, Ao, ... given by, for n € N,

A, = {1,...,n}.
Then A, € Ag and pg(A4,) =0 for all n € N. So we see that
A C A C -

is a ug-convergent sequence. To prove that ug is not complete, we show that the
ug-convergent sequence A; C Ay C -+ - has no supremum in Ag (see Definition [35)).

Suppose (towards a contradiction) that A; C Ay C -+ has a supremum B in Ag.
Then in particular A, C B for all n € N. So we have

N=U,4, C B.

Note that B is the disjoint union of elements from S (see Example [I0). Since
all I € S are bounded, the set B is bounded. That is, B C [a, b] for some a,b € R.

We now see that N C B C [a, b], which is nonsense. So A; C Az C --- has no
supremum in Ag. Hence pug is not complete.

Example 40. The valuation g (see Example [TH) is also not complete.
We leave it to the reader to prove this fact.

If E =R, or more generally, if E is o-Dedekind complete (see Definition 214]), then
there is a nice description of p-convergence, see Proposition

Lemma 41. Let E be an ordered Abelian group.

Assume that E is o-Dedekind complete (see Definition [214).

Let L be a lattice, and let p: L — E be a valuation.

Let a1 > ag > --- be a sequence in L.

Then a1 > ag > -+ is p-convergent provided that a1 > as > --- has a lower bound.

Proof. Let £ € L be a lower bound of a; > as > ---, that is, £ < a, for all n € N.
We must prove that a; > as > --- is p-convergent, i.e., A\, p(an) exists.

Note that ¢(¢) < p(a,) for all n € N. So ¢(a1), ¢(az), ... has a lower bound.
But then A, ¢(a,) exists, because E is o-Dedekind complete (see Remark 217).
Hence a1 > as > - -+ is p-convergent. O

Proposition 42. Let E be an ordered Abelian group.
Assume that E is o-Dedekind complete (see Definition[21])).
Let L be a lattice, and let p: L — E be a complete valuation.
For a sequence a1 > as > -+ in L the following are equivalent.
(i) a1 > ag > -+ is p-convergent.
(i) a1 > ag > -+ has a lower bound in L.
(iii) ayx > ag > --- has an infimum, N\, an,.

Proof. The implication ‘{(i)] <= (i)}’ holds by Lemma EIl
‘ <— ’ holds, because the infimum /\nan is a lower bound of a1 > ag > - - -.
4(ii)] <= ()]’ holds since ¢ is complete (see Definition 3. O

The notion of ¢-convergence is less trivial in general as the following example shows.
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Example 43. We will show that the assumption that E is o-Dedekind complete
in Proposition 42 is necessary for the implication ‘ = ’.
To this end, we extend the Lebesgue integral ¢, (see Example B7) to the set

F, := Fp U{—-00-1}.

Note that F}. is a sublattice of [—oo, +oo]R. Let ¢/, : F — L be the map, where L
is the lezicograpic plane (see Example R02(iv)|), given by, for f € F},

- (-1,0) if f=—00-1.
Then ¢/, is a valuation. In fact, ¢/, is a complete valuation as the reader can verify
using the following observation. If a; > ag > --- from F| [': is <p'£—c0nvergent, then:

(i) If a,, € Fg for all n € N, then a1 > as > -+ is pg-convergent.
(ii) If ay = —o0 - 1 for some N € N, then a, = —oco -1 for all n > N.

Now, consider the following sequence in F.

=111 = =211 =2 —3-1p1 = -+

This sequence has an infimum in F/, namely —oo- 1. Nevertheless, the sequence is
not ¢.-convergent(, because (0,—1) > (0,—2) > --- has no infimum in L).

3.2. R-completeness. We now study a notion of completeness for ordered Abelian
groups called R-completeness that will be useful later on.

Let ¢: L — FE be a valuation. Let a1 < a2 < --- and by < by < -+ be
p-convergent sequences in L. (see Definition B4]).

For the development of the theory, it would be convenient if also

arVb < agVby < --- is yp-convergent. (17)

Unfortunately, this is not always the case (see Example[3]). However, if the space E
is o-Dedekind complete (see Appendix [Al Definition 2T4]), for instance if £ = R,
then one can prove that Statement (I7)) holds.

In fact, if we only assume that E is R-complete (see Definition [44]) — which is
a weaker assumption than that E is Dedekind-complete — then we can still prove
that that Statement (7)) holds (see Proposition [8]).
Definition 44. Let E be an ordered Abelian group. Consider the following.

Let x1 <29 <--- and y; <yo < --- be from E such that
Tntl — Tn < Yntl — Yn for all n.

Then \/z, exists whenever \/y,, exists.

If the above statement holds, we say E is R-complete.
Remark 45. The name “R-complete” is due to Willem van Zuijlen [5].

Examples 46. (i) The ordered Abelian group R is R-complete.
(ii) In fact, any o-Dedekind complete ordered Abelian group F is R-complete.
Indeed, let 1 <z <--- and y; <y < --- be from FE such that

Tnyl — Tn < Yntl — Yn for all n, (18)

and assume that \/, y, exists. We must show that \/, z, exists.
Let n € N be given. By Statement (I8]) we see that

Tntl — Yn+l < Tn — Yn-

So with induction on n, we get x, —y, < x1 —y1. Then

T < (1 —y1) + yn < (@1 —y1) + V, Um-
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So we see that the sequence x1,x2,... has an upper bound.
So V, @y exists, as E is o-Dedekind complete. Hence E is R-complete.

(iii) The lexicographic plane L (see Examples 202(iv))) is R-complete, but L is
not o-Dedekind complete (see Examples

(iv) The ordered Abelian group Q is not R-complete.
To see this, and pick g1 < g2 < -+ in Q with

Gni1 — qn < 270D and V,.gn = V2 in R.

Note that g1 < g2 < --- has no supremum in Q.
Now, let y, := 1 —27" for all n € N. Then y; < y» < --- has an
supremum, namely 1, and we have y, 411 — yn = 2~ 1), So we see that

dn+1 — 4n S Yn+1 — Yn (n S N)

If Q were R-complete, then the above implies ¢; < g3 < --- would have a
supremum in @Q, which it does not. Hence Q is not R-complete.

(v) Let I be a set. For each i € I, let E; be an R-complete ordered Abelian
group. Then the product, [[;.; i, is R-complete.

Remark 47. Let E be an ordered Abelian group. Using the map z +— —z, one can

easily verify that E is R-complete if and only if the following statement holds.

Let 1 > 2o > --- and y; > y2 > - -+ be from FE such that
Tn = Tntl < Yn — Ynt1 for all n.
Then Az, exists whenever Ay, exists.

Proposition 48. Let E be an ordered Abelian group which is R-complete.
Let L be a lattice, and let p: L — E be a valuation.

(i) If ay > ag > -+, by > by > -+ are p-convergent sequences from L, then
0,1/\b120,2/\b2>"' and al\/blzag\/bQZ"'

are @-convergent.
(i) Ifag <ag <---, by < by

a1 ANbp < agAby < -+ and a1 Vb <asVby <--.

IN

- are p-convergent sequences from L, then

are -convergent.

Proof. We prove that a3 Aby > as Abs > --- is p-convergent. For this we need
to show that A, ¢(an Aby) exists. Note that since A, p(an) and A, ¢(b,) exist, we
know that A, (¢(an) + ¢(b,)) exists (by Lemma 208). So by R-completeness, in
order to show A, ¢(a, A by,) exists, it suffices to prove that (see Remark A7),

Plan Aby) = @(ant1 Abny1) < (plan) +0(bn)) — (lant1) +@(bnt1) ).
Phrased differently using “d,” (see Definition [Ig)), we need to prove that
dw(an A bn, An+1 A bn+1) S d¢(an, an+1) + d¢(bn, bn+1).

This follows from Lemma
The proof that a1 V by > as V by > - -+ is p-convergent is similar.

Again, similar. O

Example 49. We will prove that the assumption in Proposition 48] that F is
R-complete, is necessary.

Let A be the ring of subsets (see Example @) of R generated by the non-empty
closed intervals with rational endpoints, i.e., subsets of the form [g, r] where ¢, € Q
and ¢ < r. Then there is a unique positive and additive map p: A — Q such that

u(lg,r]) = r—gq for all ¢ < r from Q.
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Recall that Q is not R-complete. To prove that the conclusion of Proposition (4]
does not hold for £ = Q, we will find u-convergent sequences A; C A, C --- and
By C By C--- suchthat AyUB; € Ay UBy C --- is not u-convergent.

If we have done this, we see that the assumption “F is R-complete” is necessary.

Find rational numbers - -- < ry <71 < q1 < g2 < --- such that, in R,

Voan = V2 and Norn = V2 1.
Now, let us define A; C A3 C -+ and By C By C--- in A by, for n € N,
A, = [0,7] and B, = [rn,qn)-
Then clearly A; C Ay C --- is p-convergent. Note that p(By,) = ¢, — . So, in R,
Voub(Br) = Vptn — Apyrn = L.

Hence \/,u(Bn) =1in Q. So B; C By C --- is a pu-convergent sequence.
However A,, U B,, = [0, g,], and thus u(A,, U B,,) = ¢,. So we see that, in R,

Vn,LL(An UB,) = VnQn = V2.
So u(A1 UBy) < u(AaUBg) < --- has no supremum in Q.
Hence AyUB; C Ay UBy; C --- is not u-convergent.

3.3. Convergence Theorems. The notion of a complete valuation has been based
on Levi’s Monotone Convergence Theorem (see Example [37]). In this subsection,
we prove variants of some of the other classical convergence theorems of integration
theory. For example, Lebesgue’s Dominated Convergence Theorem. It states:

Let fi1, f2, ... be a sequence in F.
Assume fi(x), fa(x), ... converges for almost all z € R.
Assume that f1, fo, ... is dominated in the sense that

|frn| < D for all n for some D € Fp. (19)

Then there is an f € Fp with fi(x), fo(x), ... converges
to f(z) for for almost all € R, and ¢, (f) = lim, ¢z (fn)-

The difficulty in the setting of valuation systems is not the proof of the theorem,
but its formulation. For instance, it not clear how we should interpret

“f1(x), fa(x), -+ converges for almost all x”

when the objects f,, are not necessarily functions, but elements of a lattice V.

Let us begin by generalising the notion of convergence in R to any lattice L.
Recall that a sequence a1, ag, ... in R is convergent (in the usual sense) if and only
if the limit inferior, limy inf, >N ay, and the limit superior, limy sup,,> 5 an, exist
and are equal. This leads us to the following definitions. B
Definition 50. Let L be a lattice. Let a1, as, ... be a sequence in L.

(i) We say a1, ag, ... is upper convergent if the following exists.
lim,a, = /\NVnzN any V---Va,.
Similarly, we say a1, as, ... is lower convergent if the following exists.
lim,a, := VN/\nZN an AN+ Aap.
(ii) We say ay, az, ... is convergent if it is both upper and lower convergent,
and in addition limy,a, = lim_a,. In that case, we write lim,, a,, := limyay,.
(iii) Let a € L be given. We say aq, az, ... converges to a if a = lim,, a,.

Remark 51. Let L be a lattice. Let a1, as, ... be a sequence in L, which is upper
convergent and lower convergent. Then we have the following inequality.

lim,a, < limpan,
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Indeed, this follows immediately from the observation that, for every N € N,
VnzN anN---ANa, < any < /\nZN anyV---Vay,.

Examples 52. (i) In R we have: A sequence a1, ag, ... is convergent in the
sense of Definition B0l if and only if a;, ae, ... is convergent as usual.
Moreover, if a1, as. ... is convergent, then lim, a, from Definition B{ is
also the limit of aq, as, ... in the usual sense.

(ii) Similarly, in RX, where X is any set, “convergent” from Definition
coincides with the usual “pointwise convergent”.

Example 53. Let X be a set. Let Ay, Ao, ... be subsets of X. Then Ay, Ao, ...
is upper and lower convergent in the lattice X, and we have, for x € X,

z €lim,4, <= VN In>N z€cA,,

r€lim,A, <= dIN Vn>N zxzcA,.
So we see that Aj, As, ... is not convergent iff there is an & € X such that

VN In>N €A, and YN In>N 2z ¢ A,.

Example 54. For the lattice of Lebesgue integrable functions, F, the notion of
convergence from Def. and the usual pointwise convergence do not coincide.
To see this, consider the following sequence.

o1, L2, 12,3
This sequence converges pointwise to 0, but it not convergent in the sense of Def.
Indeed, the sequence is not even upper convergent because

1o, < 1o < 1oz < oo

has no supremum in F.
Fortunately, the situation is better for dominated sequences.
Let f1, fo,... € Fr and f € Fr be given. Let D € F be given such that |f,| < D
for all n € N. (We say that f1, fa,... is dominated by D.)
The reader can easily verify the following statements (cf. Example BT).

(i) The dominated sequence fi, fo,... is upper convergent, and for all € R,

(ii) The dominated sequence fi, fo,... is lower convergent. and for all € R,
(lim,, fn) () = lim,,( fn(2)).

(iii) The dominated sequence f1, fa,... converges pointswise to f if and only if

f1, f2,... converges to f in the sense of Definition

Dominated sequences are useful when working with the Lebesgue integrable func-
tions, because R is o-Dedekind complete (see Definition 2I4]). However, it turns
out that dominated sequences are less useful in general.

Hence we have found a replacement for “fi, fo,... is dominated”, namely,

“f1, fo,... is upper and lower p-convergent”.

Definition 55. Let E be an ordered Abelian group. Let L be a lattice.
Let ¢: L — FE be a valuation. Let a1, as ... € L be given.

(i) We say a1, ag, ... is upper g-convergent if the following exists.
plimya, = ANVosn plan V- Van)
Similarly, we say a1, ag, ... is lower p-convergent if the following exists.

plim,an == VyA, sy @lan A Aay)
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(ii) We say a1, ag, ... is p-convergent if it is lower and upper ¢-convergent,
and in addition pdimya, = ¢dim,,ay.

Remark 56. Let E be an ordered Abelian group. Let L be a lattice.
Let ¢: L — E be a valuation. Let a1, ag, ... be a sequence in L, which is upper
and lower p-convergent. We have the following inequality (cf. Remark [BT]).

plim,a, < @lim,a,.

Proposition 57. Let E be a o-Dedekind complete ordered Abelian group.
Let L be a lattice, and let p: L — E be a complete valuation.

Then for a sequence ay,as,... in L the following are equivalent.
(i) a1,a2,... is upper and lower p-convergent.
(i) ai,az,... has an upper and lower bound.

Proof. ‘ == ’ Assume that a1, as, ... is upper and lower ¢-convergent.
We must find u, ¢ € L such that ¢ < a,, < u for all n € N.
Since aq,as, ... is upper p-convergent (see Definition [55), we know that

V,, ela1 V---Vay,) exists.
In other words, we know that
a1 < a1 Vag < -+ is @-convergent.

Since ¢ is complete, u :=\/, a, exists in L. Note that a, < u for all n € N.
By a similar reasoning, but using the fact that a;,as,... is lower p-convergent,
we can find an ¢ € L such that ¢ < a,, for all n € N.

‘C’ Let ¢,u € L be such that ¢ < a, <wu for all n € N.

We prove that a1, as, ... is upper @-convergent. For this, we must show that the
following exists (see Definition [53]).
AnVoasn plan V- Vag) (20)

Let N € Nand n > N be given. Note that we have
{ < anyV---Va, < u.
Since ¢ is order preserving, this gives us
pl) < plan V---Van) < p(u).

Since E is 0-Dedekind complete it follows that Expression (20) exists.
We have proven that ay,as,... is upper ¢-convergent. With a similar reasoning
one can prove that aj,as,... is lower y-convergent. (I

Example 58. Let f1, fo2,... be Lebesgue integrable functions (see Example [7]).
Then by Proposition 57 the following statement holds.
The sequence f1, fo,... is upper and lower ¢ .-convergent.
aad
There is a Lebesgue integrable D with |f,,| < D for all n.

We can now prove a generalisation of the Lemma of Fatou.

Lemma 59 (Fatou). Let E be an ordered Abelian group.

Let L be a lattice, and let p: L — E be a complete valuation.

Let ay,as,... be an upper p-convergent sequence in L (see Definition [53)
Then ay,as,... is upper convergent (see Definition[5l), and we have

o(limya,) = @lim,a,.
Moreover, if E is a lattice, and if lim,p(a,) exists (see Definition[50), then
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Proof. Let a1, ag, ... be an upper @-convergent sequence. We prove that ay, aq, ...
is upper convergent (see Definition [50), and that ¢(lim,a,) = @lim,a,.

Let N € N be given. Note that \/y~, ¢(any V --- V a,) exists because the
sequence aj, az, ... is upper p-convergent (see Definition [B5). So the sequence

any < ayVany1 < anyVangiVanie <
is p-convergent (in the sense of Definition B4]). For brevity, let us write
ay = an V-V anin.
Since ¢ is complete, and @} < @y < --- is ¢-convergent, we get \/, @ exists, and
plan) =V, e@y),
where ay := \/n ayr. Note that @ > ag > -+ is p-convergent, because
plimya, = ANV, (@)
exists since ay, ag, ... is upper p-convergent. Since ¢ is complete, this implies that
N\, an exists and oA, an) = A, e@n).
Now, note that we have the following equality.
Anan = /\anzN On
So we see that aj,as,... is upper p-convergent and that
‘P(mnan> = Anv(an) = /\NVM(E%) = ‘P‘mnaw
We have proven the first part of the lemma.

Assume F is a lattice and lim,,¢(a,,) exists (see Definition [B0). To prove the
remainder of the theorem, we need to show that ¢limya, > lim,y(a,). That is,

/\NVnZN plan V- Vap) > /\anzN plan) V- Volan).
This is easy. It follows immediately from the fact that

play V- Vap) > @lan) V-V olan)
forall N € Nand n > N. O

Let us now think about “almost everywhere convergent”.

Definition 60. Let E be an ordered Abelian group. Let L be a lattice.
Let ¢: L — FE be a valuation. Let a1,as,... € L and a € L be given.

(i) If a1, aq,... is upper and lower convergent, and, with = as in Def. 23]
lim,a, =~ lim,a,,

then we say that aj,as,... is ~-convergent.
(ii) We say that aq,as,... ~-converges to a when lim_a, =~ a = lim,a,.

Example 61. Unfortunately, in the lattice of Lebesgue integrable functions, F,
the notion of ~-convergence does not coincide with convergence almost everywhere,
as can be seen using a similar argument as before (see Example [B4]).

Again, the situation is better for dominated sequences.
Let f1,fa2,... € Fr and f € Fy. Assume fi, fo,... is dominated by some D € F,
that is, |fn| < D for all n € N. Then the following statements hold.

(i) The dominated sequence fi, fa,... ~-converges to f if and only if
fi(x), fa(z), ... converges to f(x) for almost all x € R.
(ii) The dominated sequence f1, fo,... is ~-convergent if and only if

fi(x), fa(z), ... converges for almost all z € R.
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We will prove implication “<=" of and leave the rest to the reader.

We must show that fi, fo,... is upper and lower convergent, and that
lim,f, ~ f ~ lim,f,. (21)
Since fi(x), fa(x), ... converges to f(x) for almost all € R, we know that:
lim, (fu(z)) = f(2) = lma(fa(2)) (22)

for almost all © € R. So we see that the function given by « — lim,, ( f,(z)) is equal
almost everywhere to the Lebesgue integrable function f, and hence it is Lebesgue
integrable itself. By Example it follows that f1, fa,... is lower convergent,
and that (lim,, f,,)(z) = lim, ( f,(z)) for all x € R. By a similar argument, we see
that f1, fa,... is upper convergent as well, and that (lim,, f,)(z) = lim,( f,(z)) for
all z € R. Hence we get by Equation (22]), for almost all z € R,

(lim, fo)(z) = f(z) = (lmnfa)(@).
This proves Equation (21 (see Example 27]).
Let us relate (p-convergence and ~-convergence.

Lemma 62. Let E be an ordered Abelian group.
Let L be a lattice, and let p: L — E be a complete valuation.

Let ay,ag, ... be an upper and lower p-convergent sequence in L (see Definition[53).
Then the sequence ay,as, ... is upper and lower convergent (see Definition [50),

and the following statements are equivalent.
(i) ai,asg,... is ~=-convergent (see Definition[60).
(i) ai,as,... is p-convergent (see Definition[53).

Moreover, if either 07’ holds, we have

p(lim, a,) = ‘P(mnan) = plimpan. (23)
Proof. Let a1,as9,... be an upper and lower (-convergent sequence in L.
By Lemma [39 and its dual, a1, as, ... is both upper and lower convergent, and
e(lim,a,) = plim, a,, and o(limya,) = pdim,ay,. (24)
By Definition (3l and Definition [60] we see that
ai,as,... is p-convergent <= plim,a, = w—ﬁnan,
ai,as,... is ~-convergent <=  o(lim,a,) = ¢(lim,a, ).

Hence Equation (24]) implies that statements |(i)| and are equivalent.
Now, assume that |(i)| (or [(ii)}) holds. We must show that Statement (23) holds.
This follows from Statement ([24]) since plimpa, = ¢lim,a, = @lim,a,. O

We now prove a generalisation of Lebesgue’s Dominated Convergence Theorem.

Theorem 63 (Lebesgue). Let E be a lattice ordered Abelian group.

Let L be a lattice, and let p: L — E be a complete valuation.

Let ay,as, ... be an upper and lower p-convergent sequence in L (see Def.[5]).
Assume that a1, a9, ... is ~-convergent (see Def. [G0).

Assume that lim,, p(a,,) and lim,p(a,,) ezist (see Def. [50).

Then the sequence @(ay), w(az), ... converges (see Def.[50)), and we have

lim, ¢(a,) = o(lim,a,) = ¢(lim,a, ). (25)

Proof. Let us first prove that the sequence ¢(a1), ¢(a2), ... is convergent.
By Lemma (62)), we see that a1, ase, ... is ¢-convergent (see Definition [B5]), and that

e(lim,a,) = @(mnan) = @lim,a,. (26)
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By Lemma 59 and its dual, we see that
plim,a, < lim,p(a,) < limpp(an) < plimyan.
But plim,a, = @mnan, since a1, as, ... is @-convergent. So we get
¢lim, a, = lim, p(a,) = mn@(an) = W‘Enan- (27)

In particular, ¢(a1), @(az), ... is convergent (see Definition [B0).
It remains to be shown that Statement (25) holds.
To do this, combine Statement (26]) and Statement (27). O

If we assume that E is 0-Dedekind complete we get a more familiar statement.

Theorem 64. Let E be a lattice ordered Abelian group.

Assume that E is o-Dedekind complete (see Def. [217]]).

Let L be a lattice, and let p: L — E be a complete valuation.

Let a1, a9, ... sequence in L which has an upper and lower bound.
Assume that a1, a9, ... is ~-convergent (see Def. [G0).

Then the sequence ¢(a1), p(az), ... converges (see Def. [50), and we have

lim, p(a,) = ¢(lim,a,) = ‘P(mnan)-

Proof. We want to apply Theorem For this, we must prove that ai,as,... is
upper and lower @-convergent, and that lim,¢(a,) and an(an) exist.

Note that aj,as,... is upper and lower y-convergent since ai,as,... has an
upper and lower bound (see Proposition [57]).

Let u,? € L be such that ¢ < a,, < u for all n € N. Then we have, for all n € N,

e(l) < plan) < o(u).

Using this, and the fact that E is o-Dedekind complete, it is not so hard to see
that lim,p(ay) and lim,¢(a, ) exist (cf. Proposition [57]).
Now we can apply Theorem [63] and we are done. O

Example 65. If we apply Theorem to the Lebesgue integral ¢, we get the
classical form of Lebesgue’s Dominated Convergence Theorem (see Statement (I9))).

Indeed, let f1, fo, ... be a sequence of Lebesgue integrable functions. Assume
there is an Lebesgue integrable function D such that |f,| < D for all n € N, and
assume that fi(z), fa(x), ... converges for almost all x € R.

We must prove that there is a Lebesgue integrable f such that fi(x), fa(x), ...
converges to f(z) for almost all x € R, and ¢, (f) = lim,, ¢z (fr)-

Since f1(x), fa(x), ... converges for almost all z € R, we know that the sequence
f1s fo, ... is ~-convergent (see Example . Now, define

It is easy to see that, f1, f2, ... ~-converges to f (see Definition [GTI).
That is, fi(x), f2(x), ... convergesto f(x) for almost all z € R (see Example[GIfi)).
By Theorem [64] we see that ¢(aq1), ¢(az), ... converges, and that

lim, oz (fn) = @c(lim, fn) = c(f).

So we are done.
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There are many variants of the classical convergence theorems of integration.
For instance, a variant on Levi’s Monotone Convergence Theorem is the following.

r Let fi1, f2, ... be Lebesgue integrable functions.
Assume that \/ @ (fn) exists.
Assume that for every n € N,

fr(@) < fos1(x) for almost all z € R.

Then \/,, f,, the pointwise supremum of fi, fa, ...,
is Lebesgue integrable and

i pe(Vpfn) = Vyuer(fn)-

Note that if we want to prove the above statement it will be useful to know that

SDL:/%Z Fﬁ/%—)R

from Proposition 29 is complete. We will prove this in Proposition

Of course, if we apply Lemma [59 and Theorem [63] to ¢ /=, we obtain variants
of the Lemma of Fatou and the Dominated Convergence Theorem of Lebesgue,
respectively. We leave this to the reader.

Proposition 66. Let L be a lattice. Let E be an ordered Abelian group.
Let p: L — E be a complete valuation. Then the valuation

p/~: L/~ — F
from Proposition [29 is a complete valuation.

Proof. We leave this to the reader. O

There is a small gap that needs to filled before we continue with another topic.
Let ¢: L — E be a valuation. We have defined what it means for a sequence
ai, ag, ... in L to be p-convergent (see Definition [B3)), but we have not yet given
the meaning of “aq, ag, ... converges to a”. We will do this in Definition [67

Definition 67. Let L be a lattice. Let F be an ordered Abelian group.

Let ¢: L — FE be a valuation. Let a1, as, ... be a sequence in L.
Let a € L be given. We say a1, as, ... p-converges to a provided that
ai, a, Gz, @, ... is p-convergent.

Remark 68. Let ¢: L — E be a valuation. While Definition [67] is certainly reason-
able, it is also quite silly, and so one wonders if there is a more direct description
of when a sequence ¢-converges to an element a € L. If we assume ¢ is complete,
then there is a slightly better description (see Proposition [69).

In Section [ we will study a notion of convergence (see Definition [I88)) which
was intended to be a more aesthetically pleasing definition of ¢-convergence, but
which turns out to be strictly weaker than ¢-convergence (see Example [[90).

Proposition 69. Let E be an ordered Abelian group.

Let L be a lattice, and ¢: L — E be a complete valuation.

Let a1, ag, ... be a p-convergent sequence in L, and let a € L.
Then ai, az, ... p-converges to a if and only if (see Definition [23)

a ~ lim,a,.
(Recall that a1, as, ... is upper convergent (see Definition[50) by Lemmal53)
Proof. We leave this to the reader. ([
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4. VALUATION SYSTEMS

Note that the Lebesgue measure p . is a complete valuation (see Example B8], that
extends the relatively simple valuation pg (see Example [I0).

We would like to consider u,z to be a completion of pug. What should this mean?
The following definition seems obvious when one thinks about valuations.

Let F be an ordered Abelian group.

Let L and K be lattices.

Let ¥: K — E and ¢: L — E be valuations.

We say v is a completion of ¢ provided that

L is a sublattice of K, v extends ¢, and 1 is complete.

However, in the more concrete setting of measure theory this broad definition of
completion is not that useful. After all, if we are given a completion ¢: K — R
of ug, then we only know that K is a sublattice of Ag, while we would prefer K to
be a sublattice of sets, or resemble it.

To mend this problem we might try to prove that any completion of ug is essen-
tially a completion on a lattice of subsets. Of course, the meaning of the previous
statement is not clear. We suspect that if one gives it an exact meaning, the
statement will be either false or trivial. So we will not follow this direction.

Instead, we consider a different notion of completion that involves the the sur-
rounding lattice, pR. More precisely, we will see that u,s is a completion of ug
relative to IR, which means that pu,s extends pug and that u,s is complete relative
to PR (see Example[R0)). This naturally leads to the study of the following objects.

PR D As = R PR D As 255 R,
That is, we are interested in objects of the following shape.
VOLS E,

where ¢: L — E is a valuation, and where V' is a lattice such that L is a sublattice
of V. We call such objects valuation systems (see Definition [72]).

The drawback of this approach is that it requires quite a bit of bookkeeping, and
so this section is filled with definitions and examples, but there is little theory. We
hope the reader will bear with us; we are confident the reader will be rewarded for
his/her patience in the next sections.

Since this section is already administrative in nature, we take this chance to put
some additional restraints on the notion of valuation system which turns out to be
useful later on (see Remark[@3). Given a valuation system, V' 2 L ?; E, we require
that E is R-complete (see Def. ), and that V is o-distributive (see Def. [T0).

Before we give a formal definition of “valuation system” in Subsection [£2] and
define “complete valuation system” in Subsection 3] we consider o-distributive
lattices in Subsection [4.1]

We end the section with “convex valuation systems” in Subsection [4.4]

4.1. o-Distributivity.

Definition 70. Let V be a lattice. We say V is o-distributive provided that

(i) V is o-complete, i.e., for every sequence ¢, co, ... in V we have
N, cn exists and V,.cn exists,
(ii) and for every a € V and ¢y, ¢, ... € V, we have,

aVA\,cn =N, aVen and anNV,cn =V, aNcn.
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Examples 71. (i) Let X be a set. Then p(X) is o-distributive. Indeed,
AuNn,C, =N,AucC, AnU,C, =U,ANC,

for all A, Cy,C5,... C X.
(ii) Let C be totally ordered and o-complete. Then C is o-distributive.
Indeed, let a, ¢1,c2,... € C be given. We need to prove that a V A, cn
is the supremum of a V ¢1, a V ca, .... To this end note that

b<diVds <~ b<di or b<ds (b,diGC).
(To see this, note that dy V da = max{di,ds}.) Now, for £ € C, we have
Vn[f<aVe,] <= {<a or Vn[l{<c,]
< [(<a or (<A, cn
= (<aVA,can.
So we see that a VvV /\ncn is the greatest lower bound of aV ¢y, aVey .. ..
With the same argument, one can prove that a A\/, ¢, = VaAc¢, for all
a, c1,¢z,... € C such that \/, ¢, exists. Hence C is o-distributive.

(iii) The lattice of the real numbers R is a chain and so R is o-distributive if R
would be o-complete. However, R is not o-complete. Indeed, a sequence

c1,C,... in R has a supremum if and only if it is bounded from above,
i.e., there is an a € R such that ¢, < a for all n. Similarly, a sequence
€1,C2,... € R has an infimum if and only if it is bounded from below.

(iv) Let [—o0, +00] be the lattice of the extended real numbers. Then [—oco, +o0]
is a chain and clearly o-complete. Hence [—oo, +00] is o-distributive.

(v) Let I be a set, and for each i € I, let L; be a o-distributive lattice.
Then the product L := [],.; L; is o-distributive.

(vi) Let X be a set. Then lattice [—o00, +00]™ of functions from X to [—oo, +00]
is o-distributive.

4.2. Valuation Systems.

Definition 72. We say V O L % F is a valuation system provided that
(i) V is a o-distributive lattce (see Definition [70);
(ii) L is a sublattice of V;
(iii) E is an ordered Abelian group, which is R-complete (see Definition [4]);
(iv) ¢: L — E is a valuation.

Example 73. Let E be an R-complete ordered Abelian group. Let X be a set, A

a ring of subsets of X, and p: A — F a positive and additive map (see Example[d)).
Then we have the following valuation system.
pXDAL E

Indeed, pX is lattice with A, A, =), An and \/, A, = J,, A, for all A; € pX, the
set A is a sublattice of pX by definition, pX is o-distributive (see Examples IZ[EZD
and we have already seen that p: A — E is a valuation (in Example [)).

In particular, we have the following valuation systems.

pR D As &5 R PR D As X5 R
See Example Bl and Example

Example 74. Let E be an R-complete ordered Abelian group. Let F' be a Riesz
space of functions on a set X (see Example [[4]), and let o: F — FE be a positive
and linear map. Then we have the following valuation system.

[—o0, 0¥ DF 5 E
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Indeed, [—o0,c0]X is a o-distributive lattice (see Examples [ZI[vi)). Further, F is a
sublattice of R¥ which is in turn a sublattice of [—o00, 00]X, and we already know
that ¢ is a valuation (see Example [I4)).

In particular, since R is R-complete, we have the following valuation systems

[—o0, +00]¥ D (Fr NRF) 25 R, [—00, +00]® D Fs 25 R,
see Example [ and Example Recall that Fy NRF is a Riesz space of functions
on X, while F is not. Of course, we also have the following valuation sytem.
[—o0, 400 D Fr 25 R

Example 75. Let I = {1,2}. For each i € I, let V; D L; %% E; be a valuation
system. Then we have the following valuation system (see Example [T6).

Vi x Vo D Ly x Ly 2292 B, x B,

Indeed, the lattice V1 x V3 is o-distributive (see Examples , and the ordered
Abelian group E; x Es is R-complete (see Examples . We call this system
the product of Vi O L4 RN FEy and V5 D Lo RLN E5. Of course, one can similarly
define the product of an I-indexed family of valuation systems where I is any set.

Notation 76. Let V O L% E be a valuation system. Let ai,as,... be from L.

Then ay,ag, ... has a supremum in V and might have a supremum in L. We ignore
the latter: with \/, a, we always mean the supremum of a;,as,... in V.
Similarly, with A\, a, we always mean the infimum of a,as,... in V.

4.3. Complete Valuation Systems.

Definition 77. Let V O L% E be a valuation system.

(i) Wesay V2O L 2 FEis II-complete, or ¢ is [I-complete relative to V,
or even ¢ is II-complete (if no confusion should arise with Definition [35),
if for every @-convergent a; > ag > --- (see Definition [B4)), we have,

/\na’n € L and SD( /\na’n) = /\n(p(a’n)
Here, A, an is the infimum of a; > az > --- in V (see Notation [7G)).
(ii) Similarly, we say V 2 L % E is S-complete, etc.,
provided that for every p-convergent sequence b; < by < --- we have
(iii) We say V O L% E is complete, etc.,
provided that V O L% E is both II-complete and ¥-complete.
Remark 78. Let V 2 L% E be a complete valuation system (see Definition [77).

Then the valuation ¢ is also complete in the sense of Definition
We leave it to the reader to verify this.

Example 79. The Lebesgue integral gives us the valuation system
[—o0, +oo] D Fr 25 R

(see Example [1 and Example [[4]); we will prove that this system is complete.
Let f1 < fo < --- be a @p-convergent sequence (in F). We must prove that

Vafn€Feand or(V,fn) = Vyee(fn).

This follows immediately from Levi’s Monotone Convergence Theorem.
Similarly, if gy > g2 > --- is a p-convergent sequence, then

Aogn € Fe and  oc(Agn) = N,pc(gn)-

So the valuation system [—oo, Jroo]]R D F 5 R is complete.
Note that we have given a similar argument earlier (see Example B7) to prove
that the valuation ¢, is complete in the sense of Definition
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Example 80. The Lebesgue measure gives us the valuation system
pRD A, 25 R

(see Example [}l and Example [[3)); one can prove that this system is complete.
We leave this to the reader (cf. Example [B0]).

Convention 81. The complete valuation systems play a far more important role
in the remainder of this thesis than the complete valuations of Definition[33. So:
Whenever we later on write “p is complete” we mean that ¢ is complete
relative to V, where V' should be clear from the context.

4.4. Convex Valuation Systems.

We have remarked that the Lebesgue measure is complete (see Example B0). It
should be noted that “the Lebesgue measure is complete” has a different meaning
in the literature, namely that any subset of a Lebesgue neglegible set is neglegible
itself. We call this convexity and we will briefly discuss this notion in this subsection.

Definition 82. Let V O L% E be a valuation system.
We say that V O L % E is convex, if the following statement holds.

Let a < b from L with ¢(a) = ¢(b) be given. Then
a<z<b — z €L,
where z € V.

Examples 83. (i) The Lebesgue measure R D A 25 R is convex.
(ii) The Lebesgue integral [—oo, +00]" 2 F 25 R is convex.

Example 84. We give a serious example of a non-convex valuation system.

Let B be the set of all Borel subsets of R, that is, those subsets of R that can
be formed by countable intersection and countable union starting from the open
subsets of R. Every Borel subset of R is Lebesgue measurable.

Let Ap be the set of Borel subsets of R with finite Lebesgue measure. Note that
we have Ag C A.. Let ug: A — R be the restriction of u,z to Ag.

Recall that pR O A, 22, R is a complete and convex valuation system. It is
not hard to see that the valuation system pR D Ag 25y R s complete as well.
However, we will prove that pR O Ag 28, R is not convex.

To this end, we will find a negligible Borel set A and a subset A of A such that A
is not a Borel set. This is sufficient to prove that pR O Ag +2» R is not convex.
Indeed, if R D Ag 28, R were convex, then A would be Borel, because

GCACA and o, A€ Ap and ug(2) =0 = ug(A).
To find such A and A, we need the following fact (see Corollary [[29]).
There is a set C, a negligible Borel set A C R, and maps
G:C—B and p:C— A (28)
such that G is surjective, and p is injective.
Now, let A be the subset of p(NY) given by, for all f € NV,
p(fled <= p(f) ¢ G()

We prove that A is not a Borel set. Suppose that A is a Borel set in order to derive
a contradiction. Since G is surjective, we have A = G(fy) for some fo € NN, Then

p(fo) € A = p(fo) & G(fo) = A.

Which is absurd. Thus A is not Borel set.
So we see that A is a subset of a negligible Borel set, A, while A is not Borel.
Hence pR D Ap £25 R is not convex.
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Proposition 85. Let V O L% E be a valuation system.
(i) Let L® be the subset of V' given by, for all z €V,

ze€L* < dabel| a<z<b A ¢la)=¢b) ]

Then L is a sublattice of L*®, which is a sublattice of V.
(i1) There is a unique order preserving map ¢°;, L* — E which extends ¢.
Moreover, ¢® is a valuation, and V O L*® 25 E is conver.

Proof. We leave this to the reader. (I

Definition 86. The convexification of a valuation system V O L% F is the
valuation system V D L®* £ E described in Proposition BBl

Proposition 87. LetV O L % FE be a II-complete valuation system.
Then the valuation system V 2O L*® 25 Eis II-complete as well.

Proof. Let a1 > a2 > --- be a @p®-convergent sequence in L°®. To prove that the
valuation system V D L®* - FE is II-complete, we must show that A, an € L*, and

e*(Anan) = N, ¢*(an).
Let n € N be given. Note that since a,, € L® there are ¢, u, € L such that
by < an < up and  o(ln) = p(un).

Define £ := A, ¢, and u := A u,. Then we have ¢ < A a, < u. So to prove that
A,an € L*, it suffices to show that £,u € L, and ¢(£) = p(u).
The trick is to consider ¢ > ¢4, > --- and u} > ul, > --- given by, for n € N,

O =0 NNy, and w = ug A A Uy,

n

Note that £ = A, ¢, and v = A, u;,. Let n € N be given. We claim that

p(ly) = @*(an) = @(uy). (29)
Indeed, since ¢(¢,) = ¢(uyn) and ¢, < u,, we have £, = u, (see Definition [25)).
Then by Proposition 2§(iii)] and induction, we see ¢/, ~ u/,. Hence ¢(£,,) = ¢(ul,).
Now, as £, < ap, < u},, and ¢* is order preserving, we get ¢ (/) < ©*(an) < @(ul,).
Hence we easily see that Statement (29) holds.
Since a; > ag > -+ is ¢®-convergent, we know that A, ¢*(ay) exists. Further,

Anelln) = Npe®(an) = N, e(uy)
by St. 29). So we see that ¢§ > ¢, > --- and u} > uh > --- are ¢-convergent.
Because ¢ is II-complete relative to V' we see that A, ¢, =¢ € L and v € L, and

e(0) = Nplly) = Nw®lan) = Ap(uy) = ou). (30)
So, since £ < A, an < u, Statement (B0) implies that A, a, € L*, and
W.(Anan) = /\n@.(an)~
Hence ¢* is II-complete relative to V. O

Proposition 88. Let VD L% E be a complete valuation system.
Then the valuation system V O L*® 2y Eis complete as well.

Proof. Apply Proposition [R7 and its dual. O
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5. THE COMPLETION

5.1. Introduction. Valuation systems were introduced in Section Ml to give mean-
ing to the phrase “the Lebesgue integral ¢, is a completion of ¢g”, namely,

[—o0, +c>o]]R D Fr %5 R is complete and pr extends ps.

In this section we replace pg and [—oo0, —l—oo]]R by any valuation system V' O L % FE
and study when, so to say, ¢ has a completion with respect to V, i.e., when there is
a sublattice C' of V' and a valuation ¥ : C' — E such that

VocC Y Eis complete and 1 extends .

There is not always a completion (see Example[89). However, if ¢ has a completion
with respect to V, then ¢ also has a smallestﬁ completion with respect to V,

VDL % F.
We describe @ in Subsection [5.3] and call @ the completion of ¢ with respect to V.

II-Completion. If we replace “complete” by “II-complete” in the above discussion
the situation is much easier (see Definition [(7]). Indeed, we will see in Lemma [T03]
that ¢ has a Il-completion with respect to V iff

for every b € L and (p-convergent a; > as > --- we have

/\nan <b = /\nSﬁ(an> < (b).
Similar to before, if there is a II-completion of ¢ with respect to V, then there is
also a smallest II-completion with respect to V', which will be denoted by

V OIL % E.
We will study Ily in Subsection

Y-Completion. We can replace “complete” by “Y-complete” as well.
If it exists, the smallest Y-completion of ¢ with respect to V is denoted by

VoYL B

Since Iy and ¢ are very similar, we will only study IIp. All the results that we
obtain about IIy and all the definitions for Ily can be easily translated to results
about X and definitions for X, respectively. We leave this to the reader.

Hierarchy of Extensions. Recall that ¢ is complete with respect to V' if and only
if ¢ is both II-complete and X-complete with respect to V' (see Definition [TT)).

So if we want to find a completion of ¢ with respect to V' it is natural to try and
see if XIlp is complete (when it exists) with respect to V. Unfortunately, while
IIyp is II-complete with respect to V, the valuation XIlp need not be II-complete.
Nevertheless, we can continue to apply “3” and “II” whenever possible, and we
will see in Subsection that this leads to a ‘hierarchy’ of the following shape.

Yp—— Ny —— SMSp ——
My —— 8p —— M8y ——

It will become clear, that if the making of this hierarchy is hindered, e.g., if I3y has
no Y-completion with respect to V' (and so XII¥¢ does not exist), then ¢ cannot
have a completion with respect to V. On the other hand, we will see, loosely
speaking, that if the making of the hierarchy can proceed unhindered even if we

2«Smallest” with respect to the ordering on partial functions given by f < g iff g extends f.
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go on endlessly using ordinal numbers, that then we eventually obtain the smallest
completion @ of ¢ with respect to V. This will all become clear in Subsection

With some luck, the valuation XI1X¢ might already be complete with respect
to V. We could then say that “we hit @ in 3 steps”. We will prove in Subsection [5.4]
that in general we need to make uncountably many steps before we hit ©.

No Completion. Let us end the introducion with an example of a valuation system
V O L% E such that ¢ has no completion with respect to V.

Example 89. Let L be the sublattice of R given by
L:={n': neN}u/{o0}.
Let ¢: L — R be the valuation given by, for all n € N|
e(n ') =1 and p(0) = 0.
Then we have a valuation system R O L 2 R.
Let C be a sublattice of R, and let ¢»: C' — R be the valuation given by
RDOC YR s complete and 1 extends .

We will prove that this is not possible.
Consider the sequence a; > as > --- in L given by a, = n~1. We have
Y(an) = pla,) = 1.
So A, ¥(a,) = 1. In particular, a; > az > --- is -convergent (see Definition [34]).
Since 1) is complete with respect to R (see Definition [[T]), we get
1= A¥(an) = v(Ayan) = ¥(A,n71) = ¥(0) =0,

which is absurd. Hence ¢ has no completion with respect to .
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5.2. The II-Extension.
Definition 90. Let V O L% E be a valuation system. Define
L == { A\,an: a1 > a2 >--- from L is p-convergent }.

Remark 91. Let V D L %, E be a valuation system.
Note that if ¢ is II-complete (see Definition [(7]), then IIL = L.

Lemma 92. LetV DO L 2y E be a valuation system.
Then IIL s a sublattice of V', and L is a sublattice of I1L.

Proof. We first prove that IIL is a sublattice of V. Let a,b € IIL be given; we need
to prove that a Ab € IIL and a Vb € IIL. Choose p-convergent a; > as > ---
and by > by > -+ with a = A, a, and b = A b,. Then a; Aby > az Aby > -+ is
@-convergent by Proposition 48] and we have A, an Ab, = aAb. Hence aAb € IIL.
Similarly, a; V by > as V by > --- is p-convergent by Proposition 48 and using
o-distributivity one can prove that a Vb= A, a, V b,. Hence a Vb € IIL.

To prove that L is a sublattice of IIL, we first note that L is a subset of IIL.
Now, since both L and IIL are sublattices of V', and L is a subset of IIL, we know
that L must be a sublattice of IIL. O

Remark 93. In the proof of Lemmal[02] we have used the fact that V' is o-distributive
and the fact that E is R-complete (via Proposition [4J]).

Definition 94. Let V O L% E be a valuation system.
We say ¢ is II-extendible if there is a valuation ¢: IIL — E with

v(N\,on) = A,elan) for all p-convergent a; > as > - -
Clearly, there can be at most one such map ; if it exists, we denote it by
Ilp: IIL — E.
Finally, note that if ¢ is IT-extendible, then IIp extends ¢ (hence the name).

Remark 95. Let V D L #, E be a valuation system.

(i) Note that if ¢ is II-complete with respect to V,
then ¢ is II-extendible and Il = .

(ii) Omn the other hand, if ¢ is IT-extendible, and Iy = ¢,
then ¢ is II-complete with respect to V.

Example 96. The following valuation systems are II-extendible.
pR D A 25 R and [—o0, +oo] D Fr 25 R

Indeed, this follows by Remark m since these valuation systems are II-complete.
More interestingly, the following valuation systems are complete as well.

PR D Ag 5eR and [—o0, —|—oo]]R DFE S R
This will follow from Lemma
Example 97. We leave it to the reader to verify that the valuation system
RODLS R
from Example B9 is not Il-extendible.

Lemma 98. Let V O L5 F be ar})aluation system.
If ¢ is II-extendible, then V D IIL 2 E is I-complete.
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Proof. Let a' > a® > --- from IIL be given and suppose that A, p(a™) exists; we
need to prove that A, a" € IIL and that IIp(A ,an) = A, II¢(an) (see Def. [77).
To begin, write a” = A, a;, where ai > af > --- is a p-convergent sequence
in L for each n € N. Define for each i € N an element b; € L by
by == AN{a:n,m<i}.

Then by > by > --- and A\,,b, = A, a". Recall that A Tlp(a™) exists. We claim
that N\, p(a™) is the infimum of ¢(bi1) > ¢(b2) > ---. If we can prove this, we are
done. Indeed, then by > by > --- is p-convergent, so A, a™ = A,bn € IIL, and

Hp(A,a") = TIp(A,,bn) since A\, ,a" = A,,bn,
= A,¢(bn) since ¢ is Il-extendible,
= A, Hp(a™) by the claim.
Let us prove that A, Ilp(a™) is the infimum of p(b1) > p(by) > ---.
For each i, we have b; > A\, ,a" = a', so p(b;) = Tp(b;) > Myp(a’). Hence we
see that A IIp(a™) is a lower bound of p(b1) > (b)) > ---.
On the other hand: Let ¢ be a lower bound of pb; > @by > ---; we need
to prove that £ < A IIp(a™). For all n and m, we have a, > byym and so

(al’) > @(bnvm) > L. Hence p(a™) = A, ¢(al,) > £ for all n. So A, p(a™) > ¢.
So A, JIp(a™) is the infimum of pb; > @by > -+, and we are done. O

Remark 99. Let V D L %, E be a I-extendible valuation system.
By Lemma 08 we see that Il is II-complete with respect to V.
So by Remark m we see that Iy is II-extendible, and that

II(TIp) = Tle.

Lemma 100. Let V O L% E be a valuation system.
Let C be a sublattice of V.. Let : C — E be a valuation. Assume

1 extends and Vodcl LB s II-complete.
Then ¢ is Il-extendible and i extends Ilp.

Proof. We must prove that ¢ is II-extendible and that ¢ extends Il¢p.

Before we do this, we will prove that for every ¢-convergent a; > as > -- -, we have
N,an € C and P(N\,an) = Npelan). (31)
We know that A, ¢(a,) exists (since a; > as > --- is @-convergent), and that

¢(an) = ¥(ay,) (since ¢ extends ¢). So A, ¥ (an) exists too. Hence a; > ag > --- is
1p-convergent. Because V O C'— FE is II-complete this implies that A, a, € C and
(A, an) = N, (an) (see Definition [[7)). Hence we have proven Statement (31]).
Statement (BI]) implies that IIL C C. So in order to prove that ¢ is IT-extendible,
let us consider the valuation p := ¢ |TIL. In order to prove that ¢ is II-extendible we
must show that p(A,,an) = A, ¢(an) for every @-convergent sequence a; > as > - - -
(see Def. @), but this follows immediately from St. [BI). Hence ¢ is II-extendible.
Finally, since we know that ¢ is II-extendible, we can talk about Ilp, and write
the second part of St. BI) as (A, an) = Ip(A,,an). Hence ¢ extends Ip. O

Corollary 101. Let V O L %y E be a valuation system.
Then @ is Il-extendible iff there is a valuation ¥: C — E such that

Vol B s II-complete and 1 extends p.
(So, loosely speaking, ¢ is -extendible iff v has a II-complete extension.)

Proof. Combine Lemma and Lemma O
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Lemma 102. Let V O L% E be a valuation system.
Let K be a sublattice of L, and let ¢: K — E be a valuation which extends .
Suppose that ¢ is [I-extendible. Then ¢ is Il-extendible and 11y extends Ilep.

Proof. Note that It extends ¢, and V' O IIK Y, Bis IT-complete (see Lemma[8g]).
So Lemma [T00 implies that ¢ is II-extendible and IT¢) extends Ilep. O

Lemma 103. Let V DO L 2. E be a valuation system.
Then ¢ is Il-extendible if and only if © has the following property.
For every b € L and p-convergent a; > ag > -+ from L,

/\nan <bvb = /\n(P(an) < ¢(b).
Proof. “=" Suppose ¢ is II-extendible. Then ¢ has Property ([82]), because if
b € L and p-convergent a; > as > --- with /\nan < b are given, then we have
Anelan) = To(N\yan) < Tp(b) = ©(b).
“<=” Suppose ¢ has Property ([82); we prove ¢ is II-extendible. We claim that
where a1 > as > --- and by > by > --- are p-convergent sequences in L.
Indeed, if A, a, < A,bn, then A, a, < by, for all m, so A, ¢(a,) < p(by,) for
all m (by Property ([B2))), and hence A, p(an) < A,,¢(bm).
Statement (B3] implies that
so there is a unique map : IIL — E such that
P(Aan) = N, elan) for all p-convergent a; > ag > --- . (34)

In fact, Statement (B3] also implies that v is order preserving.
To prove that ¢ is II-extendible (see Definition [04), it suffices to show that 1 is
a valuation. For this, it remains to be shown that v is modular (see Definition [).
Let a,b € IIL be given. To show that v is modular, we need to prove that

Pland) +p(aVd) = ¢(a) + p(b).
Write a = A, ,an, and b = A\, b, where a; > ap > --- and by > by > --- from L are
p-convergent sequences. Then we have

pland)+e(aVvb) = ¥(A,an ANDb) + PN anV A, bn)
= 7/)(/\nan Abn) + 7/}(/\nan V by)
= Apelan Abn) + A, e(an V by)
= An(plan Abn) + @(an Vbn))
= Nulelan) + (b))

(32)

V(Anan) + V(A,bn).
Hence 9 is modular, which completes the proof that ¢ is II-extendible. ([
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5.3. The Smallest Complete Extension.

In the previous subsection, we described the smallest II-complete extension of a
valuation system (when it exists). In this subsection, we will describe the smallest
complete extension of a valuation system (when it exists).

Situation 104. LetV DO L 2 EandV o C i) E be valuation systems such that
Y extends ¢ and 1 is complete.

In particular V2O C Y. E must be IT-complete (see Definition [77]).
Hence Lemma [T00] implies that ¢ is II-extendible and that 1 extends Il¢p.
Thus, loosely speaking, Iy is the smallest extension of ¢ which is IT-complete.
In this subsection, we identify the smallest extension » of ¢ which is complete.
We tackle this problem in order to familiarise the reader with the notions needed
to define “V 2 L% F is extendible” (see Definition [ZI]). These notions, which

we introduce rather informally in this subsection, will be defined rigorously and in
a more general setting later on.

Let us begin. Note that V D CY E s also ¥- complete. Hence ¢ is -

extendible, and v extends Y¢. So we have the following situation.

1 extends both Ily and X and Voc % EBis complete.

By a similar reasoning, we see that Iy is ¥-extendible, and that ¥ is II-extendible
and that 1 extends both Xy and IIX¢. (Note that II(Ilp) = Iy, see Rem. [@9).
So we have the following situation.

1 extends both XIlp and II¥X¢ and vVocl Y Eis complete.

Of course, we can continue this proces. More formally, the clauses

Mpi1p = I(Xnep) Tty = E(lp) oy = ¢ = Yoy
M1 L = (2, L) Spi1l = S(IL,L) oL = L = YL,
give us valuation systems V D II,, L M EFandV D X,L E"."; E for all n € w.
Note that IIy extends ¢. Hence Yoy extends ¢ by Lemma Hence T3¢

extends Ilsw. Etcetera. Similarly, Y extends ¢, so Il extends Ily, and so on.
The hierarchy which we have obtained is shown in the following diagram.

Ysp —
H5<P —
We say that the hiemrchy collapsed at Q, where Q e{L, 4L, 1L, 1150, ...}, if

Q) = @ = 2(Q).
In that case, let ¢: Q — F be the associated valuation (either I, or X, for
some n). Then V 2 Q 4y E is complete, since it is II-complete and -complete.

Note that the definition of Il and X, does not depend on which complete
extension 1 of ¢ is given, only on the fact that such v exists. In particular, if
vVoco Y Eis any complete valuation system such that ¢’ extends ¢, then 1’
extends II,,L and ¥, L. In particular, such ¢’ extends q. Hence ¢ is the smallest
complete extension of ¢ we sought.

However, in general the hierarchy need not have collapsed at any 1L, L or ¥, L, as
we will show later on, in Subsection .4l So to find the smallest complete extension
of ¢, we need to push forwards.

To this end, consider the sets II,, L and ¥, L given by

M,L:=U,M,L and  2,L:=J, L.
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Since II,L C ¥, 41 L and ¥, L C I, L for all n, we see that II,L = X, L.

Now, since II,, ¢ extends I, for n > m, there is a uniquenmap I,p: 1I,L - FE
which extends all II,. One can easily see that V' D II, L —“?. E is a valuation
system. Slmllarl¥ there is a unique map X, ¢: ¥,L — E which extends all X, .
Then V O ¥,L —= F is a valuation system.

Since II,,11¢ extends X, ¢ for all n, one sees that II,¢p = X, .

Again, the hierarchy might have collapsed at 11, L, i.e.,

I, L) = 1, L = (I, L).
In that case I, ¢ the minimal completion of ¢ we sought.

However, again the hierarchy might not have collapsed at II, L, so we consider
the valuations I, 4, := I, (I, ) and 3, 1ne = X, (Iue).

Yp———dop— - wSﬁ—EerlSﬁ—Eer%O_
w—sz— o Mo ———Tlop1p ——— oo —

With induction on ordinal numbers, we can continue this process endlessly. How-
ever, the collapse of the hierarchy can not be postponed indefinitely.

More formally, let L := {c € C: Jafc € II,L]}. Then we have II,L C L for
every (ordinaln number) o. We want to prove that I1,L = L for some a. Define

a(c) = min{ B: cellgl } (ce L).
Then the set of ordinal numbers { a(c): ¢ € L} has a supremum, say £&. We have
ce Ha(c)L - HEL (C S Z)

So L C II¢ L. But we already had II¢ L C L. Hence e L = L.
We claim that the hierarchy has collapsed at II¢L, i.e.,

(Il L) = II L = X(IIL).
Indeed, we have .
L C ¥IlL) € L = IIL.
So X(Il¢ L) = I L. Similarly, ITcL = II(II¢L).
One can easily verify that i := Il¢¢ is the smallest complete extension of ¢.
All in all; we have proven the following.

Proposition 105. Let V 2 L% E be valuation system.
If there is a valuation ¢: C — E such that

¥ extends and V2 Ci> E is complete,

then there is a smallest such valuation,
that is, there is a valuation ©: L — E such that

© extends @ and VDL % Eis complete,
and such that 1)’ extends @ for every valuation ¢': C — E with
W' extends @ and V2 C’w—> E is complete.

Moreover, g = ll¢p for some ordinal number £.
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5.4. The Borel Hierarchy Theorem.
Before we continue our study of the hierarchy introduced in the Subsection [(5.3] let
us take a step back and wonder: is this all — the endless hierarchy — neccesary?

Indeed, using the terminology of Subsection B3] it is not unthinkable that the
hierarchy is always collapsed at, say Y37L. In that case the theory would be much
simpler; we would only need to use the symbols up to “¥37”. In particular, the
involvement of the (infinite) ordinal numbers would not be required.

It turns out that we do need a large amount of symbols to desribe the hierarchy.
In this subsection we will give an example where the hierarchy can only be collaped
at II,L or at X, L if the ordinal number « is uncountable, see Proposition 137

On the bright side, it does not get worse than this: we will see (in Lemma [144])
that the hierarchy is always collapsed at Ilx, L, where X; is the set of all countable
ordinal numbers, i.e., the smallest uncountable ordinal number.

The material in the subsection will not be used later on. So the reader can safely
skip this subsection and proceed to Subsection on page B if so desired.

5.4.1. Borel Subsets.

Our example involves Borel sets. Recall that the Borel subsets of a topological
space X (such as R) are those subsets one can form using countable intersection
and countable union starting from the open subsets.

Instead of R, we work with the Borel subsets of the Baire space, NY. In short,
the topology on NV is the product topology when N is given the discrete toplogy.
To understand these words, one might look at [7], but this is not necessary as we
will give a more direct description of 7 in Subsubsection

While we could do the following for R as well, it is much easier for NV,

Notation 106. Let T denote the set of open subsets of NV,
and let B denote the set of Borel subsets of NV,

Note that B is a sublattice of p(NV), and B is a sublattice of T.
Definition 107. Let ¢): B — R be the map given by, for all A € B,
PY(A) = 0.
Then 1 is a valuation, and we have the following valuation system.
p(NY) D B % R
Lemma 108. The valuation 1 is complete with respect to (NY) (see Def.[T7).

Proof. Let Ay D Ay D --- and By C By C -+ be a 1-convergent sequences in 5.
To prove that 1 is complete relative to p(NY) we must show that

N, An € B and U, Bn € B.
This follows immediately by definition of the Borel subsets. O
Remark 109. Let A be a sublattice of B and let
p:A— R
be the restriction of ¥ to \A. Note that we are in Situation [104],
1) extends ¢ and 1) is complete.

Using the notation from Subsection [1.3] let us see what IIA and XA are.

Note that every sequence A1 O Ay D --- in A is p-convergent, as 1) is constant.
Further, given A;, As,... € A, we have (", A, =, A}, where A} D A5 D --- are
defined by A}, = A1 N---N A,. So we see that

H.A = {ﬂnAn Al,AQ,... € A} (35)
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By a similar reasoning it is not hard to see that
SA = {U,An: A1, 45,... € A} (36)

5.4.2. Statement of the Borel Hierarchy Theorem.

Let us spend words on where we are headed. We will define a sublattice A of p(NV)
in such a way that, using the notation of Remark [I09, we have that XA is precisely
the family of open subsets of NN, while II4 is the family of closed subsets of N,
From this information, the reader can deduce with induction and the principle of
the excluded middle, that for every ordinal o > 0, and all A C NV,

A eI, A — N4 € Z,A. (37)
The aim of this subsection is to prove the following statement.

Let o be a countable ordinal number.
There is a set S € X(I1,.A) with S ¢ TI(X,.4), and (38)
there is a set P € II(3,.A) with P ¢ 3(II,.A).

In particular this means that if the hierarchy has collapsed at IT,.A or at XA for
some ordinal number « then o must be uncountable, see Proposition 31
Statement ([B8) is known in descriptive set theory as the Borel Hierarchy Theo-
rem. We will give a proof of Statement (38)) in this subsection that uses the principle
of excluded middle and is based on a beautiful paper by Veldman [6, paragraph 5]5

5.4.3. Open Subsets of NV,
Before we give a definition of A, and start with the proof of Statement (B8]) let us
describe the topology 7~ on the Baire space NV in more detail.

Definition 110. Given m,n € N, define B]* by
Br = {feN" f(n) = m}.
Remark 111. For A € NY, we have A € T if and only if for each f € A we have,
feBrn---NBr C A,

for some K € N and my,...,mg € Nand ny,...,ng € N.

We can formulate Remark [[T1] more abstractly with some notation.
Definition 112. Let S and S be families of subsets of NN given by

S :={B": mneN}
Sni={S5N---NSg: KeN, §,€8}.

Remark 113. By Remark [T} we see that S is a subbasis for the topology 7 on N,
and we see that S is a basis for 7. In particular, we get

T = {U,An: A1, 42,... €84 }. (39)
Remark 114. Let m,n € N. Then B;* € 7 by Remark {13l More suprisingly,
N\B" € T,

that is, B, is closed as well. Indeed, this follows by the following equality.
NWB™ = | J{ B¥: keN, k#m}.

3 In this paper [6], Veldman (also) gives a proof of a variant of the Borel Hierarchy Theorem
using Brouwer’s Continuity Principle instead of the principle of excluded middle.
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5.4.4. Definition of the Sublattice A of NN,
Recall that we want to define a sublattice A of p(NY) so that XA are the open
subsets of NV, while ILA are the closed subsets (see Remark [[09).

Since the elements of S are both open and closed, we let A be the sub-Boolean
algebra of p(NY) generated by S. More concretely:

Definition 115. Let &', S, and A be the families of subsets of N¥ given by

S = {B™ mneN} U {N\B"™: mnecN}
SH = {Slﬂ"'ﬁSK: K eN, SkESl}
A:={ThU---UTy: LeN, T, € S, }.

Lemma 116. The family A is a sublattice of p(NV), and
N4 e A — Ac A

for every A C NN, and we have the following equalities.

YA = {UCNY: U is open },
A = {CCNY: C s closed }.

Proof. We leave this to the reader. (I

5.4.5. Encoding the Elements of A.
Now that we have defined A, we can start the proof of Statement ([B8). Maybe
the most important idea behind the proof presented here is that we can encode the
Borel subsets B of NN as elements of NV,

To warm up let us see how we can encode a tuple a; - - - a, of natural numbers
as a natural number. We leave it to the reader to find a bijection

(—,—): NxN— N\{1}.
Let N* be the set of tuples on N. Given a tuple a; - - - a,, € N*, define
<a1a2 A an> = <a1, <a2, .. <an7 1> .. >> .

Then the resulting map (—) : N* — N is a bijection.
Let us now encode the elements of A (see Def. [1H). Given k € N, let

NWB™ if k = (Imn),
k] = { Bm™ if k = (2mn),

n

1%} otherwise.
Then [-]%": N — &' is a surjection. Given k € N with k = (a; - - - ag), let
(% = [l 0 0 o]
Then [-]%: N — S is a surjection. Given k € N with k = (a; - - - ax), let
[K]A = [ai]®0 U --- U [ax]5.
Then [-]4: N — A is a surjection.

Let A € A be given. If [k]* = A for some k € N we say that k is a code for A.
Note that A might have multiple codes. This will not be a problem.
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5.4.6. Encoding Countable Ordinal Numbers.
Before we can make the step to encode all Borel subsets of N we need an encoding
for the countable ordinal numbers. We need some notation.

Notation 117. Let f € NN and n € N be given. Define f" € NN by, for m € N,
fMm) = f((n,m)).
Since (—, —) is a bijection from N x N to N\ {1}, an element f € N" is completely
determined by f0U, f121 .. and f(1). More precisely, the assignment
o ), M B
gives a bijection from NV to N x (NV)N,
To encode the countable ordinal numbers, we use special elements of NV,
Definition 118. Let Stp be the subset of NV inductively given by:
(i) If f € NYand f(1) # 1, then f € Stp.
(ii) If f € NN and f(1) = 1 and f[" € Stp for all n € N, then f € Stp.
The elements of Stp are called stumps and are used in Intuitionistic Mathematics

as a replacement for the countable ordinal numbers.

Definition 119. Let a[—]: Stp — ®; be the map recursively defined by

0 if f(1) #1;
a[f] = [n] .
VnEN alfM+1 if f(1) =1.
Recall that N; is the set of all countable ordinal numbers.

Lemma 120. The map a[—]: Stp — Ny is surjective.

Proof. To prove that a]—] is surjective, we must show that for each o € Ry there
is an f € Stp with o[f] = a. We use induction on « € 8.
First we must find an f € Stp with a[f] = 0. Simply take the f € NV with
f(n) =37 for all n € N. Then f(1) # 0, so f € Stp, and a[f] =0.
Let @ € Ny be given, and assume that a = a[f] for some f € Stp. We need to
find a g € Stp such that a[g] = a + 1. Define g € NY by
g(1) =1, and g™ = f forallneN.

Then g € Stp, and alg] = /oy a[f] + 1. Since a[f] = a, we have alg] = a + 1.
Let A € Ny be a limit ordinal, and assume that a[—] is surjective on A. We
must find an f € Stp such that a[f] = A. Since A € N; there are ay,a9,... € A
such that X =\/, .y an + 1. Since a[—] is surjective on A, we know that there are
f1, f2,... € Stp with a[f,] = a,. Define f € N by
fA)=1 and fM = f, forallneN.
Then f € Stp, and a[f] = V,,cn [fI]+1 =V, oy an +1= A O

5.4.7. Encoding Borel Subsets of NV,
We are now ready to encode the Borel subsets of NI,

Definition 121. With recursion on Stp define for each f € Stp maps
[-17: NY — T(Za4)  and  [-]7: NY — S(II1,44)
such that the following clauses hold.
(i) For f € Stp with f(1) # 1 we have

Y = () [em1*  and g7 = |J [on)]*

n>2 n>2
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(ii) For f € Stp with f(1) = 1 we have
[[g]]? = ﬂ [[9["]]]?[74 and [[9]]? = U [[Q[n]]]?[n]-

neN neN
Lemma 122. For each f € Stp the maps [[—]]gcI and [[f]]? are surjective.
Proof. We leave this to the reader. ([

Remark 123. Let f € Stp and g € NY be given. Note that [[g]]? and [[g]]? do not
depend on g(1). More precisely, given ¢’ € NN with ¢/(n) = g(n) for all n. > 2 —
so possibly g(1) # ¢’(1). Then we have [[g]]? = [[g’]]? and [[g]]? = [[g’]]?.

We use Remark to combine the maps [—]} and [-]7 into one map [[—]]?.

Definition 124. Let [-]%: NN x Stp — B be given by, for f € Stp and g € NV,

) el ifg(1) =37,
bl = {M? i 9(1) # 37, 0

We want to prove that [—]? is surjective. To do this, we need a lemma.

Lemma 125. We have the following equality.
B = Iy, A (41)

Proof. Note that we have already proven (at the end of in Subsection B3] that
B =1I¢A for some ordinal number §. Statement () is an improvement.
Recall that Iy, A = UaGNI II,A. Since IIA C X5 A, we have

T = SA C Iy, A C B.

Recall that B is the family of all subsets of NN that can be formed using countable
unions and countable intersections starting from 7. So to prove that Iy, A = B it
suffices to show that Ilx, A is ‘closed’ under countable unions and intersections, i.e.,
given Aj, A, ... € Iy, A we must show that J,, 4, € IIx, A and (), 4, € Iy, A.
We will only prove that (J,, A, € Iy, A; the proof of (,, A, € Iy, A is similar.

Let A}, := Ay U---UA,, for each n € N. Then (J,, A}, = {J,, An. Since Iy, A is
a sublattice of p(NY), we get that A}, € Iy, A = U,ey, oA for all n € N,

Pick a1, as,... € Ry such that A, € TI,, A for all n € N. Let o := \/, ap.
Then for all n € N we have o, < v, and II,, A C II,A, and so A], € II,.A. By
definition of ¥(I14.A) we have | J,, A], € E(Il,A) = Xq41.A. Now, note that since
ai,ag,... € Ry, also o =\, a, €Ny, and so a + 1 € X;. Hence

U,A4n = U, A4, € TIo1 A C TIy, A
So Iy, A is closed under countable union. Similarly, IIy, .4 is closed under countable
intersection. It follows that B = Iy, .A. We have proven Statement (@Il). O
Proposition 126. The map [—]®: NN x Stp — B is surjective.

Proof. Let A € B be given. We must find f € Stp and g € NN such that A = [[g]]?.
By Lemma we know that A € Iy A = Ua€N1 II,A. Pick an o € Ny with
A € II,A. Since the map af[—]: Stp — ¥; is a surjection, there is an f € Stp
such that a[f] = a. Since the map [[f]]?: NN — TI(Z4(4A) is a surjection and
A € Mg A =5 A CII(E 44 A), there is an h € NY such that [h} = A

Now, let g € NY be given by gl = hl" for all n € N and g(1) = 37. Then

917 = lolF = [nlf = A
So we see that [—]%: N¥ x Stp — B is surjective. O
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5.4.8. Outstanding Debt.
We take a small detour, because in Example 84 we used a fact, Statement (28],
without proof, and we are now in a position to correct this situation.

Notation 127. Let D denote the Cantor set, see [7, Examples 17.9c¢].
Lemma 128. D is Borel negligble subset of R, and there is an injective map
p: NY x Stp — D.
Proof. We leave this to the reader. (I
Corollary 129. We have the following situation.
-1

B<——— NVxStp—2— D
The map [[—]]lf 18 surjective, the map p is injective, and D is Borel negligible.
Proof. Combine Lemma and Proposition O
Note that Corollary [[29 implies Statement (28). This ends our detour.

5.4.9. Cataloguing Borel Subsets of NN,
We have encoded the Borel subsets using elements of NN. To prove the Borel
Hierarchy Theorem (see Statement (B8])) we use the encoding to go one step further.

Definition 130. For each f € Stp, define
Uf = {heNV: sl e WPy U7 = {heNY: nlY e [al]F ).

One can think of the set Uf' as a catalogue of TI(4(4).A).
Indeed, given A € II(X,[4.A) with A = [[g]]lj? for some g € N, we have

A= {n: heU} and ¥ =g}
The following lemma might be the essential part of the Borel Hierarchy Theorem.
Lemma 131. Let f € Stp be given. Then we have
Ul € I(SaA)  and Uy € S(IlypA). (42)
To give a proof of Lemma [I3T] we need some notation and a lemma.

Definition 132. Let F': N¥ — NV be given.
(i) Given A C NN let F*(A) := {geNY: F(g)e A }.
(ii) We say that F' is continuous if F*(B™) € T for all m,n € N.

Lemma 133. Let F: NY — NN be a continuous function.
Let a be an ordinal number with o > 0. Then, for all A C NV,

F*(A) € TI,A when A € I, A,
F*(A) € A when A€ Z,A

Proof. We leave this to the reader. [
Proof of Lemma[I31l. We prove Statement ([42]) using induction over f € Stp.
Let f € Stp with f(1) # 1 be given. We must prove that

U € A  and Uj € TA

We will only prove that UfE € YA since the proof of U}I € I1A is similar.
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Let h € NY be given. Note that the following are equivalent.

h € U7,
pll ¢ [[h[Q]]]?,
W€ Uyso [P ()14,
e [hRl(n)]A for some n > 2,
Rl e [k]A and RP(n) =k  for somen >2 ke N.

Let F: NN¥ — NN be given by F(g) = g!"l. Then hl'l € [k]A iff h € F*([k]A).
Further, note that h?(n) = k iff h € B, . All in all, we get

= J U F(IF*) n By, (43)
keENn>2

By Equation 3] to prove UfE € YA it suffices to show that F*([k]*) € T A.
Since it is not hard to see that F is continuous (see Definition [32) and [k]4 €
YA we get by Lemma [33 that F*([k]*) € Z.A. Hence UfE € XA

Recall that we are proving Statement (42]) using induction on f € Stp.
Let f € Stp with f(1) =1 be given. Assume that for all n € N,

Ut € WSy A)  and U € B ppm)A).-
We must prove that U}I € I(Xq14A) and UfE € Y(I45A). We will prove that
Uy € Sy A), (44)

and we leave the proof of U? € II(X4[5)A) to the reader.
To proceed, we need some notation. We will define a ‘pairing’

P:NY x N¥ — NV,
Let hy, ha € NN be given. Define P(hy, hy) € NY by: P(hy, he)(1) =1, and
(P(h1, ko)) = hy,  and  (P(hy,h2)) = hy,

and ( P(hy, ho) )™ (m) =1 for all n,m € N with n > 2.
Let h € NY be given. Note that the following are equivalent.

h € U7,
pll e [[hm ]]?,
pll e Upen [ hl2)n] ]]?m
Rl e [pAm ]]?n for some n € N,
PRl pl2nly ¢ Uf[n for some n € N.

Now, for each n € N, let F,,: N¥ — NN be given by, for h € NV,
F,(h) = P(plY pllny,
Then using the notation of Definition we see that

U? = UneN F;(U?[n] ) (45)
Recall that we must prove that U? € X(ILyfA). It suffices to prove that
Fi(Ufl) € T(SqppmA), (46)

by Statement (@3], and because we have
(X4 A) € (s A).
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By Lemma [I33] to prove that Statement (@6]) holds it suffices to show that F), is
continuous; we leave this to the reader. Hence we have proven Statement (44)).
This completes the proof of Statement ([42). O

5.4.10. Diagonalization.
With the catalogues UfE and U}I at our disposal we use Cantor’s diagonal argument
to prove the Borel Hierarchy Theorem (see Statement (38)).

Definition 134. Let f € Stp be given. Let D? and D? be give by
D == {geN': g¢[g]}}, Dj = {geN": g¢[di}
Theorem 135. Let f € Stp be given. Then we have
D} € S(Ily54)  and DY ¢ I(SqpA),
DY € (S4pA)  and  DF ¢ S(I,pA).
Proof. Let f € Stp be given. We will only prove that
D} € S(IlynA)  and D} ¢ T(Z4pA), (47)
because there is a similar proof of D? € I(Xq(5A) and D? ¢ B(yppA).

Let us first prove that D? ¢ I1(XqapA). So assume D? € II(X45)A) in order to
reach a contradiction. Since the map [[f]]?: NN — TI(24()A) is surjective, there
is a g5 € NV with lgs]} = DY. Then by definition of DY,

gs € D? = ¢ ¢ [[g(;]]l}[ = D? (48)
Statement ([A8]) leads to a contradiction. Hence we conclude that D? ¢ I(ZqrnA).
Let us prove that D? € X(Il,ppA). Let A: NN — NN be given by, for g € NV,

Alg) = Plg,9)-
Then A is continuous (see Definition [32]) and we have, for g € NN,
g € D? — Ag) ¢ U;I = g€ A*(NN\U}I).
So we see that D? = A*(NN\U? ). Recall that we must prove that
D} € (IlynA).
Since A is continuous it suffices to show that NN\U;[ € X(II,[4.A) by Lemma [I331
We already know that U? € (3,5 A), so by Statement ([B7) we get

NN\U;I € E(Ha[f]fw.
So D? € X(IL,4A). Hence we have proven Statement (4Z). O
Corollary 136. The Borel Hierarchy Theorem holds, see Statement (3]).

Proposition 137. Using the terminology from Subsection [5.3,
if a is an ordinal number such that the hierarchy collapsed at 11, A or at ¥, A,
then o must be uncountable.

Proof. Let a be an ordinal number. We will only prove that o must be uncountable
when the hierarchy collapsed at I1,.4, because the proof that oz must be uncountable
when the hierarchy collapsed at ¥,.4 is similar.

Assume that the hierarchy hierarchy collapsed at I1,.A, that is,

(e A) = IaA = S(I,A).

Assume that a is countable in order to reach a contradiction.
By the Borel Hierarchy Theorem, see Corollary (I38]), there is an

SeN(LA)  with S ¢II(SaA.
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However, we have the following inclusion

Z(H(»A) = I, A C H(EaA)'

So since S € X(I1,.A), we get S € TI(X,.4), which contradicts S ¢ TI(X,.A4).

Hence « is not countable. So o must be uncountable.

55
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5.5. The Hierarchy of Extensions.
To get the smallest complete extension of a valuation ¢ with respect to some V
(when it exists) we can make a hierarchy of extensions of ¢, see Subsection B3t

Yo——Yop— 0 Myp—— Ypp1p—— w+290—
XD > o>
®
AN / e
My ——Ihe— - IHpp——Hyr19p —— w2 —

We have seen that if ¢ has a complete extension, then ¢ also has a smallest complete
extension @, and that ¥ = Il¢p for some ordinal number £, see Proposition

Even if we do not know whether ¢ has a complete extension, we can still try to
make the hierarchy, and this is what we are going to do in this subsection.

It is possible that the making of the hierarchy is hindered at some point, e.g., if
Yo¢ is not IT-extendible, then we can not define 3¢ = II(Za¢p).

If we can define the hierarchy up to Il unhindered we will say that

 is II,-extendible.

We will prove that ¢ has a complete extension iff ¢ is Iy, -extendible. Moreover,
the valuation Ily, ¢ will be the smallest complete extension of ¢ (see Corollary [[4H).
Let us begin by giving a formal definition of the hierarchy and “Il,-extendible”.

Definition 138. Let V 2 L% E be a valuation system.
We are going to define the following statements and valuation systems.

(i) For each ordinal number «, statements
“p is Il -extendible” and “p is X,-extendible”.
ii) For each a such that ¢ is II,-extendible, a valuation system
¥
V OTLL % E.
iii) For each a such that ¢ is ¥,-extendible, a valuation system
¥
VD Y.L2% B

We will define them in such a way that we get a hierarchy of the following shape.

Y —— Yoo — cn B — e e Yap —
e >< AN N AN
e /

<P—H280— v Tl — e e e —

More precisely, the following statements will be true.

(I) For all 8 < =, if ¢ is IL,-extendible, then ¢ is both IIg- and ¥ z-extendible,
and the map II,¢ extends both Ilgp and Xg¢.
(II) For all B < v, if ¢ is 3, -extendible, then ¢ is both IIg- and X g-extendible,
and the map X ¢ extends both Ilgy and Xg¢p.
(IIT) Let A be zero or a a limit ordinal. Then ¢ is IIx-extendible if and only if ¢
is X y-extendible. Furthermore, if ¢ is II)-extendible, then II ¢ = X, .
Now, we define the aforementioned statements and valuation systems by recursion
over the ordinal number using the following clauses.

(i) ¢ is Hp-extendible and ¢ is Xp-extendible. Moreover,

IoL=L YoL=L TIhe=¢ XSop=ce.
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(ii) Let a be an ordinal number. Then we have
p is Xy-extendible, and

is My41- ibl
# 15 Hapr-extendible < [ Yot is I-extendible.
Moreover, if ¢ is I1,41-extendible, then
Mo L = II(Z,L) and Mot1e = I(Sae),

where V D II(X,L) %), F is the valuation system from Definition

(iii) Let a be an ordinal number. Then we have
p is II4-extendible, and
# I8 Zapr-extendible [ 1T is X-extendible.
Moreover, if ¢ is X, 1-extendible, then
Yor1L = X(1I,L) and Yot = S(Mup).
(iv) Let XA be a limit ordinal. Then we have
@ is II,-extendible,
@ is Il -extendible <= [ for every a € \.
Moreover, if ¢ is IIy-extendible, then
AL = Uyen HaL and Mp(e) = Ige(c),
where 5 € A and c € IIgL.
(v) Let A be a limit ordinal. Then we have
@ is Y,-extendible,

is Y- ibl
p is Xy-extendible <= [ for every a € \.

Moreover, if ¢ is Xy -extendible, then
AL = Ugenr Zal and Zap(e) = Zgp(c),
where 8 € A and c € ¥gL.
Definition 139. Let V O L% E be a valuation system.
(i) We say the hierarchy has collapsed at @ if
@ is II,41-extendible and ¥4 ;-extendible, and
Q) = Q@ = X(Q),
where QQ = Il,p or Q = X, .
(ii) We say the hierarchy collapses if the hierarchy has collapsed at some Q.
We will prove that if the hierarchy of a valuation ¢ collapses then ¢ has a complete

extension (see Lemma[T42). After that, we will prove the converse, namely, if ¢ has
a complete extension, then then the hierarchy of ¢ collapses (see Proposition [[48).

Lemma 140. Let V D L 2. E be a valuation system.
(i) Let o < B be ordinal numbers.
Suppose that the hierarchy has collapsed at 1, p.
Then ¢ is Ilg-extendible and X g-extendible, and
Hpp = oy = Xge.
(i) If the hierarchy collapses at Il and at Lo for some «, then yp = Y.

(iii) Suppose the hierarchy has collapsed at Q1 and at Q2. Then Q1 = Q.
(iv) The hierarchy collapses if and only if it has collapsed at I, for some «.

Proof. We leave this to the reader. (I
Definition 141. Let V 2 L% E be a valuation system.
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(i) We say that ¢ (or V O L% E) is extendible if the hierarchy collapses.
(ii) Suppose that ¢ is extendible. Then there is precisely one valuation at which
the hierarchy has collapsed (see Lemma [[4{J(iii)); we denote it by

VOIT% E.
Lemma 142. Let V D L 2. E be an extendible valuation system. Then
V2 % Eis complete.

Proof. To prove that p is complete, it suffices to show that @ is II-complete and
Y-complete. We know that @ = IIp (since the hierarchy has collapsed at @, see Def-
inition and Definition I3%(1))), and that II% is II-complete (see Lemma [38).
Hence p is II-complete. Similarly, @ is X-complete. So @ is complete. O

Remark 143. Let V D L #, E be a valuation system.
(i) Note that if ¢ is complete with respect to V' (see Definition [77),
then ¢ is extendible, and © = .
(ii) Omn the other hand, if ¢ is extendible and @ = ¢,
then ¢ is complete with respect to V' (see Lemma [T42).

Lemma 144. Let V O L% E be a valuation system.
If ¢ is Iy, -extendible, then the hierarchy has collapsed at Iy, .

Proof. Suppose that ¢ is Iy, -extendible. We need to prove that the hierarchy has
collapsed at Iy, . For this, we must show that (see Definition [3%(i))),

H(Hf‘hsﬁ) = HNM = E(H?‘h@)'

Let a; > agy > --- be aIly, p-convergent sequence. In order to show that II(Ily, ) =
Iy, ¢, it suffices to prove that A, a, € Iy, ¢.

Since Ny is a limit ordinal, we know that Iy, L = |
Define for each n € N an ordinal number a(n) by

I1, L (see Defintion [I3]).

a<N;

a(n) = min{a <N;: a, € I, L}.
Now, the set { a(1), a(2), ...} of ordinals has a supremum,
£ = Vyan) = U,an).

Since N; is the smallest uncountable ordinal, and a(n) < Xy, we know that all a(n)
are countable. Hence £ is countable as well, and so £ < Nj.
Now, we have a,, € II¢L for all n € N. Hence

/\nan S H(HgL) = H§+1L - HNIL-

So we see that II(TIx, ¢) = Iy, ¢. Similarly, XTIy, ¢) = Iy, ¢.
Hence the hierarchy has collapsed at Iy, ¢. (I

Corollary 145. Let V O L %y E be a valuation system. Then
@ is extendible <~  p is Iy, -extendible.
Moreover, if ¢ is extendible, then @ = Iy, ¢.

Proof. Assume ¢ is extendible in order to show that ¢ is Ily,-extendible. Then
we know that the hierarchy collapses (see Definition . So it collapsed at
some II, ¢ (see Lemma. Pick an ordinal number 8 with § > « and g > N;.
Then ¢ is II1g-extendible by Lemma But N; < 3, so ¢ is also Iy, -extendible.

Suppose ¢ is Iy, -extendible. Then the hierarchy has collapsed at Ilx,¢ by
Lemma [[44 Hence ¢ is extendible and @ = Ily, ¢ (see Definition TZI[ii)). O
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Lemma 146. Let V O L 2 EandV D) C’& FE be two valuation systems.
Assume that 1 extends p. Then for every ordinal number o, we have

¥ is ly-extendible =— ¢ is [Iy-extendible and Il extends I, p
P is Y-extendible = @ is Xy-extendible and X, extends X, p.

Proof. We prove this lemma using induction on «a.

(Zero) For o« = 0, the proposition is trivial.

(Successor) Let o be an ordinal number such that if ¢ is 3,-extendible, then ¢ is
Ya-extendible and ¥, extends Y. Suppose ¢ is II,11-extendible. We prove

@ is 41 1-extendible and Tg41% extends 4 1¢. (49)
Since 1) is I1,41-extendible, we know that (see Definition [I3])),
1 is X,-extendible and Yot is Il-extendible.

By assumption, the former implies that ¢ is ¥,-extendible and X, extends I1,;
by Lemma[I02] the latter implies ¥, is IT-extendible and II(X, 1) extends II(X,¢).
In other words, we have proven Statement (4J).

Let a be an ordinal number such that if ¢ is II,-extendible, then we have that ¢
is II,-extendible and that 11, extends II,y. Suppose that ¢ is ¥,1-extendible.
By a similar reasoning as before one can prove that

p is Yy 41-extendible and Yotr1¥ extends Xy 41¢9.
(Limit) Let X be a limit ordinal such that for all & < A, we have
1 is Il,-extendible = ¢ is [l -extendible and II,% extends I, .
Further, assume 1 is IIy-extendible in order to prove that
@ is T -extendible and T\ extends ITy. (50)

Let a < A be given. Since 1 is II-extendible, we know that v is II,-extendible.
So by assumption, ¢ is I1,-extendible, and 1,1 extends Il p.

So we see that ¢ is IIx-extendible. Further (since IIxt¢ extends II,v), we see
that Iy extends all 11, . Hence ITyt) extends IIy¢. So we have proven (B0). O

Proposition 147. Let V O L 2 EandV o C i> E be valuation systems.
Assume that v extends ¢, and that ¥ is extendible. Then

@ is extendible and W extends .
Proof. By Corollary 145l we get the conclusion from Lemma with a =N;. O

Proposition 148. Let VDO L% E and V D CYs E be valuation systems.
Assume that 1 extends @ and that ¥ is complete with respect to V.. Then

@ is extendible and 1 extends P.

(So, loosely speaking, @ is the smallest complete extension of ¢.)

Proof. Since v is complete, 1 is clearly extendible and 1 = 1 (see Remark [43).
Hence ¢ is extendible and ¢ = 1 extends @ by Proposition [47 O

Remark 149. Let V O L% E be a valuation system.
By Lemma and Proposition [[48 we see that

@ is extendible <= ¢ has an complete extension.

Hence the name “extendible”.
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6. CLOSEDNESS OF THE COMPLETION UNDER OPERATIONS

We have seen how we can obtain the Lebesgue measure and the Lebesgue integral
as the (convexification of) the completion of relatively simple valuations systems,
PRD As X R and  [—o0,400]® D Fs 25 R.

It is now time to derive some simple facts about the completion. In this section we
will prove statements of the following form.

(i) If A,B G_A_s, then A\B € Ag (see Example [[56).
(ii) If f,g € Fs NRE, then f + g € Fs (see Example [59).

Definition 150. Let P and @ be posets. Let f: S — @ be a map, where S C P.
We say f is o-preserving with respect to P provided that
(i) if A, an exists (in P) for a1 > az > --- from S, and if A\, a, € S, then
F(Anan) = N f(an);
(i) if \/, by exists for by < by < --- from S, and if \/, b, € S, then
FVpon) =V, £ (bn).
Let P and @ be posets. Let f: P — @ be a map. We say f is o-preserving
provided that f is o-preserving with respect to P.

Remark 151. If in the setting of Definition 50 f is o-preserving (with respect
some S), then f is order preserving as well.

Theorem 152. Let V D LS E and W D) Ki> F' be extendible valuation sys-
tems. Let A: V. — W and f: E — F be o-preserving maps, such that

A(L)CK and fop=1oA|L.

V—>2L">E
Al AlL f
W~ K-+ F
Then A(L) C K and fop =1 o A|L.
Proof. We prove with induction that for every ordinal number a we have
A(I,L) C K follyp = 9o Al L 51)
AX.L) C K foXap = o AlS,L.
This is sufficient, because L = Iy, L and 3 = Iy, ¢ (see Corollary [[45).

(i) We prove ([BI) holds for a = 0. Since Ipp = Zop = ¢, we need to prove
that A(L) C K and f o ¢ = A|L. But this is valid by assumption.

(ii) Let a be an ordinal number and assume (51) holds for «; we prove (&1]) holds
for a+1. We only prove A(Il,4+1 L) C K and folloy1p = Yo Allly41L; the
other part, A(Xq+1L) C K and foX,11p = o A|X,41L follows similarly.

Let a € Il +1 L be given. We need to prove that
Al@) € K and  9(A(a)) = f(Has19(a)). (52)
Recall that ITo41 L = II(X,L), so write a = A, an, for some X, p-convergent
a; > as > --- and note that Io11p(a) = A, Xap(an). We have

fMatr9p(a)) = FIN,Zap(an))
= A\, f(Zap(an))  since f is o-preserving
= A, ¥ (Alan)) since (E1)) holds for a.
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So we see that A(a1) > A(ag) > --- is E—conver&en‘c. Since W 2
is complete, this implies A, A(a,) € K and A, ¥ (A(an)) = ¥(A
Because A is o-preserving, we have A A(a,) = A(a). Hence A(a) € K and
JMasigp(a)) = A, ¥ (Alan))
= ¥(A,A(an))
= ¢(A(a)).
So we have proven Statement (52]).
(iii) Let A be a limit ordinal, and assume that (&1l) holds for all & < A; we prove
that (BI)) holds for A. Since IIyp = X\, we must prove that
AIILL)C K  and follyg = 1o A[IILL. (53)

Let a € I, L be given in order to prove A(a) € K and ¥(A(a)) = f(Ixp(a)).
Recall that IIxL = (J,.5 HaL, and TIxp |14 L = I, for all @ < X. So
choose a < A such that a € I, L. Since (&1]) holds for o, we know that

A(l,L) C K and follyp =1 o Alll,L.
Hence A(a) € A(TI,L) C K and f(Ilxp(a)) = f(Ilap(a)) = ¥(Aa)). O

Example 153. Let A be a ring of subsets of X. Let u: A — R be a positive and
additive map. Recall that pX D A% R is a valuation system (see Example [73).
Assume that pX D A% R is extendible.
We would like to prove that A is also a ring of subsets of X (as is A). For the
moment, we will prove this under the assumption that X € A, see Example
To prove that A is a ring, we need to show that Z\Y € A for all Z,Y € A. Note
that Z\Y = (X\Y) N Z. So it suffices to show that X\Y € A for all Y € A.
Consider the order reversing maps A: pX — X and f: R — R given by

AY) = X\Y (Y C X)
fl@)=pX) -z (zeR)
In order to apply Theorem to these maps, let us rebaptise them as order
preserving maps A: pX — (pX)°P? and f: R — R°P (see Example [IT).
We have the following situation.

X oA—L - R

3

(pX)°P =<—A°P " Rop

We leave it to the reader to verify that (pX)°P D A% £ RP is again valuation
system which is extendibe. We have A(A) C A, because X\Y € AforallY € A
since A is a ring containing X . Further, since yu is additive, we have

HAY)) = p(X\Y) = u(X) = p(Y) = F(u(Y)).
So po A and f o p are identical on A. Note that

X\U,, 4rn =N, X\4, and  u(X) -V, z, = A, (X) -z,
where Y1 C Y5 C -+ are from pX and z7; < 22 < --- is a bounded sequence in R.
So A and f are o-preserving (see Definition [I50]).
Hence by Theorem [[52, we get A(A) C A and secondly fofi=Tio A on A.
From the first fact we get that X\Y €Y for all Y € A, and hence A is a ring.
From the second fact, we get m(X\Y) = m(X) — (Y) for all Y € A. From this,

one might say, we see that & is additive. However, we already knew this as i is
modular (and u(@) = 0, see Definition [I31]).
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Theorem 154. Let V DO LE FE and W D) K& F be extendible valuation sys-
tems. Let A: V. — W be a o-preserving map such that A(L) C K. Let f: E - F
be a o-preserving group-homomorphism such that

dy(A(c), A(d)) < f(dg(c,d)) (54)
for all c,d € V with A(c), A(d) € K.

V2oL *.F
Al l f
We OK-_YoF

Then A(L) C K.
Proof. With induction, we prove that for every ordinal number «, we have
AT L) C K and A(X.L)CK.

This is sufficient, because L= Iy, L.
As one can see, such a proof might be quite similar to the proof of Theorem 152
Therefore, we leave the details to the reader and only prove the following statement.

A(Z.L) C K = A(Ml,41L) C K. (55)
Assume A(X,L) C K and let a € II,41L be given; we must prove A(a) € K.
Write a = /\nan for some ¥, ¢-convergent sequence a; > ag > -+ in X, L. Because

we have assumed A(X,L) C K, we know that A(a;) € K. To prove A(a) € K, it
suffices to show that A(ay) > A(az) > -+ is Y-convergent. Indeed, then

A(a’) = A(/\na") = /\nA(a’n) € F’
because A is o-preserving and W D Y Fis complete.

To prove that the sequence A(a1) > A(as) > --- is Y-convergent, we must show
that A, ¥(A(an)) exists. Note that by Inequality (54), we have

V(A(an41)) — D(Alan)) = dg(A(ant1), Aan))
< f(dﬁ(an-‘rlaan)) = f(@(an-‘rlaan)) - f(@(an))-

So since F' is R-complete (see Definition [44)), in order to show that A, 1 (A(an))
exists, it suffices to prove that A, f(®(a,)) exists. For this we need to prove that
N, P(an) exists (as f is o-preserving). That is, we must show that a; > as > ---
is p-convergent. Of course, this follows quickly from the fact that a; > as > --- is
Y ap-convergent. We have proven Statement (G3). [

Proposition 155. Let V D Li>_E; be an extendible valuation system. Note that
its completion is denoted by V 2 L% E. Given £ < u from L, consider

[6,4] 2 LN, 25, B
it 1s an extendible valuation system. Note that its completion is denoted by
(6,4 2 TN 6 28, B
We have LN [{,u] = LN [{,u]. Moreover, G and @|[{,u] are identical on L0 [€,u].

Proof. One can easily see that |[¢, u] extends ¢|[¢, u] and that the valuation system
[6,u] DTN [t,u 22

is complete. Hence ¢|[¢,u] is extendible, and @|[¢, u] extends ¢|[¢,u] (see Propo-
sition [47). In particular, L N [{,u] € LN [{,u] and @ and ¢|[¢,u] are identical
on LN [¢,u]. It remains to be shown that

LN[tu] € LN[L,u. (56)
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To this end, consider the map o: V' — [¢,u] given by o(z) = £V (z A u). Note that
o(z) =z for all z € [¢,u], and thus o(L) = L N [¢,u]. So in order to prove (&6), we

must show that o(L) C LN [¢,u]. To do this, we apply Theorem [I54

1% o, L E

| | B

) <Ay A g

We must verify that o is o-preserving and that
doizui(e(c), o(d)) < dg(c,d) (57)

for all ¢,d € V with o(c¢), o(d) € LN [¢,u]. One can easily see that g is o-preserving,
because V is o-distributive (see Definition [T0)). Concerning Inequality (E7), note
that for ¢,d € V with ¢(c), o(d) € LN [¢,u] we have

dattea(0(), old) = di(olc), o(d) since 7| LA ] = P60
= dz({V (cAu), £V (dAwu)) by definition of o
< dg(cAhu,dNu) by Lemma 24]
< dg(c,d) by Lemma
Hence Theorem [I54is applicable, and we obtain Inequality (G0l). O

Example 156. Let A be a ring of subsets of X. Let u: A — R be a positive and
additive map. Recall that pX D A% R is a valuation system (see Example [73).
Assume that pX D A £y R is extendible (see Definition [T4T]).

We prove that A is a ring. (In Example 053, we saw that this is the case
itXeA)

Let Y, Z € A be given. To prove that A is a ring, we must show that

Y\Z € A.

We restrict our attention to the interval I := [&, Y U Z]. Note that ANT is a
ring of subset of YUZ with YUZ € ANI. So by Example[I53] we know that AN T
is a ring. Note that Y, Z € AN T because ANIT = AN 1T by PropositionI55 So we
get Y\Z € AN, and thus Y\Z € AN I by Proposition [[55l

Hence A is a ring of subsets of X.

Theorem 157. Let V D LS E and W D) Ki> F' be extendible valuation sys-
tems. Let R be a sublattice of V with L C R. Let f: E — F be a o-preserving map,
and let A: R — W be o-preserving with respect to V. Assume that A(L) C K and

fop=1oA|L.

1% R b) AN 5
Al ALL lf
W K-YoF

Assume that R is convexr in V', and that for every ¢ € R, there are p-convergent
sequences ay < ap < -+ and by > by > -+ such that \,an < c <V, by.
Then A(LNR)C K and fog=1vo0A on LNR.

Proof. Let us first prove the following special case.

Let ¢ € LN R with £ < ¢ < u for some ¢,u € L. Then
Ale)e K and  f(2(c)) = %(A(c)).
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Let ¢ € LN R with £ < ¢ < u for some £,u € L be given. Then clearly ¢ € [¢,u].
Further, [¢,u] C R since R is convex and ¢,u € R (as L C R). So we have:

[¢,u] <—LN E T'
A[Z,u]l A| LN[,u] l
w )K F

Moreover, by Proposmon 55, we know that ¢ € LN [¢,u] and B(c) = o[[¢, u](c).
Hence Theorem [[52 yields A(c) € K and 9(A(c)) = f(¢|[¢,u](c)). But then
¥(A(c)) = f(@(c)). This proves Statement (58).

We proceed by proving another special case.

_ - (59)
Alc)e K and  f(®(c)) = P(A(c)).

Let ¢ € LN R with ¢ > ¢ for some ¢ be given. Pick p-convergent u; < ug < -+
such that ¢ < \/nun Since u; > ug > - -+ is p-convergent and ¢ € L, we know that
cAup < cAug < --- is p-convergent (see Proposition 4g). Since V' D LS Eis
complete, this implies @(c) = B(V,,c Aun) =V, @(c A uy,). We get:

F@(E) = SV, 7 A )

=V, f@(cAuy)) since f is o-preserving

Note that £ < ¢ A, < uy,. So by (B8), we get A(c Auy,) € K and:

f@(e) = V,0(Ale Aun)) B
From this we see A(cAuy) < A(cAug) < - < s i)-convergent. Since W O K 4 F
is complete, we get f(@(c) =V, A(cAuy) € K and

F@(0) = ¥(V,Alc A un))

= P(A(\V,cAu,))  since A is o-preserving

= ¥(A(0)).

This completes the proof of Statement (BJ).

l Let ¢ € LN R and suppose ¢ > £ for some ¢ € L. Then

We are now ready to give the proof of the general case. Let ¢ € RN L be

given. We need to prove that A(c) € K and f(@(c)) = ¥(A(c)). Pick (p-convergent
1 > ¥y > --- such that /\nﬁn < c. Since {1 > l3 > --- is p-convergent and ¢ € L,
we know that ¢ Ve > foVe > --- is p-convergent. Since V' D T Eis complete,
this implies that @(c) = B(A,.ln V c) = N\, @(Un V c). We get:

f(@(e) = f(N, Bl V)

= AN, J(@, V) since f is o-preserving

Note that £, < ¢,V c. Further, since R is a sublattice of V, and c € R, £, € L C R,
we get £, V¢ € R. So by (BY), we have A(¢,, V ¢) € K and:

F@(e)) = N ¥(An v ©) 3
From this we see A(¢1 V) > A(la V) > - - s i)-convergent. Since W D K4 F
is complete, we get f(@(c) = A, A(ln Vc) € K and

f@(e)) = (A Alln V)

(A(A\,,¢n V)  since Ais o-preserving

(A(c)).
We are done. O

I
<l & <
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Proposition 158. Let V O L% E be an extendible valuation system. Let R be a
sublattice of V' endowed with a group structure. Assume L is a subgroup of R and
that ¢ is a group homomorphism (recall that E is an ordered Abelian group).
Further, assume that R is convex and that for every ¢ € R, there are p-convergent
sequences ay > ap > -+ and by < by < --- such that \,an < c <V, by.
Then LN R is a subgroup of R, and P|R is a group homomorphism.

Proof. In order to show that LN R is a subgroup of R, we must prove the following.
(i) Ifa,b€ LN R, then a +b € L.
(i) Ifa € LN R, then —a € L.
We only give a proof for It will then be clear how to prove
We aim to apply Theorem 570 To this end, the reader can easily verify that
VXxVOLXL %_E x F is an extendible valuation system; that its completion
isVxVDLx 2% Ex FE; that R x R is a convex sublattice of V' x V; that the
assignment (¢, d) — ¢ + d yields a o-preserving map A: R x R — V with respect
to V' x V; that the map f: E x E — FE given by f(z,y) = x 4+ y is o-preseving.
Further, note that A(L x L) C L because L is a subgroup of R. Note that

for all ¢;,co € R x R there are p-convergent £i > (5 > ... and u} < ub < ---
such that A, ¢4 < ¢ <\, ub, and thus A (€4, 02) < (c1,¢2) <V, (ul,u?), where

(03, 02) > (63,03) > - -+ and (ul,u?) < (ud,u3) <--- are ¢ x p-convergent. Finally,
note that f o (¢ x ) = ¢ o A|(L x L), because ¢ is a group homomorphism.

VXV R x R Lx L L ExE
S A
1% oT, i E

So we are in a position to apply Theorem[I57 It gives us that A(Lx LNRx R) C
Land fo(x®)=poAonLxLNRx R. Inother words, if ¢,d € LN R, then
c+de L,and §(c+d) = @(c) +P(d). Hence we have proven statement and at
the same time we have shown that ¥ is a group homomorphism. O

Example 159. Let X be a set. Let F' be a Riesz space of functions on X. Let
¢: F — R be a positive linear map. Recall that [—o0,00]* D F %, R is a valuation
system. Assume that ¢ is extendible.

We would like to prove that F is a Riesz space of functions and @ is linear.
However, since addition is only defined on R := R¥, we will instead show that
F N R is a Riesz space of functions and that @|R is linear. Moreover, we assume
that for every f € F N R there are p-convergent sequences ¢1 > fo > --- and
up <ug < --- such that A £, < f <V, up,.

To prove that F N R is a Riesz space, we must show that

(i) f+ge Fforall f,g€ FNR, and
(i) \-feFforal A€ Rand f € FNR.
We only prove the first statement; we leave it to the reader to prove the second.

Of course, it suffices to establish that F' N R is a subgroup of R. To do this, we
apply Proposition[I58 Indeed, one can easily see that all the prerequisites are met.
To name a few: one sees that R is a sublattice of V', that F' is a subgroup of R
(since F' is a Riesz space of functions), that ¢ is a group homomorphism (since ¢
is linear), and that R is convex (since R is convex in [—o0, 00]).

Proposition not only gives us that F' N R is a subgroup of R, but also
that ¢|R is a group homomorphism. We leave it to the reader to prove that @|R is
homogeneous, i.e., p(A- f) = X-p(f) for all f € FN R and A € R.

Hence F'N R is a Riesz space of functions, and @|R is linear.
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7. EXTENDIBILITY

Let V O L% E be a valuation space, and suppose we want to prove that ¢ can be
extended to a complete valuation. We have seen that it suffices to prove that ¢ is
Iy, -extendible (see Corollary [[45]). However, to prove ¢ is Iy, -extendible already
seems like a monumental task when one has only barely started to unfold the
definition of “p is Ilx,-extendible” (see Definition [[38]):

@ is [I-extendible, and p is X-extendible;

IIp is II-extendible, and Y is Y-extendible;

Ils¢ is Tl-extendible, and Yo is Y-extendible;

II,¢ is II-extendible, and Y is X-extendible;
II,4+1¢ is II-extendible, and X,41¢ is X-extendible;

It turns out that for some F the situation is more tractable. For instance, we
will see that if £ = R, then to prove that ¢ is extendible it suffices to show that ¢
is ITs-extendible or Ys-extendible. Actually, we have a sharper result: it suffices to
show that ¢ is continuous (see Definition [[60). Those E for which we have

 is continuous = ¢ is extendible.

will be called benign (see Definition [IGH).

7.1. Continuous Valuations. Below we define what it means for a valuation
system to be continuous. We will see that we have the following implications

Ys-extendible /Z;extendible
/cyontinuous\
II>-extendible II-extendible.

In fact, we prove that ¢ is continuous if and only if it can be extended to IILUXL in
some sense (see Lemma [[62), so that we might have dubbed it “ITU X-extendible”.

Definition 160. Let V O L% E be a valuation system.
We say ¢ (or more precisely V O L% E) is continuous provided that

Antn < Vb = A\ 0(an) <V, 0(bn)
for all p-convergent a; > as > --- and w-convergent by < by < ---.
Example 161. We leave it to the reader to verify that the valaution systems
R D As 5 R and [—o0, +00]® D Fs 2% R
are continuous.

Lemma 162. LetV O L2 E be a valuation system. The following are equivalent.

(i) ¢ is continuous.
(i) ¢ is l-extendible and X-extendible, and there is an order preserving map

frIILUYXL - FE
that extends both Il and Y.
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Proof. = Suppose that ¢ is continuous. By Lemma [I03 we see that
@ is Il-extendible. Similarly, ¢ must be »-extendible. We need to find an order

preserving map f: I[IL U XL — FE that extends both Ily and Y. We have little
choice,

@ = { Mp(c)  ifcellL; (60)

fle Se(c)  ifce XL,
To see that Equation (G0) is a valid definition of a map f: ILUXL — E, we need
to verify that Ilp and ¥ are identical on IILNX L. Let ¢ € IILNXL be given. We
must prove IIp(c) = Xp(c). Choose p-convergent a; > ag > -+ - and ¢-convergent
by < by <--- such that A\ a, =c=\,by.
Then b, < a, for all n, so p(b,) < ¢(a,) for all n. Hence

Yp(e) =V, p0bn) < A,plan) =p(c).

Conversely, we have A ,a, <\, by, so since ¢ is continuous we get

p(c) = Apelan) < V,e(bn) = Ze(c).

Hence IIp(c) = Zp(c). So Equation (@0) is a valid definition of f.
Since by defintion, f extends both Iy and X, it only remains to be shown
that f is order preserving. Let ¢,d € IIL U XL with ¢ < d be given. We prove

fle) < f(d).

Of course, if ¢, d are both in IIL, then we done, because Il is order preserving and
f extends Ip. Similarly, if ¢,d € XL, we also immediately get f(c) < f(d).

Suppose ¢ € IIL and d € X L. Choose ¢-convergent sequences by < by < --- and
ai > as > --- such that \/,,b, = cand A, a, = d. Then b,, <V, bn < A, 0n < am
for all m, so ¢(bm) < ¢(a,) for all m, and hence

fle) =Zp(c) = V,0(bn) < Apelan) =1Ilp(d) = f(d).
Suppose ¢ € IIL and d € X L. Choose ¢-convergent sequences a; > ag > --- and
by < by < --- such that A, a, = cand \/, b, =d. Then A\, a, <\, b,. So since f
is continuous, we get f(c) =Ilp(c) = A\, ¢(an) <V, ¢(bn) = Xp(d) = f(d).
- Let f: IILUXL — E be an order preserving map that extends both Ilp

and Y. We prove that ¢ is continuous. Let p-convergent sequences a3 > ag > - - -
and by < by <--- with A, a, <V, b, be given. We need to prove that

Anplan) < Vy,@(bn).

This is easy; since f is order preserving and extends Ily and Yy, we get

Anplan) = Ho(Ayan) = f(Apan) < F(V,0) = Zo(V,0n) = V,e(bn). O

Corollary 163. Let V 2 L% E be a valuation system.

(i) If ¢ is continuous, then ¢ is I-extendible and X-extendible.
(i) ¢ is continuous provided that o is either Ila-extendible or Xo-extendible.

Proof. Point follows immediately from Lemma Point is also a conse-
quence of Lemma Indeed, assume that ¢ is Ils-extendible. We prove that ¢
is continuous. Note that Iy is order preserving and extends both Il and Y.
Hence ¢ satisfies condition |(i)| of Lemma [I62 Thus ¢ is continuous. O

Lemma 164. Let V O L% E be a valuation system.
Let K be a sublattice of L such that 1 := ¢|K is continuous.
Then ¢ is continuous under the following assumptions.
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(i) Given a p-convergent sequence a1 > az > -+ in L, we have

Anplan) = V{Tp(0): LeS },
for some S CIIK with ¢ < \,a, for all £ € S.
(i) Given a p-convergent sequence by < by < --- in L, we have

Voen) = V { Z¢(u): ueT },
for some T C XK with \/,)by, <u for allueT.

Proof. Let ¢-convergent sequences a1 > as > -+ and by < by < -+ from L with
Anan <V, bn be given. To prove that ¢ is continuous (see Definition [60), we
must show that A, ¢(a,) < V,¢(bn). Let £ € S and u € T be given. Note that
<N\, an <V, bn < u, so Ip(£) < Bep(u) since 9 is continuous.

Hence A, ¢(an) <V, ¢(bn) by Assumptions (i) and O
7.2. Benign FE.

Definition 165. Let E be an ordered Abelian group. We say F is benign provided
that for every valuation system V 2O L % E, we have

@ is continuous == ¢ is extendible.
Example 166. We will prove that R is benign (see Corollary [I8T).

Example 167. Let I be a set and let X; be a benign ordered Abelian group for
every i € I. We leave it to the reader to verify that J],.; X; is benign.
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8. UNIFORMITY ON F

To prove that R is benign (see Definition [IG3]), we study ordered Abelian groups F
which are endowed with a certain uniformity (such as R) in Subsection Bl We
prove that all such F are benign (see Theorem [I80]), in the following way.

Let V O L% E be avaluation system. Recall that in order to prove that E is be-
nign we must show that if ¢ is continuous, then ¢ is extendible (see Definition [[65]).
We will first prove that if ¢ is continuous, then both Il and ¢ are continuous
(see Lemma [I83]). Then, by induction, we see that ¢ is both II,-extendible and
Yn-extendible, and both IT,p and X, are continuous, for every n € N. Hence ¢
is I1,-extendible. However, it is not clear a priori that Il is continuous.

Secondly, we prove that if ¢ is IIy-extendible for some ordinal number A, then
II\¢p is continuous. So by induction we see that ¢ is both Il,-extendible and Y-
extendible, and both IT,p and 3, are continuous, for every ordinal number « (see
Lemma [I85]). Hence ¢ is extendible (see Corollary [[45).

To prove the second statement we use the fact that elements of I, L (or ¥, L) can
be approximated from below by elements of IIL, in some sense (see Lemma [I8T]).
We will express this by XL is lower I1,¢-dense in 11, L. We will formally introduce
this notion, and study it, in Subsection

8.1. Fitting Uniformity.
Definition 168. Let E be an ordered Abelian group. A fitting uniformity on F
is a countable set @ of binary relations on F with the following properties.

(i) We have ses for alle € ® and s € E.
(ii) There is a map A: ® x & — & such that

s eNdt = set and sdt (e,0 €D, s,t € F).
(iii) There is a map —/2: ® — ® such that
r €2 s €2t = ret (e€®, r,s,t€E).
(iv) Given e € ® and r,s,t € E with r < s < t, we have
ret = res and set.

(v) Let s,t € E with s <t. Then s =t provided that set for all € € P.
(vi) If a sequence 1 > s9 > -+ from E has an infimum s € F, then

Vee®d dN €N sesy.

(vii) Let s1 > s2 > --- be a sequence in E, and assume that for every ¢ € ®
there is an N € N such that s, € sy.  (n > N).
Then s; > 53 > --- has an infimum A s,.
(viii) Let r,s,t € E and € € ® be given. Then set implies r + s € 7 + ¢.

Example 169. We define a fitting uniformity on R. For each natural number n,
let &, be the binary relation on R given by

sep,t <— s<t and t—s<27™

Then ® := {e,,: n € N} is a fitting uniformity on R.
(Take e, A e, := €pvm and €n/2 := g, 11 for all n,m € N.)

Remark 170. The fitting uniformities defined here are related to the uniform spaces
(or more precisely, quasi uniform spaces) studied in topology, see [7].

However we do not involve uniform spaces, because the usual way of reasoning
about them does not seem to fit well with property Moreover, we do not wish
to assume that the reader is familiar with uniform spaces.
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To the list of properties that a fitting uniformity must have (see Definition [I6]),
we add some easy observations in Lemma [I7]] When we speak of “property (q)”,
where ¢ is some Roman numeral, we refer to this list.

Lemma 171. Let E be an ordered Abelian group with a fitting uniformity ®.
(iz) Let s,t € E and € € ® be given. Then set implies —t € —s.
(x) If a sequence s1 < so < --- from E has an supremum s € E, then

Vee® AN €N syes.

(xi) Let s1 < 89 < --- be a sequence in E, and assume that for every ¢ € @
there is an N. € N such that sn. € s, (n > N¢).
Then s1 < s5 < --- has a supremum \/nsn

Proof. Let s,t € E and € € ® be given, and assume set. We prove —t € —s.
Indeed, by property we have
—t=—-(t+s)+s ¢ —(t+s)+t=—s.

Let s1 < s9 < --- be a sequence in £ which has a supremum s in E. Let ¢ € ®
be given. We need to find an N € N such that sy ¢ s.

Let us consider the sequence —s; > —s9 > ---. By Lemma 206 the sequence
—81 > —8g > --- has an infimum, —s. By property we have —s ¢ —sy for
some N. Then by property we get sy € s, and we are done.

Similar: apply propertyto the sequence —s1 > —s9 > -+ -. O
Notation 172. Let E be an ordered Abelian group with a fitting uniformity ®.
(i) Given binary relations € and 6 on E (for instance, €,6 € ®), we write
e <0 << VsiteE[set = sit].
(i) Given binary relations € and § on E, let e + 6 be the relation on E given by
s e+dt <= FgeE[seqdt]
Remark 173. The operation “+” defined in Notationis associative, but not

in general commutative (contrary to the expectation the symbol “+” evokes).
The chosen notation does have advantages: property can be written as

€la + €2 < ¢ (e €®).
Lemma 174. Let E be an ordered Abelian group with fitting uniformity .
Then E is R-complete (see Definition [{4).
Proof. Let 1 <z <--- and y; <y < -+ from F be given such that
IN+1— 2N < YN+1 — YN (N €N). (61)

Assume \/, y, exists. To that E is R-complete, we must show that \/, z,, exists.

Let € € ® be given. By property we know that to prove \/, x, exists, it
suffices to find N € N such that zy ez, for alln > N.

By property we know there is an N such that yne\/, ym. Let n > N
be given. We will prove that =y € x,. We already know yxn €y, by property
because yn < yn <V, ¥m and ynv e\, Ym- S0 0 ¢ (yn —yn) by property

From Inequality (GI)) one can easily derive that

0 < z,—2v < Yn—YnN.

Since 0 € (yn — yn) We get 0 £ (z,, — xn) by property [(iv)]
Hence xy € x,, by property So we are done. (I

The following lemma will be useful.



A GENERALISATION OF MEASURE AND INTEGRAL 71

Lemma 175. Let E be an ordered Abelian group with fitting uniformity ®.

Let S C E be non-empty and downwards directed, i.e., for all s1,s2 € S, there
18 an s € S such that s < s1 and s < s».

Lett € E be a lower bound of S which is close to S in the sense that

Vee ® 3dse S tes. (62)
Then t is the infimum of S.

Proof. To show that ¢ is the infimum of S, we need to prove that ¢ < t for every
lower bound ¢ of S. To do this, we take a detour.
Let £1,€9,- - be an enumeration of ®. Using Equation (62)), and the fact that S

is non-empty and directed, choose s; > s5 > --- in S such that
t €n Sn (n € N). (63)
We will prove that s; > so > -+ has an infimum s and that s =t¢.
This is sufficient to prove that ¢ is the infimum of S. Indeed, if £ is a lower bound
of S, then ¢ is a lower bound of s; > s > ---, and so £ < )\, s, = 1.

We use property to show that s; > so > --- has an infimum. Given ¢ € ®,
we need to find an N such that s, ¢ sy for all n > N. Pick k such that ¢ = ¢,
and take N = k. Let n > N be given. Note that t < s, < sy = s and t € si by

Equation (G3). So we have s, e sy by property

Hence property implies that s; > s > --- has an infimum, s. It remains to
be shown that s = t. For this we use property

Note that ¢ < s because t < s, for all n. Let ¢ € ® be given. We need to
prove that tes. Choose k such that ¢ = ;. Then t < s < s; and t € si by

Equation (G3). So t e s by property Hence s =t by property (I

8.2. Denseness. Throughout this subsection, E will be an ordered Abelian group
endowed with a fitting uniformity ® (see Definition [[GS).

Definition 176. Let V DO L% E be a valuation system. Let S C T be subsets
of L. We say S is lower ¢-dense in T' provided that the following condition holds.

For every a € T and € € ® there is an £ € S such that
{<a and ¢l)ep(a).
The notion of upper ¢-denseness is defined similarly.

Example 177. Let V DO L% E be a Y-extendible valuation system (see Def. [4]).
Then L is lower Yp-dense in L.

Indeed, given a € XL and € € ®, we need to find an ¢ € L such that p(¢) € Xp(a).
Write a = \/nan for some @p-convergent sequence a; < ag < ---. Then we have

Yp(a) = Vpplan).
By property [(x)] there is an N such that ¢(an) € Z¢(a). So take £ = ay.

Lemma 178. Let V O L% E be a valuation system.

(i) Let R C S C T be subsets of L. Suppose R is lower @-dense in S, and
suppose that S is lower p-dense in T. Then R is lower p-dense in T.

(ii) Let R be a subset of L, and let S be a family of subsets of L.
If R is lower @-dense in each S € S, then R is lower p-dense in |JS.

Proof. Let t € T and € € ® be given. To prove R is lower p-dense in T', we
need to find an r € R with » < ¢ and ¢(r) € ¢(t). This is easy. Choose an s € S
such that s <t and ¢(s) €/2 p(t) (see Definition for the meaning of “€/2”).
Choose an r € R such that r < s and ¢(r) €/2 ¢(s). Then r < s and (r) € p(t).

11)| We leave this to the reader. O
(11)]



72 A.A. WESTERBAAN

The proof that F is benign hinges on the following lemma.

Lemma 179. Let V O L% E be a valuation system.

Let K be a lower p-dense sublattice of L.

Then for every @-convergent sequence a1 > ag > --- from L and € € ®
there is a @-convergent sequence ai > as > -+ from K with

an < ap and Nne(@n) € A, elan). (64)

Proof. Let a1 > as > --- be a p-convergent sequence in L, and let ¢ € ® be

given. We need to find a ¢-convergent sequence a; > as > --- in K which satisfies
Condition (64]). To this end, we seek a sequence a; > as > -+ in K such that

elan) n e(ay) and Vie N INeN Vn> N | ga, ¢; pan |, (65)

where €1, €9, ... is an enumeration of ®, and n € ® with 27 < ¢ (see Notation [[72).

Such a sequence a; > as > --- is g-convergent (by property . We prove
that a; > @ > --- satisfies Condition (64). Indeed: We know A, ¢(a,) exists.
Hence, there is an N € N with A, ¢(@,) n ¢(an) by property [(vi)] Then

Anwlan) n elan) n plan).

So we have A, p(an) € ¢lan). But A\,e(an) < A,e(an) < ¢lan). Thus

An¢(@n) € \,(an) by property|[(iv)} Hence i > @s > - - - satisfies Condition (G4).
Finding a sequence a; > a2 > - - - which satisfies Condition (63]) is a subtle affair.

Pick 1,72, ... and (1, (o, ... from ® (using properties and [(ii))) such that
20, <ei, mi<n o 2G<m, 2G4+ < G-

Then we have

Pick ¢1,4s, ... from K such that ¢, < a, and ¢(¢,) (. ¢(ay) and define
dij:&/\"'/\gj, Zln:dln:fl/\-"/\gn,

where 4, j,n € N with ¢ < j. Then a;; € K and a, < ¢, < a,. We will prove that
the sequence a; > as > --- satisfies Condition (G5]).
Note that for all ¢,j € N with 7 < j, we have, by Lemma 24]

d¢(dij, aj) = d¢(61 JARERIAN gj; a; VARERIVAN aj) S dzp(gi; ai) + -+ d¢(€j’ aj).
Since ¢(¢k) Ck @(ak) for all k, the inequality above yields, using property
p(ai) G+ +¢G o wlay).
So because ¢; + - - - + ; < 1; (see Inequality (G0))), we have
p(ai) m lay). (67)
In particular, we get @(an) = ¢(a1n) m ¢(ayn). Hence @(an) n ¢(a,) as n < 1.
Let i € N be given. To prove that a; > as > --- satisfies Condition (B, it
remains to be shown that there is an N € N such that
p(an) e ¢lan)  (n>N) (68)
Using property determine N > i such that A, ¢(an) n; ¢(an). We will show
that Statement (68]) holds. Let n > N be given. Note that by Lemma 23]
dp(ln,an) = dp(Gi—1 A Gin, Gi—1 ANain ) < dp(@in, Gin)-

So to prove Statement (G8)), it suffices to show that ¢(a,) &; w(ain).
Recall that A,,¢(am) 1 ¢(an) by choice of N. Then in particular, we get

o(an) ni plan) by property Further, o(an) n; ¢(ay) by Inequality (67). So
@(ain) mi p(an) ni plan).
Hence ¢(ay,) €; ¢(an), because 2n; < g;. Note that p(a;,) < p(a;n) < plan).
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So by property we get ©(in) € @(ain). O

Corollary 180. Let V O L %y E be a H-extendible valuation system.
Let K be a sublattice of L. Then

K is lower dense in L e IIK is lower dense in 11L.

Proof. Follows immediately from Lemma O

Lemma 181. Let V 2O L% E be a valuation system which is both X-extendible
and Il-extendible. Then for every ordinal number a:

(i) If ¢ is 11, -extendible, then

IIL is upper dense in Il L, and Y.L is lower dense in 11, L.
(i) If ¢ is X-extendible, then

IIL is upper dense in ¥, L, and YL is lower dense in X, L.

Proof. We use induction on «.

For a = 0, Statements and are trivial.

Let a be an ordinal number such that Statement |(i)| holds for « in order to prove
that Statement holds for ao + 1. Suppose ¢ is Y,41-extendible. We need to
prove that IIL is upper dense in ¥, L and that XL is lower dense in 3,41 L.

Note that ¢ is II,-extendible, because ¢ is ¥,1-extendible.

By Statement for o, we know that IIL is lower dense in II, L. Further, II,L
is lower dense in (I, L) = X441 L by Example [[T7l So we see that IIL is lower
dense in $q41L by Lemma I7§(i)

By Statement |(i)| for o, we know that L is upper dense in II, L. So by the dual
of Corollary [[80 we have XL = X(XL) is upper dense in X(II, L) = ¥q41 L.

Hence, Statement holds for o + 1 (if Statement |(i)| holds for «).

Similarly, if Statement holds for a, then Statement |(i1) holds for o + 1.

Let A be a limit ordinal such that Statement holds for all @ < A. We prove
that Statement |(1)| holds for A\. Suppose that ¢ is ITy-extendible. We need to prove
that IIL is upper dense in Il L and XL is lower dense in I L.

We know that ¢ is II,-extendible for all @ < A.

As Statement holds for all @ < A, we see that IIL is upper dense in all I, L.

So by Lemma IIL is upper dense in I\ L = {J, ., Il L.
Similarly, XL is lower dense in ¥xL = (J, ., Xa L. O

Corollary 182. Let V O L %y E be a valuation system.
Let K be a lower p-dense sublattice of L and assume that v := p|K is -extendible.

Let ay > ag > -+ be a p-convergent sequence in L. Then
Applan) = V {y(0): LS}, (69)
where S = { /\ndn: p-convergent a1 > ag > -+ - with a, < an for alln }

Proof. To prove Statement (@9), we apply the dual of Lemma We need to
verify that IIy(S) := {IIy(£): £ € S} is upwards directed, that A, p(a,) is a lower
bound of IIt)(S), and that

Veed® eSS IIypE) € A, elan). (70)
To begin, note that Statement ({70 follows immediately from Lemma
Let 1-convergent a; > ap > --- with a, < a, for all n be given. Then we

have 9(dn) = @(in) < p(an) for all n, so TH(Ain) = Aph(an) < Ane(an).
Hence A, ¢(an) is a lower bound of IIt(S).
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To prove that IT¢)(S) is upwards directed, it suffices to show that S is upwards
directed (as It is order preserving). Let t)-convergent sequences a; > ag > -+ -
and aj > ab > --- with a, < a, and @, < a,, be given. Then

le\/dll < dl\/dIQ < .-

is again a t-convergent sequence by Proposition @8 Further a, Va,, < a, for all n.
Hence A\, an V a, € S. But also \,,a, < A\, an Va, and A,a, < A\,an Va,. So
we see that S is upwards directed. (I

Lemma 183. Let V D L 2. E be a valuation system.
Assume ¢ is continuous. Then Ily is continuous.

Proof. Note that L is an upper Ip-dense sublattice of IIL (see Example [[77). We
apply Lemma [I64]to prove that ¢ is continuous. We must verify that Conditions
and [(ii)| of Lemma [T64] hold.
et a1 > az > --- be a Ilp-convergent sequence in IIL. We need to find
S CIIL such that A,¢(an) = VS and £ < A a, for all £ € S. By Lemma (08 we
know that Iy is II-complete. Hence A, a, € IIL. So simply take S = { A an}.
Follows immediately from Corollary (]

Lemma 184. Let V DO L 2. E be a valuation system.
Let K be a sublattice of L. Then ¢ is continuous provided that:

(i) The restriction p|K of ¢ to K is continuous.
(i) K is lower and upper p-dense in L.

Proof. This follows from Lemma[I64 Indeed, condition |(i)|holds by Corollary 182}
and condition holds by the dual of Corollary 182 O

Lemma 185. Let V O L% E be a continuous valuation system, and o an ordinal.
Then ¢ is both 11, -extendible and X, -extendible, and Il and X,p are continuous.

Proof. With induction on «a.
For a = 0, the statement is trivial.

Let a be an ordinal number and assume that ¢ is II,-extendible and Il is
continuous. We prove that ¢ is ¥, 41-extendible and ¥,41¢ is continuous. Indeed,
since II,¢ is continuous, I, ¢ is ¥-extendible and so ¢ is ¥,1-extendible. Finally,
Y(Myp) = Lat1¢ is continuous by the dual of Lemma [T83]

Similarly, if ¢ is 3,-extendible and 3, ¢ is continuous, then ¢ is I1,1-extendible
and IT,11¢ is continuous.

Let A be a limit ordinal such that for each a < A, we have that ¢ is II,-extendible
and I, is continuous. Note that ¢ is IIy-extendible. We prove that Iy is
continuous. For this, we use Lemma[I84] Consider ¢ := Ilyp. By assumption, 9 is
continuous. We know that Il ¢ extends ), and that ¢ extends both Ily and Y.
Since IIL is lower dense in I1, L, and XL is upper dense in II, L (by Lemma [I3T]),
we get that K := Il L is both upper and lower dense in II,L. So by Lemma [I84]
we see that IIxp is continuous. (Of course, the argument is also valid for other
choices for v, such as Y3 and I42¢.) O

Theorem 186. Let E be an ordered Abelian group.
If E has a fitting uniformity, then E is benign.

Proof. Let V.2 L% E be a continuous valuation system. To prove that E is
benign, we must show that ¢ is extendible (see Definition [[65]). It suffices to prove
that ¢ is Iy, -extendible by Corollary [I45l Now apply Lemma [187] (I

Corollary 187. The ordered Abelian group R is benign.
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9. FUuBINI'S THEOREM

In this section we study Fubini’s Theorem. We have not found a satisfactory gener-
alisation of this theorem to the setting of valuations. However, we will see that it is
possible to split the proof of Fubini’s Theorem into two parts, so that the first part
(Subsection [@)) is algebraic in nature and specific to the setting of step functions,
and the second part (Subsection [0.2)) is more analytic in nature and a consequence
of a general extension theorem for valuations (see Theorem [I99).

9.1. Algebraic Part. Let us first formulate Fubini’s Theorem. This takes time.
Let X be a set, let Ax be a ring of subsets of X, and let

px: Ax = R

be a positive and additve map (see Example [).
Similarly, let Y be a set, let Ay be a ring of subsets of Y, and let

py: Ay = R

be a positive and additve map.
Now, let Ax«y be the ring of subsets of X x Y generated by the subsets

{ AxB: A€ Ax, Be Ay }
Let pxxy: Axxy — R be the unique positive and additive map such that
fxxy(AxB) = px(A) - py(B)

for all A € Ax and B € Ay. Such ux«y exists, as the reader can verify.
Let Fx be the set of all Ax-stepfunctions, i.e., functions of the form

N
Zn:l )\n : 1An’
where A;,..., Ay € Ax and \; € R. As the reader may verify, the expression

N N
SQX(Zn:1 An ’ ]‘An ) = En:l An ' ILLX(ATI/)
determines a unique positive and linear map ¢x: Fx — R.
Similarly, we get a map py: Fy — R, and a map ¢oxxy: Fxxy — R.
One can verify that any f € Fxxy is of the form

Zgzl )\n : 1An><Bn7
where Al,...,AN S Ax, and By,...,By € Ay, and A\, € R.
So it is not hard to verify that the equality
Fx( Yoy An-Llagxs, ) = Yooy da-ix(An) -1,
gives us positive and linear map Fx: Fxxy — Fy.
Let f € Fxxy be given. For each y € Y, define f¥Y € Fx by, for all x € X,
fx) = flz,y)

One can easily verify that we have, for all y € Y,

Fx(Hy) = ex(fY).

So, informally, Fx(f) = [ f(z,y) dx.
Since px is linear one quickly sees that ¢y o Fx = ¢xxy. Informally,

//f(z,y) dvdy = /f (f € Fxxy).

This is Fubini’s Theorem for stepfunctions, Fxxy . .
Of course, we want to prove Fubini’s Theorem for the extension Fxxy.
So let us assume px, @y, and pxxy are extendible (see Definition [[4T]).
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Alternatively, we can assume that ¢y and ¢y are continuous (see Definition [I60);
we leave it to the reader to verify that then px«y is continuous (which is not too
easy), and so pxxy is extendible, since R is benign (see Definition [IGH]).

Note that it is not possible to find an Fy: Fxxy — Fy such that, forally € Y,

Fy(Ny) = 2x ().

So to formulate Fubini’s Theorem for Fxyy we need a slightly different approach
than the one we used for the stepfunctions.

Consider the space Ey := Fy /= (see Proposition 29). We leave it to the reader
to verify that Fy can be endowed with the structure of an ordered Abelian group,
and a fitting uniformity (see Definition [I68]) such that the map Fxxy — Ey given
by f+— Fx(f)/ = is a group homomorphism.

We can now formulate Fubini’s Theorem as follows.

The valuation

fx: FX><Y *)F_y/f’tﬁ

is extendible, and dom(@y,y) € dom(Fy), and (71)

Pxxy(f) = (B/= o Fx)(f)
for all f € Fxxy.

Of course, to be true to the usual formulation of Fubini’s Theorem we would need
to prove that that Fx(f)(y) = @x(fY) for almost all y € Y. We will not do this.

9.2. Extension of Operations. Let V O L% E be a valuation system. In
Section [f we saw that the completion L of ¢ is closed under various operations. It
is also possible to extend operations to L, which are (initially only) defined on L.
The aim of this subsection is to prove Theorem which is an example of this
principle in case that F has a fitting uniformity ® (see Definition [IGS]).

It should be noted that from the methods found in the proof of Theorem
one can easily obtain a stronger version of this theorem. More interestingly, the
patterns in the proof strongly suggest that we should make a study of the uniform
structure on L given by the relations £ (where ¢ € @) defined by

atb <= 0edy(abd) (a,b € L).

However, we have refrained from proving a stronger version of the theorem and
introducing yet another notion of uniform structure. Indeed, we have not found
a clear favorite among the several approaches to the strengthening of the theorem
and the axiomatisation of the uniform structure on L. Accordingly, we introduce
few new notions, and the proofs in this subsection are sometimes ad hoc.

One new notion we do present is that of weak ¢-convergence (see Definition [I88]).
As the name suggests, p-convergence (see Definition [55]) implies weak p-convergence
(see Lemma [I8Y]), but the reverse implication does not hold (see Example [T90).
Nevertheless, any weakly (-convergent sequence has a y-convergent subsequence
(see Proposition [[92)).

Due to this all the notions of p-convergent and weakly -convergent can be
used somewhat interchangeably. The main merit of “weak @-convergent” is that
some useful statements concerning it (see Lemma and Lemma [I94) can be
easily proven, while it is not clear if the same statement (or a variant) holds for
“@-convergent” .

The main application of Theorem [199]is the proof of Fubini’s Theorem 200l Let
us start the work towards a proof.

Definition 188. Let E be an ordered Abelian group.
Let ® be a fitting uniformity on E.
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Let L be a lattice, and let ¢p: L — E be a valuation.
Let a € L and let a1, as,... be a sequence in L.
We say ap,as,... weakly p-converges to a if

Vee® IN Vn>N [0 e dy(an,a) ]
Lemma 189. Let E be an ordered Abelian group.

Let ® be a fitting uniformity on E.
Let L be a lattice, and let p: L — E be a complete valuation.

Let a € L and let a1,a9,... be a sequence in L. We have:
ai,asg, ... p-converges toa  =—>  ai,as,... weakly p-converges to a.
Proof. Let € € ® be given. To prove that a1, as,... weakly @-converges to a we

must find an N € N such that 0 € d,(an,a) for all n > N.
To find such N takes some preparation, so bear with us.

Since ai,as,... @-converges to a, i.e., ai,a,as,a,... is p-convergent, we know
that ai1,a,as,a,... is upper ¢p-convergent. That is, we know the following exists.
u = AyV,sy pl@aVanV:---Vay,) (72)

In particular, we see that for each N € N, the sequence
aVany <aVanyVanyr < ---

is p-convergent (in the sense of Definition B4]). Since ¢ is complete, we see that
an =\, >y 0V ay exists in L and that p(ay) =V, sy elaVanV---Va,). Now,
note that we can phrase Statement (72)) as u = A yo(an).

Since a1, as,... p-converges to a, we know that the sequence ai,a,as,a,... is
lower ¢-convergent. That is, the following exists.
L= vN/\nZN plaNany A+ Nay) (73)

In particular we see that for each N € N the sequence
aNany > aNany NaNy1 = ---
is -convergent. As before, ay := />y a A an exists, and £ =\ yp(ay).
Now, note that for each N € N and n > N we have
ay < aNa, < aVa, < ay.

In particular, we have the following inequalities.

play) < planan) < plaVan) < @@an). (74)

Recall that we want to prove (for some N) that 0 € dy,(a, a,). That is, we must show

that o(aAay,) € (aVay,) (see Definition [[6§(viii)). To prove this it suffices to show

that ¢(ay) € p(@n) as we can see from Statement (74 (see Definition [[6§(iv))).
So to complete the proof of this lemma, we need to find an N € N with

play) € p(@n).

Since a1, a,as,a,... is p-convergent, we know that u = ¢. Now, recall that we
have u = A ye(an) and £ = A yp(@n). Determine an N with

play) &2 £ and  u &2 g(an)
using Definition [6§(vi)| and Lemma [[7I[x)] Hence we see that ¢(ay) € ¢(an). O

Example 190. Let ¢ be a complete valuation. We know that ¢-convergence im-
plies weak p-convergence (see Lemma[I88). The reverse implication does not hold.
Indeed, consider the Lebesgue integral ¢, : Frz — R and the sequence f1, f2,... of
functions on R given by f, = % “1,n+1)- Note that

o (f,0) = @c(fal) = 2.
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So we see that f1, fa2,... weakly ¢ -converges to O.

However, we prove that the sequence fi, f2,... does not ¢,-converge to 0. In-
deed, assume (towards a contradiction) that f1, fa, ... does ¢ -converge to 0. Then
f1, f2,... is pr-convergent. So in particular fi, fa,... is upper @,-convergent (see

Definition (). So we know that the following exists.

(pﬁ‘mnfn = /\anZN @L(fN \/"'\/fn)

Now, note that any N € Nand n > N we have fy V---V f, = fv + -+ fn, SO

P(fN V-V fa) = eo(fn)+-+ec(fa) = F+-+ 3

So we see that ) % =V, ¢c(fiV---V fn), which is absurd. Hence fi, f2,... does
not ¢r-converge to 0.

Let ¢ be a complete valuation. If aq,aq,... weakly @p-converges to a, then
ai, az, ... might not p-converge to a (as we saw in Example[I90). However, there is
always a subsequence of a1, as, . .. which does p-converge to a (see Proposition[T192).
To prove this, we need a lemma.

Lemma 191. Let E be an ordered Abelian group.
Let ® be a fitting uniformity on E.
Let L be a lattice, and let p: L — E be a valuation.

Let a € L and let a1,a9,... be a sequence in L that weakly @-converges to a.
Assume that )", dy(a,an) = Vy 22[:1 dy(a,an) exists.

Then ai,as2,... p-converges to a.

Proof. To prove that ay,as,... p-converges to a, we must show that a1, a,as,a,...

is ¢-convergent (see Definition [67]). For this, we must show that the following exist,

W im AV #laVay Ve Van)
£i= VyAoy ¢l Aay A+ A )
and we must prove that / = u.

Let N € N be given. We prove that \/, -y ¢(aVan V---Va,) exists. Let us
write aj, := aVan V---Va, for brevity. To prove that \/, 5 v ¢(a;,) exists, we want
to use the fact that E is R-complete (see Proposition [[74). So the task at hand is
to study given n > N the value ¢p(a;,,,) — ¢(a,). Note that

Py = $(@) = o, ) = Ayl WV anss, dyVa),  (75)
since a},, 1 = a,, V apq1 and a;, = a;, V a (as a < a},). By Lemma 23] we have
do(al, Vant1, apVa) < dy(ant,a). (76)
So if we combine Statement (7)) and Statement (76l we get
plany) = ela,) < deplanya,a). (77)

Recall that we have assumed that )" d,(an,a) exists. From this, Statement (1),
and the fact that £ is R-complete it follows that \/, - y ¢(a;,) exists.

We prove that u := Ay V,>n ¢(@VanyV---Va,) exists. Again we use the fact
that F is R-complete: it is sufficient to prove that {y — {nvt1 < dy (a,an) where

= Vo 9laVan Ve Va),
Let n € N be given. It is useful to begin by considering the value p(a’y) — ¢(aly, )
where af; ;= aVay V---Va, for all N <n. We obtain
play) —play ) < dy(a,an)

using a similar reasoning as before. Written differently, we have

plavVanV---Va,) < dy(a,an) + elaVaniiV---Vay)
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for all N € N and n > N. This implies
VnZN plaVanV---Va,) < dy(a,an) + elaVaniiV---Vay)
< dy(a,an) + Vosnyr e@aVanigr Voo Vag).
Or in other words, £y < dg,(a, an) + Env+1. Hence we have proven:
u = AyV,sy pl@aVanV---Va,) exists.
Of course, the above argument can be adapted to yield:

= VyA.sy planany A---ANay)  exists.

It remains to be shown that £ = u. Let ¢ € ® be given. Since reader can easily verify
that £ < u, to prove that ¢ = wu, it suffices to show that £ u (see Definition [[68(v)).
Let NV € N be given. Note that we have the following inequalities.

Nosny planan A--Nap) < £ < u <\ syplaVayV:--Vay).
So to prove £ e u, it suffices to show that for some N (see Definition [6§(iv))),

Nosn planan A-Nap) e Vosy plaVanV---Vapy). (78)
Since Y, dy(a,ay) exists, we can find an N € N such that (see Lemma [7I[x))
0 €/a dy(a,an) + -+ + dy(a,an) (n > N). (79)

We will prove that Statement (78) holds for this N. Since A, 5 x ¢(aranA---Nay)
and VnZN plaVanV---Vay) exist, we can find n > N such that

Nosn planan A= Nap) Efa plahan A+ Aay)
plaVanV---Van) €4 V,syelavVanV:--Vapy).
So to prove that Statement (8] it suffices to show that
olanan A+~ Nap) €2 laVayV---Vapy). (80)
Note that we have the following inequalities.
olanan N~ Nap) < pla) < plaVayV--Vay).
So to prove that Statement (80) holds, we will show that
olaNany A~ Nap) €4 @la) €4 plaVanV---Vay). (81)
Now, note that vteration of Lemma [24] yields
planan AN Nay) —pla) = de(ahanA---ANap, a)
do(aNan A---Nan, aNaN---Na)
< dy(an,a) + -+ + dy(an,a).
So by Statement (79) and Definition we get
olaNan N+~ Nap) €4 @(a).
Using a similar argument, we obtain
pla) €4 @laVanV:---Vay).
So we have proven Statement (RI]) and thereby completed the proof. (I

Proposition 192. Let E be an ordered Abelian group.

Let @ be a fitting uniformity on E.

Let L be a lattice, and ¢: L — E a valuation.

Let ay, a9, ... be a sequence in L that weakly p-converges to some a € L.
Then: there are j1 < jo < --- in N such that aj,,a;,,... p-converges to a.
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Proof. Tt suffices to find j; < jo < --- in N such that >, d,(a,a;,) exists. Indeed,

then we have a;,, a;,, ... weakly ¢-converging to a since a1, as, ... p-converges to a.
So by Lemma [I91 we a;, , aj,, ... @-converges to a, as we must prove.
Let €,¢€5,... be an enumeration of ®. Pick €1,¢€2,... in ® such that for all n,
en < & and Ent1 < Enf2.
Note that for all N € N and n > N + 1 we have (see Notation [I72]),
EN41+ - -+en < EN. (82)

Pick j; < jo < --- in N such that for all £ € N,
0 ept1 dyla,aj,).
Then by Statement (82) and Definition foral Ne Nandn> N,
0 env dy(a,ajy) + -+ + dy(a,a;,). (83)

Recall that we need to prove that ), d,(a,a;, ) exists. Let € € ® be given. By
Lemma it suffices to find an N € N such that for all n > N,

0 ¢ dy(a,ajy) + -+ + de(a,a;,). (84)
Since €],¢€h, ... enumerates ® we can find an N € N such that ¢’y = €. Recall that
e < ey <en. So Statement (84) follows directly from Statement (83). O

Lemma 193. Let E be an ordered Abelian group.

Let ® be a fitting uniformity on E.

Let L be a lattice, and ¢: L — E a valuation.

Let a1,a9,... be a sequence in L which weakly p-converges to some a € L

For each N € N, let bY b)Y, ... be a sequence in L which weakly p-converges to ay .
Then there are j; < jo < --- in N such that b} | b? weakly p-converges to a.

Jir 7g22

Proof. To find a suitable sequence j; < jo < --- we need some preparation.
We know that @ is countable (see Definition [I68]). Let €/, €5, ... be an enumer-
ation of ®. Define a sequence €1 > g9 > --- in ® (see Notation [(ii)|) by

€1 = & and Entl = EnNEpyq.

Note that we have ¢, < &/, for all n.
Let N € N be given. Since bl¥,bY,... weakly ¢-converges to ax, we know by
Definition [I88 that there is an M € N such that d,, (bY ay) ey 0 for all n > M.
Now, choose j; < jo < --- such that dv(bﬁ,a]v) en 0 for all n > jy.
We will prove that b}l, b?z, ... weakly (p-converges to a. Let € € ® be given. We
must find an n € N such that d, (bﬁv,a]v) e 0 for all N > n (see Definition [I88]).
Find an k € N such that /2 = ¢. (Recall that ¢/,¢5,... enumerates ®.)

Pick n > k such that d,(an,a) €/2 0. We prove that d (b} ,a) 0 for all N > n.
Let N > n be given. We have dg,(bN an) en 0 by choice of jn. So in particular

N>
dy (b, an) /2 0 since /2 = &}, > e, > en > €.
Further, we have d(an,a) €/2 0 since N > n.

So by property of a fitting uniformity (see Definition [IG8) we have
dgg(bj-\]fv,aN) + dy(an,a) €2 dy(an,a) €2 0.
So by property of a fitting uniformity we have
dgg(b;\jv,a]v) + dy(an,a) € 0.
Now, by points and of Lemma 2T we get
0 < dp(b).,a) < dp(bY ,an) + dy(an,a).

IN?

So by property [(iv)| we get dy (b}, a) € 0. O
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Lemma 194. Let E be an ordered Abelian group.
Let @ be a fitting uniformity on E.
Let L be a lattice, and ¢: L — E a valuation. Let a,b € L be given.

Let a1,a9,... be a sequence in L which weakly p-converges to a.
Let by, ba, ... be a sequence in L which weakly p-converges to b.
Then ay A by, as Aba, ... weakly p-converges to a A\ b,
and a1 V by, as V ba, ... weakly p-converges to a \V b.
Proof. We will only prove that a; A by, as A bs, ... weakly p-converges to a A b.
Let € € ® be given. To prove a1 A by, as A ba, ... weakly p-converges to a A b,
we must find an N € N such that
0 ¢ dp(anAbp, aND) (n > N). (85)
Since a1, aqg, ... weakly p-converges to a and by, bs, ... weakly p-converges to b we
know that there is an N € N such that
0 ¢/2 dy(an,a) and 0 €/2 dy(bn,b) (n> N). (86)

We will prove that Statement (85) holds for this N.
To this end, note by LemmalZ[Eﬂ and Lemma [24] we have, for all n € N,

0 < dy(anAby, and) < dy(an,a) + dy(by,b)
So by property [(iv)] of @ (see Def. IG8) to prove (85) it suffices to show that
0 ¢ dy(an,a) + dy(by,b) (87)
for any n > N. By Statement (86) and property of &, we get
0 €2 dy(an,a) €2 dy(an,a) + dy(by,b)
for all n > N. So we see that Statement (87) holds by property of @. (I

Example 195. Given Lemma 8| one might surmise that Lemma [[94] holds if one
replaces “weakly ¢-converges” by “p-converges”. This is not the case, as we will
show.

Recall that Lebesgue integral ¢, : Fy — R is a valuation. For all n € N, define

fn = (_1)71 : % : ]-[n,nJrl]-

Then f, € F for all n, and the sequence fi, fa,... @c-converges to 0. As one
expects, the sequence — f1, —f2, ... also p-converges to 0. However, the sequence
fiv(=f1), faV(=f2), ...

does not p,-converge to 0, because f, V (—f,) = % - L[, n41] (see Example [[90).

Lemma 196. Let E be an ordered Abelian group.

Let ® be a fitting uniformity on E.

Let VO L% E be an extendible valuation system. Let a € L be given.
Then there is a sequence ai,aq,... in L that weakly p-converges to a.

Proof. By Corollary we know that L = IIy, L. So it suffices to prove that the
following statement holds for every ordinal number a.

Let a € II,L U X, L be given.
There is a sequence aj,ag, ... in L that p-converges to a.

Let us name the above statement P(«). We prove Yoo P(a) with induction.
Clearly, P(0) holds, since IIyL = L = ¥ L.
Let o be an ordinal such that P(«) holds. We prove that P(« + 1) holds. Let
a € a1 LUX441L be given. We must find a sequence in L that p-converges to a.
Assume that a € 11,41 L. There is a ¥, p-convergent sequence by > by > --- in
Yo L such that A,b, = a. In particular, ay,as,... P-converges to a. Since P()
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holds, we can find for each N € N a sequence bY,bY, ... in L that P-converges

to ay. Then by Lemma [[93] there are j; < jo < --- in N such that bjll, bi,

p-converges to a. So we see that there is a sequence in L that p-converges to a.
By a similar reasoning we see that if @ € ¥,41L then there is a sequence in L

that p-converges to a. Hence P(a + 1).

Let A be a limit ordinal such that P(«) holds for all @« < A. We must prove
that P(\) holds. Let a € IIyL U X)L be given. We must find a sequence in L
that p-converges to a. By definition of IIy L and ¥ L, there is an o < A such that
a € II,L UZX,L (see Definition [[3]). Since we know that P(«) holds, there must
be a sequence in L that P-converges to a. Hence P(X). (I

Corollary 197. Let E be an ordered Abelian group.
Let ® be a fitting uniformity on E. _
Let V. O LS E be an estendible valuation system. Let a,b € L with a < b be

given.
Then there is a sequence ai,aq,... in L that weakly p-converges to a,
and there is a sequence by, ba, ... in L that weakly ©-converges to b,

such that a, < b, for alln € N.

Proof. Let a,b € L with a < bbe given. Using Lemma[96lfind a sequence a}, aj, ...

in L that weakly p-converges to a and find a sequence b],b),... in L that weakly
p-converges to b. Consider the sequences aq, as,... and by, bs,... in L given by
a, =a, \Nb, and b, :=a, VD, (n € N).

Clearly a,, < b, for all n € N. Moreover, by Lemma [[94] we know that ai,as, ...

weakly @-converges to a = a A b and weakly by, bs,... P-convergesto b=aVb. 0O

Proposition 198. Let E be an ordered Abelian group.
Let ® be a fitting uniformity on E.
Let VO L% E be an extendible valuation system.

(i) Given a € L, there is a sequence ay,as, ... in L which p-converges to a.
(ii) Let a,b € L with a < b be given.

There s a sequence a1, as, ... in L which p-converges to a, and

there is a sequence by, bs, ... in L which p-converges to b, such that

< b, (n €N).

an

Proof. Combine Lemma [[96, Corollary [[97] and Proposition O

Theorem 199. Let E be a lattice ordered Abelian group.

Let @ be a fitting uniformity on E.

LetV O L 2y E be an extendible valuation system.

Let v: C — E be a complete Hausdorff valuation.

Let f: L — C be an order preserving map such that ¥ o f = .

Then there is a unique order preserving extension g: L — C of f such thatog = 5.

f\
Y\ g
w\\\
E<v=C
P
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Proof. (Uniqueness) Let g1, g2: L — C be order preserving extensions of f such
that 9 o g; = . We prove that g; = go. Let a € L be given. By Proposition [98
there is a p-convergent sequence ay,as,... in L which p-converges to a.

We must show that g1(a) = g2(a). To this end we prove that f(a1), f(az), ...
weakly -converges to g;(a). Then g1(a) = g2(a) because ¢ is Hausdorff.

Let i € {1,2} be given. Note that g;(a,) = f(ay) because g; extends f. So
we must prove that g;(a1), gi(a2), ... weakly ¥-converges to g;(a). Let € € ® be
given. We must find an N € N such that

dy(gi(an), gi(a)) € 0 (n = N). (88)
Since aq, a9, ... p-converges to a we know that aj,as, ... weakly p-converges to a
so we know there is an N € N with
dg(an,a) € 0 (n > N).

We will prove that Statement (88) holds for this N.
Let n > N be given. Since g is order preserving, we have
gi(an Na) < gi(an) A gi(a) gi(an) vV gi(a) < gi(anVa).

In particular (recall that ¢ o g; =

)5

dy(gi(an), gi(a)) = ¥(gi(an) Vv gi(a)) — ¥(gi(an) A gi(a))
< w(gz(an\/a - "/’(gi(an/\a)) (89)
= Plan Va) — Plan Na) = dg(an,a).

So we know that 0 € dg(a,,a) and we have the following inequalities.

0 < dw(gz(an)a gz(a’)) < d@(anva)
Hence 0 ¢ dy(gi(an), gi(a)) by property of a fitting uniformity. So we have
shown that Statement (88) holds. Thus, g1 = go.

(Existence) We will prove the following statement.

Let a € L be given. There is a unique b € C such that for
every sequence ai,ds,... in L that p-converges to a, we (90)
have f(a1), f(az2), ... ¥-converges to b.

Of course, we will later define g: L — C by g(a) = b.

Let a € L be given. For each i € {1,2}, let b; € C and a?,ab,... € L be given,
such that ai,ab, ... P-converges to a, and f(a!), f(ab),... ¥-converges to b;.

We must prove that by = by. Let € € ® be given. Since ¢ is Hausdorff, it suffices
to show that 0 & dy(b1,b2) (see 22)).

Note that by points [(1)| and of Lemma [2T] we have

0 < dulbibs) < dulby, F(a)) + du(f(ah), F(@2) + du(F(a3), bo).
So to prove 0 € dy(b1,b2), it sufficient to find N € N such that for all n > N the
following statement holds (see Definition [[68] points and .
0 €/1 dy(by, f(a))), and
0 &/a dy(f(an), flay)), and
0 &4 dy(f(ay), ba).

Recall that f(at), f(ab), ... t-converges to b; for all i. Hence f(a?), f(ab), ...
weakly 1-converges to b; for all i. So we know there is an N € N such that
0 /4 dy(f(al), b;) for all n > N and i.
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It remains to be shown that there is an N € N such that 0 €/4 dy(f(a)), f(a?))
for all n > N. To this end, note that f is order preserving and that o f = ¢. So
with a similar reasoning as before (see Statement (89)), we see that

dy(flay), fa7)) < dplay,ap).
So to complete the proof Statement (@0) it suffices to find an N € N such that

0 €1 dy(al,a?) (n> N). (91)

n»-'n

Note that by points |(i)| and of Lemma 2] we have

0 S d@(aiva%) S dtp(a’}wa’) + dtp(ava’%)'
Since the sequence a},aj, ... P-converges to a (and hence also weakly) we can find
an N € N such that 0 €/4 d,,(a’,,a) for alln > N and i € {1,2}.

So by points and of Definition we see that Statement (QT])
holds.

Hence we have proven Statement (@0). So we now know there is a unique
map g: L — C such that for every a € L and every sequence ai,as,... in L
that p-converges to a we have f(a1), f(az2), ... ¥-converges to g(a).

To complete the proof of this theorem, we show that g extends f, we show that
g is order preserving, and that ¢ o g = .

Let a € L be given. To prove that g extends f we show that g(a) = f(a). Note
that a,a, ... P-converges to a. So by definition of g we know that f(a), f(a), ... ¥-
converges to g(a). But f(a), f(a), ... ¥-converges to f(a) too, and 7 is Hausdorff.
So we see that f(a) = g(a).

Let a,b € L with a < b be given. To prove that g is order preserving we must
show that g(a) < g(b). By Proposition we can find a sequence a1, as,... in L
that p-converges to a and a sequence by, ba, ... in L that p-converges to b such that
we have a,, < b, for all n € N. Now, note that by Lemma [[94] we know that

flar) A f(br), flaz) A f(b2), ... weakly 1-converges to  g(a) A g(b).

Let n € N be given. Since f is order preserving and a,, < b,, we have f(a,) < f(bn)
and so f(an) A f(bn) = f(an). Hence f(a1), f(az), ... weakly i-converges to both
g(a) and g(a) A g(b). So we see that g(a) = g(a) A g(b) and thus g(a) < g(b).

Let a € L be given. We show that ¢(g(a)) = P(a). Find a sequence ay,as, ...
in L that P-converges to a (see Lemma [T96).

Recall that E is a lattice ordered Abelian group. By Theorem [63] we see that
@(a) = hmn‘p(a’n)' (92)

By definition of g we have f(a1), f(az2), ... ¥-converges to g(a). So by Theorem [63]
we have ¥(g(a)) = lim, ¥(f(an)). But ¥(f(a,)) = ¢(ay) for all n € N, so we have

P(f(a)) = limup(an). (93)

If we combine Equalities ([@2) and ([@3]) we get B(a) = ¥(f(a)). O

Theorem 200. Statement (1) holds.
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Proof. We only give hints and leave the details to the reader. With the notation of
Subsection apply Theorem (I99)) to the following situation.

Fxxy

\\\\g

Pxxy >

Now, note that G is a complete valuation which extends Fx. O
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10. EPILOGUE

Starting from the similarity between the Lebesgue measure and the Lebesgue inte-
gral as shown on page[lT have tried to rebuild a small part of the theory of measure
and integration in a more general setting. When I look back at the result I am most
pleased that it was possible to introduce the Lebesgue measure and the Lebesgue
integral with such natural and old primitives. Indeed, completeness and convexity
together is nothing more than the method of exhaustion used by the ancient Greeks
to determine the area of the disk (see title page).

The price for simple primitives seems to be that much more effort is required to
prove even the simplest statements, as attested by the size of this text. Of course,
the number of pages could be greatly reduced if we worked with R instead of any F,
but even then I doubt that the approach taken in this thesis would be suitable for
a first course on the Lebesgue measure and the Lebesgue integral.

Whether the theory in this thesis will bear any fruit I cannot tell, but nevertheless
I am content, because I have enjoyed writing it, and I hope that you have enjoyed
reading it as well.
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APPENDIX A. ORDERED ABELIAN GROUPS

In this thesis we do not only consider R-valued measures and integrals, but also F-
valued ones, where E is an ordered Abelian group. Since we do not expect reader to
be familiar with this particular generalisation of R, we have collected the relevant
definitions and basic results in this appendix.

Definition 201. An ordered Abelian group E is a set that is endowed with an
Abelian group operation, +, and a partial order, <, such that

r <y = wt+zx < w+y (w,z,y € E).
Examples 202. (i) The integers, Z, the rationals, Q, and the reals, R, en-

dowed with the usual addition and order are ordered Abelian groups.
(ii) Let Q° be the set of rational numbers ¢ with ¢ > 0. Order Q° by

g xr < dneN[g-n=r].

Then Q° with the usual multiplication is an ordered Abelian group.

(iii) Let F; and FEy be ordered Abelian groups. Then F; x Es with pointwise
order and pointwise group operation is an ordered Abelian group.

(iv) Consider R? with the pointwise addition. By point R? with the usual
order is an ordered Abelian group. Further, R? with the lezicograpgic order,

1 <Yy oOr
(z1,22) < (y1,42) = vi=y; and 3 <yp’
is also an ordered Abelian group, called the lexicographic plane, L.

Let us prove some simple statements concerning ordered Abelian groups.

Lemma 203. Let E be an ordered Abelian group. Then, for x,y,w € E,
z <y =5 w4z < w+y.

Proof. “=>" By the definition of ordered Abelian group.
“—="Tfw+z<w+y,thener = —w + (w+z) < —w+ (W+y) = v. O

Lemma 204. Let E be an ordered Abelian group. Let A C E and x € E be given.
(i) If A has an infimum, then so has v+ A :={x +a: a € A}, and
ANz+A4 = 2+ NA
(i) If A has a supremum, then so has x + A, and
Vz+A4 = z+ VA

Proof. Tt suffices to prove that the map E — FE given by u — x + u is an order
isomorphism. This follows easily using Lemma [203] (]

Lemma 205. Let E be an ordered Abelian group. Then, for x,y € E,
<y <= -z2>-y

Proof. “=" lfx <y, then —y = (—z—y) + 2 < (—z—y) + y = —x.
“e="1f —y < —x, then x = —(—z) < —(—y) = y by “=". |

Lemma 206. Let E be an ordered Abelian group, and A C E.
(i) If A has an infimum, then —A := {—a: a € A} has a supremum, and
—NA =V —A.
(i) If A has an supremum, then —A has an infimum, and
-VA = N\ —A.

Proof. The map E — E given by u — —u is an order reversing isomorphism. [
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We use the following lemma regularly.

Lemma 207. Let E be an ordered Abelian group.
Let x1 < a9 < --- be from E such that anEn exists.
Let y1 <yp < --- be from E such that \/, yn exists. Then

(Vazn) + (Vo) = Vi ok + vk (94)
Proof. By Lemma we know that
(Vazn) + (Vitm) = Vi Tn + Ym-
So to prove Equation (@4]) holds, it suffices to show that
Vi Tn+Ym = Vi T + yg.
That is, writing z := \/mm ZTp + Ym, we must show that z is the supremum of
S i ={z1+y, x2+y2, ... }

That is, we must show that z is the smallest upper bound of S.
Given s € S, we have s = x; + yi for some k € N, and

T +yp < \/mm T+ Ym = 2.

So we see that z is an upper bound of S.
Let u € E be an upper bound of S. To prove that z is the smallest upper bound
of S, we must show that z < u. It suffices to prove that, for all n,m € N,

T +ym < u. (95)
Let n,m € N be given, and define k := max{n,m}. Then we see that
Tn+Ym < Tk tyr < u.
Hence Statement (@5]) holds, and we are done. ]

Of course, we have a similar statement concerning infima.

Lemma 208. Let E be an ordered Abelian group.
Let x1 > x9 > -+ be from E such that /\nzn exists.
Let y1 > yo > -+ be from E such that /\nyn exists. Then

(Apzn) + (Anyn) = Npzr + k-
Proof. Similar to the proof of Lemma O
We will occasionally use the following notation.
Definition 209. Let E be an ordered Abelian group. We write
Et .= {a€E: a>0}, E™ :=={a€E: a<0}.
Let us now turn to a special class of ordered Abelian groups.

Definition 210. A lattice ordered Abelian group is an ordered Abelian group F,
such that the order < makes E a lattice, i.e., each pair x,y € F has an infimum,
x Ay, and a supremum, x V y.

Examples 211. (i) The sets Z, Q, and R are lattices under the usual or-
der. The supremum of two elements is their maximum, the infimum is the
minimum.

(ii) More generally, any partially ordered set E that is totally ordered, i.e.,
either <y or y<zx forallz,yecF,

is a lattice. The supremum of z,y € F is simply the maximum of x and y,
the infimum x and y is the minimum of x and y.
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(iii) The space L (see Example is totally ordered and hence a lattice.
(iv) The set Q° ordered by < (see Examples is a lattice.
Let m,n € Q° be given. If m,n € Z, then the supremum of m and n is
the least common multiple of m and n, and the infimum of m and n is the
greatest common divisor of m and n.

The following result is quite suprising.

Lemma 212. Let E be a lattice ordered Abelian group. Then we have
aANb+aVb=a+b (a,b € E).
Proof. aVb—a—-b=(a—a—-b)V(b—a—0)=(=b)V(—a) =—(aAb). O
Examples 213. (i) Let 2,y € R be given. Then Lemma 2T2] gives us
x4y = min{z,y} + max{z,y}.
Of course, this is trivial.
(ii) Let m,n € Z with m,n > 0 be given. Then Lemma 2T2] gives us
m-n = ged{m,n} - lem{m,n}.
The above equality is more difficult to derive directly.
We now turn to ‘complete’ ordered Abelian groups.
Definition 214. Let E be an ordered Abelian group.
We say E is 0-Dedekind complete if the following statement holds.

Let x1,22,... be a sequence in F.
Assume 1, z9,... has an upper bound.
Then \/,z,, exists.

Examples 215. (i) The ordered Abelian group R is o-Dedekind complete.
(ii) The ordered Abelian Q is not o-Dedekind complete.
(iii) The lexicographic plane L (see Examples is not o-Dedekind com-
plete.
Indeed, consider the following elements of L.

(0,0) < (0,1) < (0,2) < - < (1,0)
If I were o-Dedekind complete, then S := {(0,n): n € N} would have a
supremum; we will prove that S does not have a supremum.

Suppose (towards a contradiction) that S has a supremum, (z,y).
Then we have (0,n) < (x,y) for all n € N. In other words, for all n € N,

0<z or (0=2z and n<y).

Hence 0 < x, because there is no y € R such that n <y for all n € N.

But then (z,y — 1) is an upper bound of S as well.

Since (z,y) is the smallest upper bound of S, we have (z,y) < (z,y — 1).
So y <y — 1, which is absurd. Hence S has no supremum.

Remark 216. The requirement in Definition 2T4 that x1, s, . .. has an upper bound
is essential to make the notion of o-Dedekind completeness non-trivial.

Indeed, if E is an ordered Abelian group in which every sequence x1, xa,... has
a supremum \/, =, then we have £ = {0} !

Let a € E be given. We prove that a = 0. Note that the sequence

1-a S 2.a S 3-a S
has a supremum, \/,, n - a. Note that by Lemma 204 we have

V,n-a)—a =V, (n-1)-a =\, n-a
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So we see that b —a = b, where b:=\/,, n-a. Hence a = 0.
Let a € E be given. We must prove that a = 0. Note that by Lemma 212]

a =0Aa+ 0Va. (96)

We have 0 Aa = 0, since 0 Aa € ET. We also have 0V a =0, because 0 Va € E~,
so —(0Va) € Et,s0 —(0Va)=0, and thus 0V a = 0.
So we see that a = 0 by Equation ([@6]). Hence E = {0}.

Remark 217. Let E be an ordered Abelian group.
Using the order reversing isomorphism z — —z, the reader can easily verify that
E is 0-Dedekind complete if and only if the following statement holds.

Let x1,22,... be a sequence in F.

Assume z1, s, ... has a lower bound.
Then A, x, exists.
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