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Abstract. Measure and integral are two closely related, but distinct objects
of study. Nonetheless, they are both real-valued lattice valuations: order pre-
serving real-valued functions ϕ on a lattice L which are modular, i.e.,

ϕ(x) + ϕ(y) = ϕ(x ∧ y) + ϕ(x ∨ y) (x, y ∈ L).

We unify measure and integral by developing a theory for lattice valuations.
We allow these lattice valuations to take their values from the reals, or any
suitable ordered Abelian group.
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Preface

In the summer of 2009 Bas Westerbaan and I worked out an overly general approach
to the introduction of the Lebesgue measure and the Lebesgue integral with the
help of dr. A.C.M. van Rooij. The theory that is presented in this thesis is based
on the work done in that summer.

Since I was fortunate enough to be offered a Ph.D.-position, this thesis was
written under time constraints. Hence the text is not nearly as polished as I would
like it to be, and the proofs of some statements have been left to the reader. I hope
the reader will be able to ignore the rough edges and enjoy this fresh view on the
old subject of measure and integration.

I would like to thank all my teachers for showing me the beauty of mathematics.
In particular, I thank dr. Mai Gehrke for showing me its elegance, dr. Wim Veldman
for showing me its content, and dr. Henk Barendregt for showing me how it is
written. Furthermore, I am most grateful to dr. A.C.M. van Rooij for his never
relenting willingness to answer my questions and note my errors.
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The theory of integration, because of its central rôle in
mathematical analysis and geometry, continues to afford

opportunities for serious investigation.
— M.H. Stone, 1948, [4]
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1. Introduction

There are many ways (some more popular than others) to introduce the Lebesgue
measure and the Lebesgue integral. For the purposes of this introduction, we define
the Lebesgue measure and integral in such a way that the similarity between them
is obvious. This similarity is the basis of this thesis. We leave it to the reader to
compare the definitions below to those that are familiar to him/her.

Definition 1. The Lebesgue measure µL : AL → R is the smallest1 µ : A → R

where A is a subset of ℘(R) that has the following properties.

(i) Let a, b ∈ R with a ≤ b. Then [a, b] ∈ A and (a, b) ∈ A, and

µ( [a, b] ) = µ( (a, b) ) = b− a.

(ii) (Monotonicity) Let A,B ∈ A. Then µ(A) ≤ µ(B) when A ⊆ B.
(iii) (Modularity) Let A,B ∈ A. Then A ∩B ∈ A and A ∪B ∈ A, and

µ(A ∩B ) + µ(A ∪B ) = µ(A) + µ(B).

(iv) (Π-Completeness) Let A1 ⊇ A2 ⊇ · · · from A be given.
Assume that the set {µ(A1), µ(A2), . . . } has an infimum,

∧

nµ(An).
Then we have

⋂

nAn ∈ A. Moreover,

µ(
⋂

nAn ) =
∧

n µ(An).

(v) (Σ-Completeness) Let A1 ⊆ A2 ⊆ · · · from A be such that
∨

nµ(An) exists.
Then we have

⋃

nAn ∈ A. Moreover,

µ(
⋃

nAn ) =
∨

n µ(An).

(vi) (Convexity) Let A ⊆ Z ⊆ B be subsets of R.
Assume that A,B ∈ A and µ(A) = µ(B).
Then we have Z ∈ A and µ(A) = µ(Z) = µ(B).

Definition 2. The Lebesgue integral ϕL : FL → R is the smallest ϕ : F → R

where F is a subset of [−∞,+∞]
R
that has the following properties.

(i) Let a, b, λ ∈ R with a ≤ b. Then λ · 1[a,b] ∈ F and λ · 1(a,b) ∈ F , and

ϕ(λ · 1[a,b] ) = ϕ(λ · 1(a,b) ) = λ · (b− a).

(ii) (Monotonicity) Let f, g ∈ F . Then ϕ(f) ≤ ϕ(g) when f ≤ g.
(iii) (Modularity) Let f, g ∈ F . Then f ∧ g ∈ F and f ∨ g ∈ F , and

ϕ( f ∧ g ) + ϕ( f ∨ g ) = ϕ(f) + ϕ(g).

(iv) (Π-Completeness) Let f1 ≥ f2 ≥ · · · from F be such that
∧

nϕ(fn) exists.
Then we have

∧

nfn ∈ F . Moreover,

ϕ(
∧

n fn ) =
∧

n ϕ(fn).

Here
∧

nfn is the infimum of { f1, f2, . . . } in [−∞,+∞]
R
; more concretely,

it is the pointwise infimum, i.e., (
∧

nfn)(x) =
∧

nfn(x) for all x ∈ R.
(v) (Σ-Completeness) Let f1 ≤ f2 ≤ · · · from F be such that

∨

nϕ(fn) exists.
Then we have

∨

n fn ∈ F . Moreover,

ϕ(
∨

n fn ) =
∨

n ϕ(fn).

(vi) (Convexity) Let f ≤ z ≤ g be [−∞,+∞]-valued functions on R.
Assume that f, g ∈ F and ϕ(f) = ϕ(g).
Then we have z ∈ F and ϕ(f) = ϕ(z) = ϕ(g).

1“Smallest” with respect to the following order. We say that µ1 is extended by µ2 where
µi : Ai → R and Ai ⊆ ℘(R) provided that A1 ⊆ A2, and µ1(A) = µ2(A) for all A ∈ A1.
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In this thesis we present an abstract theory based on the properties (Monotonicity),
(Modularity), (Π-Completeness), (Σ-Completeness) and (Convexity) and we try to
fit some of the results of measure and integration theory in this framework.

1.1. Valuations. We begin by considering (Monotonicity) and (Modularity).
Maps with these two properties are called (lattice) valuations. More precisely,

let L be a lattice, and let E be an ordered Abelian group (e.g. R, see Appendix A).
A map ϕ : L→ E is a valuation if it is order preserving and modular, i.e.,

ϕ(x) + ϕ(y) = ϕ(x ∧ y) + ϕ(x ∨ y) (x, y ∈ L).

Of course, the Lebesgue measure µL and the Lebesgue integral ϕL are valuations,
and there are many more examples. We study valuation in Section 2.

1.2. Valuation Systems. Let us now look at (Π-Completeness). For the Lebesgue
measure it involves intersections, “

⋂

nAn”, i.e., infima in ℘(R). Similarly, for the
Lebesgue integral it involves pointwise infima, “

∧

nfn”, i.e., infima in [−∞,+∞]
R
.

In order to generalise the notion of (Π-Completeness) to any valuation ϕ : L → E
we involve a ‘surrounding’ lattice, V . That is, we will define what it means for an
object of the following shape to be Π-complete (see Definition 77).

V ⊇ L
ϕ−→ E

We call these objects valuation systems, and we study them in Section 4.
The Lebesgue measure and the Lebesgue integral give us valuation systems:

℘R ⊇ AL
µL−−→ R and [−∞,+∞]R ⊇ FL

ϕL−−→ R.

Of course these valuation systems are Π-complete by (Π-Completeness).
They are also Σ-complete, which is a generalisation of (Σ-Completeness).

Finally, (Convexity) can easily be generalised to valuation systems as well. We
will define what it means for a valuation system to be convex in Definition 82. We
study these convex valuation systems in Subsection 4.4.

Now that we have introduced the main objects of study, valuations and valuation
systems, let us spend some words on the theorems that we will prove.

1.3. Completion and Convexification. Recall that we defined the Lebesgue
measure µL as the smallest map µ : A → R that has properties (i)–(vi). It is
important to note that it is not obvious at all that such a map exists. While it is
relatively easy to see that if there is a map µ : A → R that has properties (i)–(vi),
then there is also a smallest one, it takes quite some effort to prove that there is
any map µ : A → R with properties (i)–(vi) to begin with.

One could call this statement the Extension Theorem for the Lebesgue measure.
Similarly, to define ϕL, we need an Extension Theorem for the Lebesgue integral.

We will generalise (a part) of these two theorems to the setting of valuations.
To see how we could do this, note that to prove the Extension Theorem for the
Lebesgue measure, one could take the following three steps.

(i) Find the smallest map µS : AS → R that has properties (i)–(iii).
This is not too difficult. Let S be the family of subsets of R of the

form [a, b] or (a, b) where a, b ∈ R with a ≤ b. Let AS be the set of all
unions of finite disjoint subsets of S, and let µS : AS → R be given by

µS( I1 ∪ · · · ∪ IN ) = |I1| + · · · + |IN |,
where I1, . . . , IN ∈ S with In ∩ Im = ∅ when n 6= m.

Of course, it requires some calculations to see that such a map µS exists,
and that µS will have the properties (i)–(iii) (see Example 10).
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(ii) Extend µS to the smallest map µS : AS → R that has properties (i)–(v).
This is the most interesting and the most difficult step. To give an idea

of how one could try obtain such µS, consider the following ‘algorithm’.




















Let µ : A → R be a variable. To begin, set µ := µS.
(∗) For all A1, A2, . . . from A do the following.

• If A1 ⊇ A2 ⊇ · · · and ∧

nµ(An) exists and
⋂

nAn /∈ A,
then add

⋂

nAn to A, and set µ(
⋂

nAn) :=
∧

nµ(An).
• If A1 ⊆ A2 ⊆ · · · and ∨

nµ(An) exists and
⋃

nAn /∈ A,
then add

⋃

nAn to A, and set µ(
⋃

nAn) :=
∨

nµ(An).

If µ was changed, repeat (∗).
There are many problems with this ‘algorithm’. Perhaps the most serious
problem is, loosely speaking, that the same set Amay be obtained in several
ways and it is not clear that µ(A) would be given the same value each time.

Note that the ‘algorithm’ resembles the definition of the Borel sets. In
fact, µS will be the family of all Borel subsets of R with finite measure.

(iii) Extend µS to the smallest map µL : AL → R that has properties (i)–(vi).
This is straightforward. Simply define AL to be the family of all subsets

of R that are ‘sandwiched’ between elements of AS, that is, all Z ∈ ℘(R)
for which there are A,B ∈ AS such that A ⊆ Z ⊆ B and µS(A) = µS(B).

Now, define µL : AL → R by µL(Z) = µS(A) for Z and A as above.

We have sketched how to get the Lebesgue measure µL : AL → R in three steps,

(i) //❴❴❴❴❴❴ µS

(ii) //❴❴❴❴❴❴ µS

(iii) //❴❴❴❴❴❴ µL.

We will generalise step (ii) and step (iii) to the setting of valuations. More precisely:

(i) Let V ⊇ L
ϕ−→ E be a valuation system. We will give a necessary and

sufficient condition, namely V ⊇ L
ϕ−→ E is extendible (see Definition 141),

for the existence of a smallest valuation ϕ : L→ E which extends ϕ where L
is a sublattice of V such that the valuation system V ⊇ L

ϕ−→ E is both
Π-complete and Σ-complete (see Lemma 142 and Proposition 148).
We will call ϕ the completion of ϕ (relative to V ).

(ii) Let V ⊇ L
ϕ−→ E be a valuation sytem. We will prove the following.

There is smallest valuation ϕ• : L• → E extending ϕ with L• a sublattice
of V such that V ⊇ L• ϕ•

−−→ E is convex (see Propisition 85).
Moreover, V ⊇ L• ϕ•

−−→ E is Π-complete and Σ-complete provided that
V ⊇ L

ϕ−→ E is Π-complete and Σ-complete (see Proposition 88).
We will call ϕ• the convexification of ϕ (relative to V ).

By the discussion above we see that the Lebesgue measure µL is the convexification
of the completion of µS relative to ℘(R):

µS
completion //❴❴❴❴❴❴❴❴❴ µS

convexification //❴❴❴❴❴❴❴❴❴ µL

Similarly, the Lebesgue integral ϕL is the convexification of the completion of ϕS

relative to [−∞,+∞]R, where ϕS : FS → R is the obvious valuation on the set of
step functions FS (see Example 15). So we get the following diagram.

ϕS
completion //❴❴❴❴❴❴❴❴❴ ϕS

convexification //❴❴❴❴❴❴❴❴❴ ϕL

Let us note that ϕS : FS → R will be the restriction of the Lebesgue integral to the
set FS of Lebesgue integrable Baire functions. We will not prove this.

We belief that the completion is the most important step, and that the convex-
ification is mere decoration. In line with this believe, we spend most words on the
completion, and we leave it to the reader to think about the convexification.
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1.4. Closedness under Operations. We have found an abstract method to get
the Lebesgue measure µL and the Lebesgue integral ϕL. However, such a method
is nothing but a curiosity if we cannot use it to derive some basic properties of µL

and ϕL. One such property might be:




If f, g ∈ RR are Lebesgue integrable,
then f + g is Lebesgue integrable,
and ϕL(f + g) = ϕL(f) + ϕL(g).

So, roughly speaking, ϕL is closed under the operation “+”. Instead of this, we will
prove that ϕS is closed under the operation “+”. We leave it to the reader to use
this to prove that the convexification of ϕS, i.e. ϕL, is closed under “+” as well.

More generally, in Section 6 we will prove some statements of the following shape.
If V ⊇ L

ϕ−→ E is a valuation system, and ϕ is closed under some operation in some
sense, then the completion ϕ is closed under the same operation as well.

1.5. Convergence Theorems. An important part of the theory of integration is
that of the convergence theorems. So we have studied whether these make sense
in the setting of valuations. We will show in Subsection 3.3 that it is possible to
formulate and prove the Lemma of Fatou and Lebesgue’s Dominated Convergence
Theorem for complete valuation systems. Interestingly, the surrounding lattice V
will play no role. This leads to the study of complete valuations (as opposed to
complete valuation systems), see Section 3 for more details.

1.6. Fubini’s Theorem. Another important part of the theory of integration is
Fubini’s Theorem. Unfortunately, it seems that that it not possible to make sense
of Fubini’s Theorem in the general setting of valuations.

Nevertheless, in Section 9 we will split the proof of Fubini’s Theorem for the
Lebesgue integral into two parts. The first part concerns step functions and is
specific to the Lebesgue integral, while the second part is a consequence of a general
extension theorem for valuations (see Theorem 199).

1.7. Extendibility. We have remarked that a valuation system V ⊇ L
ϕ−→ E has

a completion if and only if ϕ is extendible. As the reader will see in Subsection 5.5
the definition of “ϕ is extendible” is rather involved.

Fortunately, the situation is simpler for some choices of E. We say that E is
benign if for every valuation system V ⊇ L

ϕ−→ E we have that ϕ is extendible iff


















Let a1 ≥ a2 ≥ · · · in L with
∧

nϕ(an) exists be given.
Let b1 ≤ b2 ≤ · · · in L with

∨

nϕ(bn) exists be given.
Then we have the following implication.

∧

nan ≤
∨

nbn =⇒ ϕ(
∧

nan) ≤ ϕ(
∨

nbn),

Here,
∧

nan is the infimum of a1 ≥ a2 ≥ · · · in V ,
and

∨

nbn is the supremum of b1 ≤ b2 ≤ · · · in V .

We will prove that R is benign. More generally, we will prove in Section 8 any
ordered Abelian group E that has a suitable unformity (see Def. 168) is benign.

1.8. Attribution. Some work of others has been included in this master’s thesis.

(i) An early version of the theory in Section 8 has been developed together
with Bas Westerbaan, and some of his work is undoubtedly still there.

(ii) The proof of the Borel Hierarchy Theorem in Subsection 5.4 is an adapta-
tion of the work by Wim Veldman [6].

(iii) Countless improvements were suggested by dr. A.C.M. van Rooij. Most
notably, he strengthened Lemma 179 to its current form, and he suggested
that I should restrict the theory to lattice valuations.
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Aside from the things mentioned above, and that which is common knowledge, and
unless stated otherwise, every definition and proof in this thesis is my own.

Nevertheless, I do not want to claim that any part of my work is original as well,
because that would be mere gambling. Indeed, recently I discovered an article [1]
on the foundation of integration in which valuations are used as well.

1.9. Prerequisites. We have tried to keep this text as accessible as possible.
We assume that the reader is familiar with the ordinal numbers and is comfortable
with the basic notions of order theory (suprema, infima, lattices, etc., see [3]).
We have attached some material on ordered Abelian groups, in Appendix A.
While some knowledge about measure, integral, topology, uniform spaces, Borel
sets, and Riesz spaces will helpful as well, we hope this will not be necessary.

1.10. Notation. Let us take this opportunity to fix some notation.

(i) We write N = {1, 2, . . .} and ω = {0, 1, 2, . . .}.
(ii) We will use the symbol “

∨

” for suprema, and the symbol “
∧

” for infima,
as the symbol “

∑

” is used for sums, and the symbol “
∏

” for products.
(iii) Given x ∈ R we say that x is positive when x ≥ 0.

Given x ∈ R we say that x is strictly positive when x > 0.
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2. Valuations

Both the Lebesgue measure and Lebesgue integral are valuations. In fact they
are both complete valuations (see Section 3). While the better part of this thesis
involves complete valuations, much can already be said about valuations.

In this section we study the elementary properties of valuations. We start with
some examples in Subsection 2.1. We study the distance induced by a valuation ϕ,

dϕ(x, y) = ϕ(x ∨ y) − ϕ(x ∧ y),
in Subsection 2.2. Finally, we study the equivalence induced by this distance,

x ≈ y ⇐⇒ dϕ(x, y) = 0,

in Subsection 2.3. The notion of distance is especially important.
We end the section some exotic examples (in Subsection 2.4).

2.1. Introduction.

Definition 3. Let L be a lattice. Let E an ordered Abelian group (see Section A).
Let ϕ : L→ E be a map. We say that

(i) ϕ is modular provided that

ϕ(a ∧ b) + ϕ(a ∨ b) = ϕ(a) + ϕ(b) (a, b ∈ L);

(ii) ϕ is a valuation provided that ϕ is modular and order preserving.

Example 4. Let F be the set of finite subsets of N, and for each A ∈ F , let #(A)
be the number of elements of A. Then we have

#(A ∩B) + #(A ∪B) = #(A) + #(B) (A,B ∈ F),

so obviously the map F → N given by by A 7→ #(A) is a valuation.

Example 5. Let AL be the set of Lebesgue measurable subsets of R with finite
Lebesgue measure. Then AL is a lattice of subsets of R. Given A ∈ AL, let µL(A)
denote the Lebesgue measure of A. Then A ⊆ B =⇒ µL(A) ≤ µL(B), and

µL(A ∩B) + µL(A ∪B) = µL(A) + µL(B),

where A,B ∈ AL. So µL is a valuation.

Remark 6. Valuations have been known for a long time, see [2].

Example 7. Let FL be the set of Lebesgue integrable functions on R. When we
write “function on R” we mean a map f : R → [−∞,+∞]. Allowing the infinite
values +∞ and −∞ might make the story a bit more complicated in the short run,
but it will turn out to be a convenient choice later on (see Remark 38).

The set FL is a lattice under pointwise ordering, and FL∩RR is a lattice ordered
Abelian group. The assignment f 7→

∫

f yields an order preserving map

ϕL : FL −→ R

that is group homomorphism restricted to FL ∩RR.
It takes some work see that ϕL is modular (and hence a valuation).
First, note that for x, y ∈ R, we have

min{x, y} + max{x, y} = x + y.

So given f, g ∈ FL ∩ RR, we have f ∧ g + f ∨ g = f + g, and hence

ϕL(f ∧ g) + ϕL(f ∨ g) = ϕL(f ∧ g + f ∨ g)
= ϕL(f + g)

= ϕL(f) + ϕL(g).

(1)

So we see that ϕL is modular on FL ∩RR.
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To see that ϕL is modular on FL, we need some observations.

(i) Let f ∈ FL. Then the set of x ∈ R such that f(x) = +∞ or f(x) = −∞ is
negligible. Define fR : R → R by, for x ∈ R,

fR(x) =

{

f(x) if f(x) ∈ R,

0 otherwise.

Then f(x) = fR(x) for almost all x ∈ R.
(ii) Let f1, f2 ∈ FL be given and assume f1(x) = f2(x) for almost all x ∈ R.

(We denote this by f1 ≈ f2.) Then we have ϕL(f1) = ϕL(f2).
(iii) Let f1, f2 ∈ FL with f1 ≈ f2 be given, and let g ∈ FL.

Then f1 ∧ g ≈ f2 ∧ g and f1 ∨ g ≈ g2 ∨ g.
Now, let f, g ∈ FL be given. To prove that ϕL is modular, we must show that

ϕL(f) + ϕL(g) = ϕL(f ∧ g) + ϕL(f ∨ g).
Indeed, we have:

ϕL(f) + ϕL(g) = ϕL(fR) + ϕL(gR) by (i) and (ii)

= ϕL(fR ∧ gR) + ϕL(fR ∨ gR) by Statement (1)

= ϕL(f ∧ gR) + ϕL(f ∨ gR) see (iii)

= ϕL(f ∧ g) + ϕL(f ∨ g)
Hence the Lebesgue integral ϕL : FL → R is a valuation.

Example 8. Let C be a chain, i.e. a totally ordered set. Then C is a lattice with

a ∧ b = min{a, b}, a ∨ b = max{a, b}.
One quickly sees that any map f : C → E to an ordered Abelian group is modular.

Example 9. Let X be a set and let A be a ring of subsets of X . That is,

A ∩B, A ∪B, A\B
are in A for all A,B ∈ A. Then clearly A is a lattice.

Let E be an ordered Abelian group and let µ : A → E be a map. Recall that µ
is additive if µ(A) + µ(B) = µ(A ∪B) for all A,B ∈ A with A ∩B = ∅.

If µ is additive, then µ is modular. Indeed, let A,B ∈ A be given. We need to
prove that µ(A) + µ(B) = µ(A ∩B) + µ(A ∪B) assuming µ is additive. We have

µ(A) + µ(B) = µ(A ∩B ∪ A\B ) + µ(B)

= µ(A ∩B) + µ(A\B) + µ(B) since A ∩B ∩ A\B = ∅

= µ(A ∩B) + µ(A\B ∪ B) since A\B ∩ B = ∅

= µ(A ∩B) + µ(A ∪B).

Recall that µ is positive whenever µ(A) ∈ E+ for all A ∈ A.
If µ is additive and positive, then µ is a valuation. Since µ is additive, µ is

modular. It remains to be shown (see Definition 3) that µ is order preserving.
Let A ⊆ B from A be given in order to prove µ(A) ≤ µ(B). We have

(B\A) ∪ A = B, (B\A) ∩ A = ∅.

So by additivity, µ(B) = µ(B\A) + µ(A). Then µ(B) ≥ µ(A), since µ(B\A) ≥ 0.

Example 10. We describe a ring of subsets of R and a positive and additive
map µS : AS → R that will eventually lead to the Lebesgue measure.

Let S be the set of all subsets of R of the form, with a ≤ b from R,

(a, b) or [a, b].
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Let AS be the ring generated by S. Every element A of AS is of the form

I1 ∪ · · · ∪ IN

where I1, . . . , IN ∈ S are disjoint. Let µS(A) be given by

µL(A) := |I1|+ · · ·+ |IN |.
One can verify that the number µS(A) only depends on A and not on the choice
of I1, . . . , IN . Hence we obtain a map µS : AS → R. Almost by definition µS is
additive and positive. Hence µS : AS → R is a valuation (see Example 9).

In Example 7, we saw a group homomorphism that is modular, namely the
Lebesgue integral ϕL restricted to RR. In fact any group homomorphism on a
lattice ordered Abelian group is modular (see Corollary 13(ii)).

Example 11. Let R be a lattice ordered Abelian group. Then the identity map idR
is a valuation. Indeed, idR is modular by Lemma 212, and clearly order preserving.

Lemma 12. Suppose we have the following situation.

L′ f // L
ϕ // E

g // E′,

where L, L′ are lattices, E, E′ are ordered Abelian groups, f is a lattice homomor-
phism, ϕ a map, and g is a group homomorphism. Then

(i) g ◦ ϕ ◦ f is modular provided that ϕ is modular;
(ii) g ◦ ϕ ◦ f is a valuation provided that ϕ is a valuation and g is positive.

Proof. (i) Suppose ϕ is modular. Let a, b ∈ L′ be given. Writing ϕ′ = g ◦ ϕ ◦ f ,
we need to prove that ϕ′(a ∧ b) + ϕ′(a ∨ b) = ϕ′(a) + ϕ′(b). We have

ϕ′(a) + ϕ′(b) = g(ϕ(f(a))) + g(ϕ(f(b)))

= g( ϕ(f(a)) + ϕ(f(b)) )

= g( ϕ(f(a) ∧ f(b)) + ϕ(f(a) ∨ f(b)) )
= g( ϕ(f(a ∧ b)) + ϕ(f(a ∨ b)) )
= g(ϕ(f(a ∧ b))) + g(ϕ(f(a ∨ b)))
= ϕ′(a ∧ b) + ϕ′(a ∨ b)

(ii) Suppose ϕ is a valuation and g is positive. We need to prove that ϕ′ := g ◦ϕ◦f
is a valuation. By part (i) we know that ϕ′ is modular. It remains to be shown
that ϕ′ is order preserving. This is easy: g, ϕ, and f are all order preserving. So
ϕ′ = g ◦ ϕ ◦ f must be order preserving too. �

Corollary 13. Let R be a lattice ordered Abelian group.

(i) Let L be a lattice. Any lattice homomorphism f : L→ R is a valuation.
(ii) Let E be an ordered Abelian group and g : R → E a group homomorphism.

Then g is modular. Moreover, if g is positive, then g is a valuation.

Proof. Apply Lemma 12 to the following situations.

L
f // R

idR // R
idR // R R

idR // R
idR // R

g // E

(Recall that idR is a valuation, see Example 11.) �

Example 14. Let X be a set. We say that F ⊆ RX is Riesz space of functions if

f ∨ g, f ∧ g, f + g, λ · f
are all in F where f, g ∈ F and λ ∈ R. Then F is a lattice ordered Abelian group.

Let E be an ordered Abelian group and let ϕ : F → E be a positive linear map.
We see that ϕ is a valuation by Corollary 13(ii).
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Example 15. We describe a Riesz space of functions FS on R and a positive linear
map ϕS : FS → R that will eventually lead to the Lebesgue integral.

A step function is a function f : R → R for which there are s1 < s2 < · · · < sN
in R such that f is constant on each (sn, sn+1) and f is zero outside [s1, sN ].

Let FS be the set of step functions. One can easily see that FS is a Riesz space
of functions. Let f ∈ FS. Let s1 < s2 < · · · < sN be such that f is constant, say
cn ∈ R, on (sn, sn+1) and f is zero outside [s1, sN ]. One can prove that

N−1
∑

n=1

cn · (sn+1 − sn) (2)

does not depend on the choice of s1 < s2 < · · · < sN . So Expression (2) gives a
map ϕS : FS → R. This map is easily seen to be linear.

Consequently, ϕS : FS → R is a valuation (see Example 14).

We end this subsection with some tame examples of valuations we need later on.

Example 16. Let I = {1, 2}. For each i ∈ I, let Li be a lattice, Ei an ordered
Abelian group, and ϕi : Li → Ei a valuation. Then the map

ϕ1 × ϕ2 : L1 × L2 −→ E1 × E2,

given by (ϕ1 × ϕ2)(a1, a2) = (ϕ1(a), ϕ2(b)) for all ai ∈ Li, is a valuation.
We call the valuation ϕ1 × ϕ2 the product of ϕ1 and ϕ2. Of course, one can

similarly define a product of an I-indexed family of valuations for any set I.

Example 17. Let L be a lattice. If we reverse the order on L, i.e., consider the
partial order on L given by a ≤Lop b ⇐⇒ a ≥L b, then if a subset S ⊆ L has a
supremum,

∨

S, then
∨

S is the infimum of S with respect to ≤op. So we see that
≤op gives us a lattice, Lop. (The opposite lattice.)

Let E be an ordered Abelian group. If we reverse the order on E, we obtain
an ordered Abelian group Eop with the same group structure, but whose positive
elements, (Eop)+, are precisely the negative elements of E.

Let ϕ : L → E be a modular map (see Definition 3). Then one quickly sees
that ϕ is also modular considered as a map Lop → E. However, ϕ : Lop → E is a
valuation (that is, also order preserving) if and only if ϕ : L→ E is order reversing,
i.e., a ≤ b =⇒ ϕ(a) ≥ ϕ(b) for all a, b ∈ L.

Of course, if ϕ : L→ E is a valuation, then ϕ is a valuation Lop → Eop.

2.2. Distance Induced by a Valuation. In this subsection, we derive some facts
concerning the following notion of distance induced by a valuation.

Definition 18. Let E be an ordered Abelian group. Let L be a lattice.
Let ϕ : L→ E be a valuation. Define dϕ : L× L→ E by

dϕ(a, b) = ϕ(a ∨ b)− ϕ(a ∧ b) (a, b ∈ L).

To give the name “distance” for dϕ some credibility, we will prove that dϕ is a
pseudometric (see Lemma 21). After that, we turn our attention to the following
fact, which we will use often. Given a ∈ L, the map x 7→ a∧x is a contraction, i.e.,

dϕ( a ∧ x, a ∧ y ) ≤ dϕ(x, y) (x, y ∈ L).

In fact, we will prove the following, stronger, statement (see Lemma 23).

dϕ( a ∧ x, a ∧ y ) + dϕ( a ∨ x, a ∨ y ) ≤ dϕ(x, y) (x, y ∈ L).

Before we do all this, let us consider some examples.
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Example 19. Let E be an ordered Abelian group. Let F be a Riesz space of
functions, and let ϕ : F → E be a positive and linear map (see Example 14).

Let f, g ∈ F be given. The distance between f and g is the usual one,

dϕ(f, g) = ‖f − g‖1 := ϕ( |f − g| ).
To see this, note that since ϕ is linear, we have

dϕ(f, g) = ϕ(f ∨ g)− ϕ(f ∧ g) = ϕ(f ∨ g − f ∧ g).
Further, since we have the identity max{x, y} −min{x, y} = |x − y| for reals x, y,
we have the identity f ∨ g − f ∧ g = |f − g| for functions.

Example 20. Let E be an ordered Abelian group. Let A be a ring of sets, and let
µ : A → E be a positive additive map (see Example 9). Let A,B ∈ A. We have

dµ(A,B) = µ(A⊖B),

where A⊖B := A\B ∪ B\A is the symmetric difference of A and B. To see this,
note that A ∪B is the disjoint union of A⊖B and A ∩B. So since µ is additive,

µ(A ∪B) = µ(A⊖B) + µ(A ∩B).

Lemma 21. Let E be an ordered Abelian group.
Let L be a lattice, and let ϕ : L→ E be a valuation.
Let a, b, z ∈ L be given. We have:

(i) dϕ(a, b) ≥ 0
(ii) dϕ(a, a) = 0
(iii) dϕ(a, b) = dϕ(b, a)
(iv) dϕ(a, b) ≤ dϕ(a, z) + dϕ(z, b)

Proof. Only point (iv) requires some work. Let a, b, z ∈ L be given. We want to
show that dϕ(a, b) ≤ dϕ(a, z) + dϕ(z, b). In other words:

ϕ(a ∨ b) + ϕ(a ∧ z) + ϕ(z ∧ b) ≤ ϕ(a ∨ z) + ϕ(z ∨ b) + ϕ(a ∧ b). (3)

By modularity, the left-hand side equals

ϕ(a ∨ b) + ϕ( (a ∧ z) ∨ (b ∧ z) ) + ϕ(a ∧ b ∧ z).
On the other hand, using modularity the right-hand side of Inequality (3) becomes

ϕ(a ∨ b ∨ z) + ϕ( (a ∨ z) ∧ (b ∨ z) ) + ϕ(a ∧ b).
Note that a ∨ b ≤ a ∨ b ∨ z, and (a ∧ z) ∨ (b ∧ z) ≤ z ≤ (a ∨ z) ∧ (b ∨ z), and
a ∧ b ∧ z ≤ a ∧ b, so that the monotonicity of ϕ yields Inequality (3). �

It is possible that dϕ(a, b) = 0 while a 6= b (see Example 27). So in general, dϕ is
not a metric (but merely a pseudometric). Those ϕ for which dϕ is a metric turn
out to be useful. So let us give them a name.

Definition 22. Let L be a lattice. Let E be an ordered Abelian group.
Let ϕ : L→ E be a valuation. We say ϕ is Hausdorff provided that

dϕ(a, b) = 0 =⇒ a = b (a, b ∈ L).

We return to Hausdorff valuations in Subsection 2.3.

Lemma 23. Let E be an ordered Abelian group.
Let L be a lattice, and ϕ : L→ E a valuation. We have, for a, b, z ∈ L,

dϕ(a ∧ z, b ∧ z) + dϕ(a ∨ z, b ∨ z) ≤ dϕ(a, b).
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Proof. By expanding Definition 18, we see that we need to prove that

ϕ(a ∨ b ∨ z) + ϕ( (a ∧ z) ∨ (b ∧ z) ) + ϕ(a ∧ b)
≤ ϕ(a ∨ b)+ϕ( (a ∨ z) ∧ (b ∨ z) ) + ϕ(a ∧ b ∧ z) (4)

By modularity, the left-hand side equals

ϕ(a ∨ b ∨ z) + ϕ( (a ∧ z) ∨ (b ∧ z) ∨ (a ∧ b) ) + ϕ( a ∧ b ∧ ((a ∧ z) ∨ (b ∧ z)) ).

To simplify the above expression, we prove that a∧ b∧ ((a∧ z)∨ (b∧ z) = a∧ b∧ z.
To this end, note that a ∧ z ≤ (a ∧ z) ∨ (b ∧ z) ≤ z so that

a ∧ b ∧ z = a ∧ b ∧ (a ∧ z) ≤ a ∧ b ∧ ((a ∧ z) ∨ (b ∧ z)) ≤ a ∧ b ∧ z.

Hence the left-hand side of Inequality (4) equals

ϕ(a ∨ b ∨ z) + ϕ( (a ∧ z) ∨ (b ∧ z) ∨ (a ∧ b) ) + ϕ( a ∧ b ∧ z ).

In a similar fashion, one can show that the right-hand side of Inequality (4) equals

ϕ(a ∨ b ∨ z) + ϕ( (a ∨ z) ∧ (b ∨ z) ∧ (a ∨ b) ) + ϕ( a ∧ b ∧ z ).

So in order to prove Inequality (4), we must show that

ϕ( (a ∧ z) ∨ (b ∧ z) ∨ (a ∧ b) ) ≤ ϕ( (a ∨ z) ∧ (b ∨ z) ∧ (a ∨ b) ).

Since ϕ is order preserving, it suffices to show that

(a ∧ z) ∨ (b ∧ z) ∨ (a ∧ b) ≤ (a ∨ z) ∧ (b ∨ z) ∧ (a ∨ b).

Writing c1 = a, c2 = b, and c3 = z, we must prove that

∨

i6=j ci ∧ cj ≤ ∧

k 6=ℓ ck ∨ cℓ.

That is, we must show that ci ∧ cj ≤ ck ∨ cℓ for given i 6= j and k 6= ℓ. Now, note

#({i, j} ∩ {k, ℓ}) + #{i, j, k, ℓ} = #{i, j}+#{k, ℓ} = 4.

Since #{i, j, k, ℓ} ≤ 3, we see that #{i, j} ∩ {k, ℓ} ≥ 1. So pick m ∈ {i, j} ∩ {k, ℓ}.
Then ci ∧ cj ≤ cm ≤ ck ∨ cℓ. �

Lemma 24. Let E be an ordered Abelian group.
Let L be a lattice, and ϕ : L→ E a valuation. Then we have

dϕ(a ∧w, b ∧ z) + dϕ(a ∨ w, b ∨ z) ≤ dϕ(a, b) + dϕ(w, z),

where a, b, w, z ∈ L.

Proof. By the triangle inequality (point (iv) of Lemma 21), we have

dϕ(a ∧ w, b ∧ z) ≤ dϕ(a ∧ w, b ∧ w) + dϕ(b ∧w, b ∧ z),
dϕ(a ∨ w, b ∨ z) ≤ dϕ(a ∨ w, b ∨ w) + dϕ(b ∨w, b ∨ z).

(5)

On the other hand, Lemma 23 gives us

dϕ(a ∧w, b ∧ w) + dϕ(a ∨ w, b ∨ w) ≤ dϕ(a, b),

dϕ(b ∧w, b ∧ z) + dϕ(b ∨ w, b ∨ z) ≤ dϕ(w, z).
(6)

The sum of the right-hand sides of Equation (5) equals the sum of the left-hand sides
of Equation (6). Hence dϕ(a∧w, b∧ z)+ dϕ(a∨w, b∨ z) ≤ dϕ(a, b)+ dϕ(w, z). �
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2.3. Equivalence Induced by a Valuation. In measure theory two functions
are considered equivalent if they are equal almost everywhere.

In this subsection, we extend this notion of equivalence to valuations.

Definition 25. Let E be an ordered Abelian group. Let L be a lattice.
Let ϕ : L→ E be a valuation. We define ≈ to be the binary relation on L given by

a ≈ b ⇐⇒ dϕ(a, b) = 0 (a, b ∈ L).

Remark 26. ϕ is Hausdorff (see Definition 22) iff a ≈ b ⇐⇒ a = b.

Example 27. We consider the Lebesgue integral ϕL : FL → R (see Example 7).
Let f, g ∈ FL ∩ RR be given. By Example 19 we know that

f ≈ g ⇐⇒ ϕL( |f − g| ) = 0. (7)

In fact, Statement (7) holds for all f, g ∈ FL, as the reader can verify using the
remarks made in Example 7.

Now, for any h ∈ FL with h ≥ 0, we have that

ϕL(h) = 0 ⇐⇒ h(x) = 0 for almost all x.

So we see that we have, for f, g ∈ FL,

f ≈ g ⇐⇒ f(x) = g(x) for almost all x.

So “≈” is equality almost everywhere when ϕ = ϕL, as was intended.

Proposition 28. Let E be an ordered Abelian group. Let L be a lattice.
Let ϕ : L→ E be a valuation. Let ≈ be as in Definition 25.

(i) The relation ≈ is an equivalence.
(ii) Let a1, a2 ∈ L with with a1 ≈ a2 be given. Then ϕ(a1) = ϕ(a2).
(iii) Let a1, a2 ∈ L with a1 ≈ a2, and let b1, b2 ∈ L with b1 ≈ b2 be given. Then

a1 ∧ b1 ≈ a2 ∧ b2 and a1 ∨ b1 ≈ a2 ∨ b2.
(iv) Let a1, a2 ∈ L with a1 ≈ a2, and let b1, b2 ∈ L with b1 ≈ b2 be given. Then

dϕ(a1, b1) = dϕ(a2, b2).

Proof. (i) The relation ≈ is clearly reflexive and symmetric. So to prove ≈ is an
equivalence relation, we will only show that ≈ is transitive. Let a, b, c ∈ L with
a ≈ b ≈ c be given. We must show that a ≈ c. Or in other words, dϕ(a, c) = 0.

By Lemma 21, points (i) and (iv), we get

0 ≤ dϕ(a, c) ≤ dϕ(a, b) + dϕ(b, c). (8)

But dϕ(a, b) = 0 and dϕ(b, c) = 0, since a ≈ b and b ≈ c, respectively.
So we see that Statement (8) implies dϕ(a, c) = 0. Hence a ≈ c.

(ii) Let a1, a2 ∈ L with a1 ≈ a2 be given. We must prove ϕ(a1) = ϕ(a2).
Let i ∈ {1, 2} be given. Note that a1 ∧ a2 ≤ ai ≤ a1 ∨ a2. So we have

ϕ(a1 ∧ a2) ≤ ϕ(ai) ≤ ϕ(a1 ∨ a2). (9)

Since dϕ(a1, a2) = 0, we know that ϕ(a1 ∨ a2) = ϕ(a1 ∧ a2). So Statement (9)
implies that ϕ(a1 ∨ a2) = ϕ(ai) = ϕ(a1 ∧ a2). Hence ϕ(a1) = ϕ(a2).

(iii) Let a1, a2 ∈ L with a1 ≈ a2 be given. Let b1, b2 ∈ L with b1 ≈ b2 be given.
We will only show that a1 ∧ b1 ≈ a2 ∧ b2; the proof of a1 ∨ b1 ≈ a2 ∨ b2 is similar.

Note that we have the following inequalities by Lemma 21(i) and Lemma 24.

0 ≤ dϕ(a1 ∧ b1, a2 ∧ b2) ≤ dϕ(a1, b1) + dϕ(a2, b2) (10)

Since a1 ≈ a2 and b1 ≈ b2, we have dϕ(a1, b1) = 0 and dϕ(a2, b2) = 0, respectively.
Hence Statement (10) implies dϕ(a1 ∧ b1, a2 ∧ b2) = 0. So a1 ∧ b1 ≈ a2 ∧ b2.
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(iv) Let a1, a2 ∈ L with a1 ≈ a2 be given. Let b1, b2 ∈ L with b1 ≈ b2 be given.
We must prove that dϕ(a1, b1) = dϕ(a2, b2). Note that by point (iii) we have

a1 ∧ b1 ≈ a2 ∧ b2 and a1 ∨ b1 ≈ a2 ∨ b2.
So by point (ii) of this lemma, we get

ϕ(a1 ∧ b1) = ϕ(a2 ∧ b2) and ϕ(a1 ∨ b1) = ϕ(a2 ∨ b2).
So if we unfold Definition 18, we see that

dϕ(a1, b1) = ϕ(a1 ∨ b1)− ϕ(a1 ∨ b1)
= ϕ(a2 ∨ b2)− ϕ(a2 ∨ b2) = dϕ(a2, b2). �

When studying the Lebesgue integrable functions, FL, it is sometimes convenient
to consider the space L1 = FL/≈ of integrable functions modulo equality almost
everywhere (see Example 27). Of course, one can consider the space L/≈ for any
valuation ϕ : L→ E. We list some of the properties of L/≈ in Proposition 29.

Proposition 29. Let E be an ordered Abelian group.
Let L be a lattice. Let ϕ : L→ E be a valuation. Let ≈ be as in Definition 25.
Let L/≈ denote the quotient set, and let q : L→ L/≈ be the quotient map. Then:

(i) The set L/≈ is lattice if the operations are given by

qa ∧ qb = q(a ∧ b), qa ∨ qb = q(a ∨ b) (a, b ∈ L).

Then, in particular, q : L→ L/≈ is a lattice homomorphism.
(ii) There is a unique map ϕ/≈ : L/≈ → E such that

(ϕ/≈)(q(a)) = ϕ(a) (a ∈ L).

Moreover, the map ϕ/≈ is a valuation.
(iii) We have dϕ/≈( qa, qb ) = dϕ(a, b) for all a, b ∈ L.
(iv) We have dϕ/≈(a, b) = 0 =⇒ a = b for all a, b ∈ L/≈.

Proof. Follows from Proposition 28. We leave the verification to the reader. �

Remark 30. Note that ϕ/≈ is Hausdorff (see Definition 22) by Proposition 29(iv).

2.4. More Examples. Valuations also appear outside measure theory.
We begin with an example from elementary number theory.

Example 31. Recall that Euler’s totient function ϕ is given by, for n ∈ N,

ϕ(n) = #{ x ∈ {1, . . . , n} : gcd{x, n} = 1 }.
We will prove that ϕ is a valuation ‘with respect to the division order’.

More precisely, we consider ϕ to be a map

ϕ : N −→ Q◦,

where Q◦ is the set of strictly positive rational numbers. Write, for q, r ∈ Q◦,

q 4 r ⇐⇒ ∃n ∈ N [ q · n = r ].

We order the sets N and Q◦ by “4”. They are both lattices with

a ∧ b = gcd{a, b}, a ∨ b = lcm{a, b}.
Moreover, Q◦ is an ordered Abelian group under the normal multiplication “·”.

Before we prove that ϕ is a valuation, we make a useful observation: for n ∈ N,

ϕ(n) = #Z∗
n. (11)

Here Zn is the set of integers modulo n, and Z∗
n are the invertible elements of Zn.
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To see that Equation (11) holds, note that for x ∈ Z, we have

gcd{x, n} = 1 ⇐⇒ ∃a, b ∈ Z, ax+ bn = 1 by Bézout’s Lemma

⇐⇒ ∃a, b ∈ Z, ax = 1− bn

⇐⇒ ∃a ∈ Z, [a]n · [x]n = 1

⇐⇒ [x]n ∈ Z∗
n,

where [−]n : Z → Zn is the quotient map.
Let us now prove that ϕ is a valuation. We first prove that ϕ is order preserving.

Let m,n ∈ N with m 4 n be given. We must show that ϕ(m) 4 ϕ(n).
Note that there is a unique ring homomorphism h : Zn → Zm given by, for x ∈ Z,

h( [x]n ) = [x]m.

Note that h is surjective, and that [x]n if invertible iff [x]m is invertible for x ∈ Z.
So we see that if we restrict h to Z∗

n, we get a surjective group homomorphism

h̃ : Z∗
n −→ Z∗

m.

By Lagrange’s Theorem we know that

#Z∗
m · #ker(h̃) = #Z∗

n,

where ker(h̃) := { a ∈ Zn : h̃(a) = 0 } is the kernel of h̃. Thus

ϕ(m) = #Z∗
m 4 #Z∗

n = ϕ(n).

Hence ϕ is order preserving.
It remains to be shown that ϕ is modular. That is, for m,n ∈ N,

ϕ( gcd{m,n} ) · ϕ( lcm{m,n} ) = ϕ(m) · ϕ(n). (12)

We first prove a special case, namely, that for m,n ∈ N with gcd{m,n} = 1,

ϕ(m · n) = ϕ(m) · ϕ(n). (13)

By the Chinese Remainder Theorem we have the following isomorphism of rings.

Zm × Zn ∼= Zm·n

As a consequence, we get the following isomorphism of groups.

Z∗
m × Z∗

n
∼= Z∗

m·n

If we count the number of elements in the above groups we see that

#Z∗
m · #Z∗

n = #Z∗
m·n.

Hence Equation (13) holds (see Equation (11)).
Let m,n ∈ N be given. We prove that Equation (12) holds.
By the Fundamental Theorem of Arithmatic, we have

m =
∏

p∈P

pw(p), n =
∏

p∈P

pv(p),

where v, w : P → {0, 1, 2, . . .} have finite support, and P are the primes. Hence

ϕ(m) =
∏

p∈P

ϕ(pw(p)), ϕ(n) =
∏

p∈P

ϕ(pv(p)),

by Equation (13), because gcd{pk11 , pk22 } = 1 for all p1 6= p2 from P and k1, k2 ∈ N.
Let p ∈ P be given. Note that either w(p) ≤ v(p) or v(p) ≤ w(p). Hence,

ϕ(pw(p)) · ϕ(pv(p)) = ϕ( pmin{w(p),v(p)} ) · ϕ( pmax{w(p),v(p)} ). (14)

This gives us the following equality.

m · n =
∏

p∈P

ϕ( pmin{w(p),v(p)} ) ·
∏

p∈P

ϕ( pmax{w(p),v(p)} ).



A GENERALISATION OF MEASURE AND INTEGRAL 23

Note that gcd{m,n} =
∏

p∈P
pmin{w(p),v(p)}, so we have

ϕ( gcd{m,n} ) =
∏

p∈P

ϕ( pmin{w(p),v(p)} ).

Similarly, we have

ϕ( lcm{m,n} ) =
∏

p∈P

ϕ( pmax{w(p),v(p)} ).

If we apply the above equalities to Equation (14) we get

ϕ(m) · ϕ(n) = ϕ( gcd{m,n} ) · ϕ( lcm{m,n} ).
So ϕ is modular. Hence Euler’s totient function ϕ is a valuation.

Up to this point we have only seen valuations on distributive lattices. We will now
give an example of a valuation on a non-distributive lattice.

Example 32. LetW be a vector space. Let L be the set of finite-dimensional linear
subspaces of W ordered by inclusion. Then L is a lattice, and for all A,B ∈ L,

A ∧B = A ∩B, A ∨B = 〈A ∪B〉 ,
where 〈S〉 denotes the smallest linear subspace containing S. We have

dim(A ∧B) + dim(A ∨B) = dimA + dimB (A,B ∈ L).

To see this, apply the dimension theorem to the map f : A× B → A ∨B given by
(a, b) 7→ a+ b. Hence the assignment A 7→ dimA gives a valuation dim: L→ N.

The lattice L might be distributive. For instance, if W = {0}. This occurs only
seldom: if W contains two linearly independent vectors, then L is non-distributive.

Indeed, let v1, v2 ∈ W be linearly independent vectors and consider w := v1+v2.
One can verify that vi, w are linearly independent too. So 〈vi〉 ∩ 〈w〉 = {0}. Hence

〈w〉 ∧ (〈v1〉 ∨ 〈v2〉) = 〈v1, v2〉 6= {0} = (〈w〉 ∧ 〈v1〉) ∨ (〈w〉 ∧ 〈v2〉).
It is interesting to note that there are some ‘connections’ between modular maps
(see Definition 3) and modular lattices. Recall that a lattice L is modular if

ℓ ∨ (a ∧ u) = (ℓ ∨ a) ∧ u
for all ℓ, u, a ∈ L with ℓ ≤ u. One such connection is given by the following lemma.

Lemma 33. Let E be an ordered Abelian group. Let L be a lattice.
Let ϕ : L→ E be a modular map. Let ℓ, u ∈ L with ℓ ≤ u be given. We have

ϕ( ℓ ∨ (a ∧ u) ) = ϕ( (ℓ ∨ a) ∧ u ) (a ∈ L). (15)

Proof. The trick is to consider the expression ϕ(ℓ)+ϕ(a)+ϕ(u). On the one hand,

ϕ(ℓ) + ϕ(a) + ϕ(u) = ϕ(ℓ ∧ a) + ϕ(ℓ ∨ a) + ϕ(u)

= ϕ(ℓ ∧ a) + ϕ( (ℓ ∨ a) ∧ u ) + ϕ(a ∨ u),
where we have used modularity twice. On the other hand,

ϕ(ℓ) + ϕ(a) + ϕ(u) = ϕ(ℓ) + ϕ(a ∧ u) + ϕ(a ∨ u)
= ϕ(ℓ ∧ a) + ϕ( ℓ ∨ (a ∧ u) ) + ϕ(a ∨ u).

The difference, ϕ( (ℓ ∨ a) ∧ u )− ϕ( ℓ ∨ (a ∧ u) ), must be zero. �
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3. Complete Valuations

We now turn to the study of complete valuations (see Definition 35). Among all val-
uations the complete valuations resemble the Lebesgue measure and the Lebesgue
integral most closely. To support this claim, we will prove generalisations of some
of the classical convergence theorems of integration in Subsection 3.3.

But first, we give some examples of complete valuations in Subsection 3.1.
After that, we study a notion of completeness for an ordered Abelian group E,

called R-completeness, in Subsection 3.2, which will be useful later on.
The notion of complete valuation is not at the end of the road. We will study

the slightly more sophisticated valuation systems (see Definition 72) and complete
valuation systems (see Definition 77) in Section 4.

3.1. Introduction.

Definition 34. Let E be an ordered Abelian group.
Let L be a lattice, and let ϕ : L→ E be a valuation.

Consider a sequence a1 ≥ a2 ≥ · · · from L. We say

a1 ≥ a2 ≥ · · · is ϕ-convergent if
∧

nϕ(an) exists.

Similarly, if b1 ≤ b2 ≤ · · · is a sequence in L, then

b1 ≤ b2 ≤ · · · is ϕ-convergent if
∨

nϕ(bn) exists.

Definition 35. Let E be an ordered Abelian group. Let L be a lattice.
Let ϕ : L→ E be a valuation. We say ϕ is Π-complete if

a1 ≥ a2 ≥ · · ·ϕ-convergent =⇒ ∧

nan exists, and ϕ(
∧

nan ) =
∧

nϕ(an).

We say ϕ is Σ-complete if

b1 ≤ b2 ≤ · · ·ϕ-convergent =⇒
∨

nbn exists, and ϕ(
∨

nbn ) =
∨

nϕ(bn).

We say ϕ is complete if ϕ is both Π-complete and Σ-complete.

Example 36. The Lebesgue measure µL (see Example 5) is a complete valuation.
We must show that µL is both Π-complete and Σ-complete (see Definition 35).

Let us prove µL is Σ-complete. Let B1 ⊆ B2 ⊆ · · · in AL be µL-convergent. We
must prove that

∨

nBn exists in AL and that µL(
∨

nBn) =
∨

nµL(Bn).
Note that

⋃

nBn is Lebesgue measurable, and that
⋃

nBn has (finite) Lebesgue
measure

∨

nµL(Bn). Hence we have
⋃

nBn ∈ AL, and,

µL(
⋃

nBn ) =
∨

nµL(Bn). (16)

So we are done if we prove that
⋃

nBn =
∨

nBn. Since
⋃

nBn is the smallest subset
of R containing all Bn (i.e.

⋃

nBn is the supremum of the Bn in ℘R),
⋃

nBn is
also the smallest subset of finite Lebesgue measure containing all Bn (i.e.

⋃

nBn is
the supremum of the Bn in AL). So

⋃

nBn =
∨

nBn. Hence µL is Σ-complete.
Using an easier reasoning one can prove that µL is Π-complete.

Example 37. The Lebesgue integral ϕL (see Example 7) is a complete valuation.
We must show that ϕL is both Π-complete and Σ-complete (see Definition 35).

Let us prove ϕL is Σ-complete. Let f1 ≤ f2 ≤ · · · in FL be ϕL-convergent. We
must prove that

∨

nfn exists in FL, and that

ϕL(
∨

nfn) =
∨

nϕL(fn).

Of course, this follows immediately from Levi’s Monotone Convergence Theorem;
the supremum

∨

nfn in FL is simply the pointwise supremum (which is the supre-

mum of f1 ≤ f2 ≤ · · · in [−∞,+∞]
R
). So we see ϕL is Σ-complete.

With a similar argument one can see that ϕL is Π-complete.



A GENERALISATION OF MEASURE AND INTEGRAL 25

Remark 38. Note that the restriction of ϕL to FL ∩ RR is not complete.
Indeed, consider for instance the following sequence.

1 · 1{0} ≤ 2 · 1{0} ≤ 3 · 1{0} ≤ · · ·
It is ϕL-convergent in FL ∩RR, but it has no supremum in RR.
On the other hand, it does have a supremum in FL, namely +∞ · 1{0}.

Because of the above observation, we work with the [−∞,+∞]-valued Lebesgue
integrable functions instead of the R-valued Lebesgue integrable functions.

Example 39. The valuation µS (see Example 10) is not complete.
To see this, we consider the sets A1, A2, . . . given by, for n ∈ N,

An = {1, . . . , n}.
Then An ∈ AS and µS(An) = 0 for all n ∈ N. So we see that

A1 ⊆ A2 ⊆ · · ·
is a µS-convergent sequence. To prove that µS is not complete, we show that the
µS-convergent sequence A1 ⊆ A2 ⊆ · · · has no supremum in AS (see Definition 35).

Suppose (towards a contradiction) that A1 ⊆ A2 ⊆ · · · has a supremum B in AS.
Then in particular An ⊆ B for all n ∈ N. So we have

N =
⋃

nAn ⊆ B.

Note that B is the disjoint union of elements from S (see Example 10). Since
all I ∈ S are bounded, the set B is bounded. That is, B ⊆ [a, b] for some a, b ∈ R.

We now see that N ⊆ B ⊆ [a, b], which is nonsense. So A1 ⊆ A2 ⊆ · · · has no
supremum in AS. Hence µS is not complete.

Example 40. The valuation ϕS (see Example 15) is also not complete.
We leave it to the reader to prove this fact.

If E = R, or more generally, if E is σ-Dedekind complete (see Definition 214), then
there is a nice description of ϕ-convergence, see Proposition 42.

Lemma 41. Let E be an ordered Abelian group.
Assume that E is σ-Dedekind complete (see Definition 214).
Let L be a lattice, and let ϕ : L→ E be a valuation.
Let a1 ≥ a2 ≥ · · · be a sequence in L.
Then a1 ≥ a2 ≥ · · · is ϕ-convergent provided that a1 ≥ a2 ≥ · · · has a lower bound.

Proof. Let ℓ ∈ L be a lower bound of a1 ≥ a2 ≥ · · · , that is, ℓ ≤ an for all n ∈ N.
We must prove that a1 ≥ a2 ≥ · · · is ϕ-convergent, i.e.,

∧

nϕ(an) exists.
Note that ϕ(ℓ) ≤ ϕ(an) for all n ∈ N. So ϕ(a1), ϕ(a2), . . . has a lower bound.

But then
∧

nϕ(an) exists, because E is σ-Dedekind complete (see Remark 217).
Hence a1 ≥ a2 ≥ · · · is ϕ-convergent. �

Proposition 42. Let E be an ordered Abelian group.
Assume that E is σ-Dedekind complete (see Definition 214).
Let L be a lattice, and let ϕ : L→ E be a complete valuation.
For a sequence a1 ≥ a2 ≥ · · · in L the following are equivalent.

(i) a1 ≥ a2 ≥ · · · is ϕ-convergent.
(ii) a1 ≥ a2 ≥ · · · has a lower bound in L.
(iii) a1 ≥ a2 ≥ · · · has an infimum,

∧

nan.

Proof. The implication “(i) ⇐= (ii)” holds by Lemma 41.
“(ii) ⇐= (iii)” holds, because the infimum

∧

nan is a lower bound of a1 ≥ a2 ≥ · · · .
“(iii) ⇐= (i)” holds since ϕ is complete (see Definition 35). �

The notion of ϕ-convergence is less trivial in general as the following example shows.
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Example 43. We will show that the assumption that E is σ-Dedekind complete
in Proposition 42 is necessary for the implication “(iii) =⇒ (i)”.
To this end, we extend the Lebesgue integral ϕL (see Example 37) to the set

F ′
L := FL ∪ {−∞ · 1 }.

Note that F ′
L is a sublattice of [−∞,+∞]

R
. Let ϕ′

L : F ′
L → L be the map, where L

is the lexicograpic plane (see Example 202(iv)), given by, for f ∈ F ′
L,

ϕ′
L(f) =

{

( 0, ϕL(f) ) if f ∈ FL,

(−1, 0 ) if f = −∞ · 1.
Then ϕ′

L is a valuation. In fact, ϕ′
L is a complete valuation as the reader can verify

using the following observation. If a1 ≥ a2 ≥ · · · from F ′
L is ϕ′

L-convergent, then:

(i) If an ∈ FL for all n ∈ N, then a1 ≥ a2 ≥ · · · is ϕL-convergent.
(ii) If aN = −∞ · 1 for some N ∈ N, then an = −∞ · 1 for all n ≥ N .

Now, consider the following sequence in F ′
L.

−1 · 1[0,1] ≥ −2 · 1[0,1] ≥ −3 · 1[0,1] ≥ · · · .
This sequence has an infimum in F ′

L, namely −∞·1. Nevertheless, the sequence is
not ϕ′

L-convergent(, because (0,−1) ≥ (0,−2) ≥ · · · has no infimum in L).

3.2. R-completeness. We now study a notion of completeness for ordered Abelian
groups called R-completeness that will be useful later on.

Let ϕ : L → E be a valuation. Let a1 ≤ a2 ≤ · · · and b1 ≤ b2 ≤ · · · be
ϕ-convergent sequences in L. (see Definition 34).

For the development of the theory, it would be convenient if also

a1 ∨ b1 ≤ a2 ∨ b2 ≤ · · · is ϕ-convergent. (17)

Unfortunately, this is not always the case (see Example 49). However, if the space E
is σ-Dedekind complete (see Appendix A, Definition 214), for instance if E = R,
then one can prove that Statement (17) holds.

In fact, if we only assume that E is R-complete (see Definition 44) — which is
a weaker assumption than that E is Dedekind-complete — then we can still prove
that that Statement (17) holds (see Proposition 48).

Definition 44. Let E be an ordered Abelian group. Consider the following.






Let x1 ≤ x2 ≤ · · · and y1 ≤ y2 ≤ · · · be from E such that

xn+1 − xn ≤ yn+1 − yn for all n.

Then
∨

xn exists whenever
∨

yn exists.

If the above statement holds, we say E is R-complete.

Remark 45. The name “R-complete” is due to Willem van Zuijlen [5].

Examples 46. (i) The ordered Abelian group R is R-complete.
(ii) In fact, any σ-Dedekind complete ordered Abelian group E is R-complete.

Indeed, let x1 ≤ x2 ≤ · · · and y1 ≤ y2 ≤ · · · be from E such that

xn+1 − xn ≤ yn+1 − yn for all n, (18)

and assume that
∨

nyn exists. We must show that
∨

nxn exists.
Let n ∈ N be given. By Statement (18) we see that

xn+1 − yn+1 ≤ xn − yn.

So with induction on n, we get xn − yn ≤ x1 − y1. Then

xn ≤ (x1 − y1) + yn ≤ (x1 − y1) +
∨

mym.
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So we see that the sequence x1, x2, . . . has an upper bound.
So

∨

nxn exists, as E is σ-Dedekind complete. Hence E is R-complete.
(iii) The lexicographic plane L (see Examples 202(iv)) is R-complete, but L is

not σ-Dedekind complete (see Examples 215(iii)).
(iv) The ordered Abelian group Q is not R-complete.

To see this, and pick q1 ≤ q2 ≤ · · · in Q with

qn+1 − qn ≤ 2−(n+1) and
∨

nqn =
√
2 in R.

Note that q1 ≤ q2 ≤ · · · has no supremum in Q.
Now, let yn := 1 − 2−n for all n ∈ N. Then y1 ≤ y2 ≤ · · · has an

supremum, namely 1, and we have yn+1 − yn = 2−(n+1). So we see that

qn+1 − qn ≤ yn+1 − yn (n ∈ N).

If Q were R-complete, then the above implies q1 ≤ q2 ≤ · · · would have a
supremum in Q, which it does not. Hence Q is not R-complete.

(v) Let I be a set. For each i ∈ I, let Ei be an R-complete ordered Abelian
group. Then the product,

∏

i∈I Ei, is R-complete.

Remark 47. Let E be an ordered Abelian group. Using the map x 7→ −x, one can
easily verify that E is R-complete if and only if the following statement holds.







Let x1 ≥ x2 ≥ · · · and y1 ≥ y2 ≥ · · · be from E such that

xn − xn+1 ≤ yn − yn+1 for all n.

Then
∧

xn exists whenever
∧

yn exists.

Proposition 48. Let E be an ordered Abelian group which is R-complete.
Let L be a lattice, and let ϕ : L→ E be a valuation.

(i) If a1 ≥ a2 ≥ · · · , b1 ≥ b2 ≥ · · · are ϕ-convergent sequences from L, then

a1 ∧ b1 ≥ a2 ∧ b2 ≥ · · · and a1 ∨ b1 ≥ a2 ∨ b2 ≥ · · ·
are ϕ-convergent.

(ii) If a1 ≤ a2 ≤ · · · , b1 ≤ b2 ≤ · · · are ϕ-convergent sequences from L, then

a1 ∧ b1 ≤ a2 ∧ b2 ≤ · · · and a1 ∨ b1 ≤ a2 ∨ b2 ≤ · · ·
are ϕ-convergent.

Proof. (i) We prove that a1 ∧ b1 ≥ a2 ∧ b2 ≥ · · · is ϕ-convergent. For this we need
to show that

∧

nϕ(an ∧ bn) exists. Note that since
∧

nϕ(an) and
∧

nϕ(bn) exist, we
know that

∧

n (ϕ(an) + ϕ(bn)) exists (by Lemma 208). So by R-completeness, in
order to show

∧

nϕ(an ∧ bn) exists, it suffices to prove that (see Remark 47),

ϕ(an ∧ bn) − ϕ(an+1 ∧ bn+1) ≤ (ϕ(an) + ϕ(bn) ) − (ϕ(an+1) + ϕ(bn+1) ).

Phrased differently using “dϕ” (see Definition 18), we need to prove that

dϕ(an ∧ bn, an+1 ∧ bn+1) ≤ dϕ(an, an+1) + dϕ(bn, bn+1).

This follows from Lemma 24.
The proof that a1 ∨ b1 ≥ a2 ∨ b2 ≥ · · · is ϕ-convergent is similar.
(ii). Again, similar. �

Example 49. We will prove that the assumption in Proposition 48, that E is
R-complete, is necessary.

Let A be the ring of subsets (see Example 9) of R generated by the non-empty
closed intervals with rational endpoints, i.e., subsets of the form [q, r] where q, r ∈ Q

and q ≤ r. Then there is a unique positive and additive map µ : A → Q such that

µ( [q, r] ) = r − q for all q ≤ r from Q.
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Recall that Q is not R-complete. To prove that the conclusion of Proposition 48
does not hold for E = Q, we will find µ-convergent sequences A1 ⊆ A2 ⊆ · · · and
B1 ⊆ B2 ⊆ · · · such that A1 ∪B1 ⊆ A2 ∪B2 ⊆ · · · is not µ-convergent.

If we have done this, we see that the assumption “E is R-complete” is necessary.
Find rational numbers · · · ≤ r2 ≤ r1 < q1 ≤ q2 ≤ · · · such that, in R,

∨

nqn =
√
2 and

∧

nrn =
√
2− 1.

Now, let us define A1 ⊆ A2 ⊆ · · · and B1 ⊆ B2 ⊆ · · · in A by, for n ∈ N,

An = [0, r1] and Bn = [rn, qn].

Then clearly A1 ⊆ A2 ⊆ · · · is ϕ-convergent. Note that µ(Bn) = qn− rn. So, in R,
∨

nµ(Bn) =
∨

nqn −
∧

nrn = 1.

Hence
∨

nµ(Bn) = 1 in Q. So B1 ⊆ B2 ⊆ · · · is a µ-convergent sequence.
However An ∪Bn = [0, qn], and thus µ(An ∪Bn) = qn. So we see that, in R,

∨

nµ(An ∪Bn ) =
∨

nqn =
√
2.

So µ(A1 ∪B1) ≤ µ(A2 ∪B2) ≤ · · · has no supremum in Q.
Hence A1 ∪B1 ⊆ A2 ∪B2 ⊆ · · · is not µ-convergent.

3.3. Convergence Theorems. The notion of a complete valuation has been based
on Levi’s Monotone Convergence Theorem (see Example 37). In this subsection,
we prove variants of some of the other classical convergence theorems of integration
theory. For example, Lebesgue’s Dominated Convergence Theorem. It states:















Let f1, f2, . . . be a sequence in FL.
Assume f1(x), f2(x), . . . converges for almost all x ∈ R.
Assume that f1, f2, . . . is dominated in the sense that
|fn| ≤ D for all n for some D ∈ FL.
Then there is an f ∈ FL with f1(x), f2(x), . . . converges
to f(x) for for almost all x ∈ R, and ϕL(f) = limn ϕL(fn).

(19)

The difficulty in the setting of valuation systems is not the proof of the theorem,
but its formulation. For instance, it not clear how we should interpret

“f1(x), f2(x), · · · converges for almost all x”

when the objects fn are not necessarily functions, but elements of a lattice V .
Let us begin by generalising the notion of convergence in R to any lattice L.

Recall that a sequence a1, a2, . . . in R is convergent (in the usual sense) if and only
if the limit inferior, limN infn≥N an, and the limit superior, limN supn≥N an, exist
and are equal. This leads us to the following definitions.

Definition 50. Let L be a lattice. Let a1, a2, . . . be a sequence in L.

(i) We say a1, a2, . . . is upper convergent if the following exists.

limnan :=
∧

N

∨

n≥N aN ∨ · · · ∨ an.
Similarly, we say a1, a2, . . . is lower convergent if the following exists.

limnan :=
∨

N

∧

n≥N aN ∧ · · · ∧ an.
(ii) We say a1, a2, . . . is convergent if it is both upper and lower convergent,

and in addition limnan = limnan. In that case, we write limn an := limnan.
(iii) Let a ∈ L be given. We say a1, a2, . . . converges to a if a = limn an.

Remark 51. Let L be a lattice. Let a1, a2, . . . be a sequence in L, which is upper
convergent and lower convergent. Then we have the following inequality.

limnan ≤ limnan
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Indeed, this follows immediately from the observation that, for every N ∈ N,
∨

n≥N aN ∧ · · · ∧ an ≤ aN ≤
∧

n≥N aN ∨ · · · ∨ an.

Examples 52. (i) In R we have: A sequence a1, a2, . . . is convergent in the
sense of Definition 50 if and only if a1, a2, . . . is convergent as usual.
Moreover, if a1, a2. . . . is convergent, then limn an from Definition 50 is
also the limit of a1, a2, . . . in the usual sense.

(ii) Similarly, in RX , where X is any set, “convergent” from Definition 50
coincides with the usual “pointwise convergent”.

Example 53. Let X be a set. Let A1, A2, . . . be subsets of X . Then A1, A2, . . .
is upper and lower convergent in the lattice ℘X , and we have, for x ∈ X ,

x ∈ limnAn ⇐⇒ ∀N ∃n ≥ N x ∈ An,

x ∈ limnAn ⇐⇒ ∃N ∀n ≥ N x ∈ An.

So we see that A1, A2, . . . is not convergent iff there is an x̃ ∈ X such that

∀N ∃n ≥ N x̃ ∈ An and ∀N ∃n ≥ N x̃ /∈ An.

Example 54. For the lattice of Lebesgue integrable functions, FL, the notion of
convergence from Def. 50 and the usual pointwise convergence do not coincide.

To see this, consider the following sequence.

1[0,1], 1[1,2], 1[2,3], . . .

This sequence converges pointwise to 0, but it not convergent in the sense of Def. 50.
Indeed, the sequence is not even upper convergent because

1[0,1] ≤ 1[0,2] ≤ 1[0,3] ≤ · · ·
has no supremum in FL.

Fortunately, the situation is better for dominated sequences.
Let f1, f2, . . . ∈ FL and f ∈ FL be given. Let D ∈ FL be given such that |fn| ≤ D
for all n ∈ N. (We say that f1, f2, . . . is dominated by D.)
The reader can easily verify the following statements (cf. Example 37).

(i) The dominated sequence f1, f2, . . . is upper convergent, and for all x ∈ R,

(limnfn)(x) = limn( fn(x) ).

(ii) The dominated sequence f1, f2, . . . is lower convergent. and for all x ∈ R,

(limnfn)(x) = limn( fn(x) ).

(iii) The dominated sequence f1, f2, . . . converges pointswise to f if and only if
f1, f2, . . . converges to f in the sense of Definition 50.

Dominated sequences are useful when working with the Lebesgue integrable func-
tions, because R is σ-Dedekind complete (see Definition 214). However, it turns
out that dominated sequences are less useful in general.

Hence we have found a replacement for “f1, f2, . . . is dominated”, namely,

“f1, f2, . . . is upper and lower ϕ-convergent”.

Definition 55. Let E be an ordered Abelian group. Let L be a lattice.
Let ϕ : L→ E be a valuation. Let a1, a2 . . . ∈ L be given.

(i) We say a1, a2, . . . is upper ϕ-convergent if the following exists.

ϕ-limnan :=
∧

N

∨

n≥N ϕ(aN ∨ · · · ∨ an)
Similarly, we say a1, a2, . . . is lower ϕ-convergent if the following exists.

ϕ-limnan :=
∨

N

∧

n≥N ϕ(aN ∧ · · · ∧ an)
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(ii) We say a1, a2, . . . is ϕ-convergent if it is lower and upper ϕ-convergent,
and in addition ϕ-limnan = ϕ-limnan.

Remark 56. Let E be an ordered Abelian group. Let L be a lattice.
Let ϕ : L → E be a valuation. Let a1, a2, . . . be a sequence in L, which is upper
and lower ϕ-convergent. We have the following inequality (cf. Remark 51).

ϕ-limnan ≤ ϕ-limnan.

Proposition 57. Let E be a σ-Dedekind complete ordered Abelian group.
Let L be a lattice, and let ϕ : L→ E be a complete valuation.
Then for a sequence a1, a2, . . . in L the following are equivalent.

(i) a1, a2, . . . is upper and lower ϕ-convergent.
(ii) a1, a2, . . . has an upper and lower bound.

Proof. “(i) =⇒ (ii)” Assume that a1, a2, . . . is upper and lower ϕ-convergent.
We must find u, ℓ ∈ L such that ℓ ≤ an ≤ u for all n ∈ N.

Since a1, a2, . . . is upper ϕ-convergent (see Definition 55), we know that
∨

n ϕ(a1 ∨ · · · ∨ an) exists.

In other words, we know that

a1 ≤ a1 ∨ a2 ≤ · · · is ϕ-convergent.

Since ϕ is complete, u :=
∨

nan exists in L. Note that an ≤ u for all n ∈ N.
By a similar reasoning, but using the fact that a1, a2, . . . is lower ϕ-convergent,

we can find an ℓ ∈ L such that ℓ ≤ an for all n ∈ N.

“(i) ⇐= (ii)” Let ℓ, u ∈ L be such that ℓ ≤ an ≤ u for all n ∈ N.
We prove that a1, a2, . . . is upper ϕ-convergent. For this, we must show that the

following exists (see Definition 55).
∧

N

∨

n≥N ϕ(aN ∨ · · · ∨ an) (20)

Let N ∈ N and n ≥ N be given. Note that we have

ℓ ≤ aN ∨ · · · ∨ an ≤ u.

Since ϕ is order preserving, this gives us

ϕ(ℓ) ≤ ϕ(aN ∨ · · · ∨ an) ≤ ϕ(u).

Since E is σ-Dedekind complete it follows that Expression (20) exists.
We have proven that a1, a2, . . . is upper ϕ-convergent. With a similar reasoning

one can prove that a1, a2, . . . is lower ϕ-convergent. �

Example 58. Let f1, f2, . . . be Lebesgue integrable functions (see Example 7).
Then by Proposition 57 the following statement holds.





The sequence f1, f2, . . . is upper and lower ϕL-convergent.

⇐⇒
There is a Lebesgue integrable D with |fn| ≤ D for all n.

We can now prove a generalisation of the Lemma of Fatou.

Lemma 59 (Fatou). Let E be an ordered Abelian group.
Let L be a lattice, and let ϕ : L→ E be a complete valuation.
Let a1, a2, . . . be an upper ϕ-convergent sequence in L (see Definition 55)
Then a1, a2, . . . is upper convergent (see Definition 50), and we have

ϕ(limnan) = ϕ-limnan.

Moreover, if E is a lattice, and if limnϕ(an) exists (see Definition 50), then

ϕ-limnan ≥ limnϕ(an).
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Proof. Let a1, a2, . . . be an upper ϕ-convergent sequence. We prove that a1, a2, . . .
is upper convergent (see Definition 50), and that ϕ(limnan) = ϕ-limnan.

Let N ∈ N be given. Note that
∨

N≥n ϕ(aN ∨ · · · ∨ an) exists because the

sequence a1, a2, . . . is upper ϕ-convergent (see Definition 55). So the sequence

aN ≤ aN ∨ aN+1 ≤ aN ∨ aN+1 ∨ aN+2 ≤ · · ·
is ϕ-convergent (in the sense of Definition 34). For brevity, let us write

anN := aN ∨ · · · ∨ aN+n.

Since ϕ is complete, and a0N ≤ a1N ≤ · · · is ϕ-convergent, we get
∨

n a
n
N exists, and

ϕ(aN ) =
∨

n ϕ(a
n
N ),

where aN :=
∨

n a
n
N . Note that a1 ≥ a2 ≥ · · · is ϕ-convergent, because

ϕ-limnan =
∧

N

∨

n ϕ(a
n
N )

exists since a1, a2, . . . is upper ϕ-convergent. Since ϕ is complete, this implies that
∧

naN exists and ϕ(
∧

naN ) =
∧

nϕ(aN ).

Now, note that we have the following equality.
∧

NaN =
∧

N

∨

n≥N an

So we see that a1, a2, . . . is upper ϕ-convergent and that

ϕ(limnan) =
∧

Nϕ(aN ) =
∧

N

∨

nϕ(a
n
N ) = ϕ-limnan.

We have proven the first part of the lemma.
Assume E is a lattice and limnϕ(an) exists (see Definition 50). To prove the

remainder of the theorem, we need to show that ϕ-limnan ≥ limnϕ(an). That is,
∧

N

∨

n≥N ϕ(aN ∨ · · · ∨ an) ≥ ∧

N

∨

n≥N ϕ(aN ) ∨ · · · ∨ ϕ(an).
This is easy. It follows immediately from the fact that

ϕ(aN ∨ · · · ∨ an) ≥ ϕ(aN ) ∨ · · · ∨ ϕ(an)
for all N ∈ N and n ≥ N . �

Let us now think about “almost everywhere convergent”.

Definition 60. Let E be an ordered Abelian group. Let L be a lattice.
Let ϕ : L→ E be a valuation. Let a1, a2, . . . ∈ L and a ∈ L be given.

(i) If a1, a2, . . . is upper and lower convergent, and, with ≈ as in Def. 25,

limnan ≈ limnan,

then we say that a1, a2, . . . is ≈-convergent.
(ii) We say that a1, a2, . . . ≈-converges to a when limnan ≈ a ≈ limnan.

Example 61. Unfortunately, in the lattice of Lebesgue integrable functions, FL,
the notion of ≈-convergence does not coincide with convergence almost everywhere,
as can be seen using a similar argument as before (see Example 54).

Again, the situation is better for dominated sequences.
Let f1, f2, . . . ∈ FL and f ∈ FL. Assume f1, f2, . . . is dominated by some D ∈ FL,
that is, |fn| ≤ D for all n ∈ N. Then the following statements hold.

(i) The dominated sequence f1, f2, . . . ≈-converges to f if and only if
f1(x), f2(x), . . . converges to f(x) for almost all x ∈ R.

(ii) The dominated sequence f1, f2, . . . is ≈-convergent if and only if
f1(x), f2(x), . . . converges for almost all x ∈ R.
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We will prove implication “⇐=” of (i), and leave the rest to the reader.
We must show that f1, f2, . . . is upper and lower convergent, and that

limnfn ≈ f ≈ limnfn. (21)

Since f1(x), f2(x), . . . converges to f(x) for almost all x ∈ R, we know that:

limn( fn(x) ) = f(x) = limn( fn(x) ) (22)

for almost all x ∈ R. So we see that the function given by x 7→ limn( fn(x) ) is equal
almost everywhere to the Lebesgue integrable function f , and hence it is Lebesgue
integrable itself. By Example 54(ii) it follows that f1, f2, . . . is lower convergent,
and that (limnfn)(x) = limn( fn(x) ) for all x ∈ R. By a similar argument, we see
that f1, f2, . . . is upper convergent as well, and that (limnfn)(x) = limn( fn(x) ) for
all x ∈ R. Hence we get by Equation (22), for almost all x ∈ R,

(limnfn)(x) = f(x) = (limnfn)(x).

This proves Equation (21) (see Example 27).

Let us relate ϕ-convergence and ≈-convergence.

Lemma 62. Let E be an ordered Abelian group.
Let L be a lattice, and let ϕ : L→ E be a complete valuation.
Let a1, a2, . . . be an upper and lower ϕ-convergent sequence in L (see Definition 55).
Then the sequence a1, a2, . . . is upper and lower convergent (see Definition 50),
and the following statements are equivalent.

(i) a1, a2, . . . is ≈-convergent (see Definition 60).
(ii) a1, a2, . . . is ϕ-convergent (see Definition 55).

Moreover, if either (i) or (ii) holds, we have

ϕ(limnan) = ϕ(limnan) = ϕ-limnan. (23)

Proof. Let a1, a2, . . . be an upper and lower ϕ-convergent sequence in L.
By Lemma 59 and its dual, a1, a2, . . . is both upper and lower convergent, and

ϕ(limnan) = ϕ-limnan, and ϕ(limnan) = ϕ-limnan. (24)

By Definition 55 and Definition 60 we see that

a1, a2, . . . is ϕ-convergent ⇐⇒ ϕ-limnan = ϕ-limnan,

a1, a2, . . . is ≈-convergent ⇐⇒ ϕ( limnan ) = ϕ( limnan ).

Hence Equation (24) implies that statements (i) and (ii) are equivalent.
Now, assume that (i) (or (ii)) holds. We must show that Statement (23) holds.

This follows from Statement (24) since ϕ-limnan = ϕ-limnan = ϕ-limnan. �

We now prove a generalisation of Lebesgue’s Dominated Convergence Theorem.

Theorem 63 (Lebesgue). Let E be a lattice ordered Abelian group.
Let L be a lattice, and let ϕ : L→ E be a complete valuation.
Let a1, a2, . . . be an upper and lower ϕ-convergent sequence in L (see Def. 55).
Assume that a1, a2, . . . is ≈-convergent (see Def. 60).
Assume that limnϕ(an) and limnϕ(an) exist (see Def. 50).
Then the sequence ϕ(a1), ϕ(a2), . . . converges (see Def. 50), and we have

limn ϕ(an) = ϕ( limnan ) = ϕ( limnan ). (25)

Proof. Let us first prove that the sequence ϕ(a1), ϕ(a2), . . . is convergent.
By Lemma (62), we see that a1, a2, . . . is ϕ-convergent (see Definition 55), and that

ϕ( limnan ) = ϕ( limnan ) = ϕ-limnan. (26)
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By Lemma 59 and its dual, we see that

ϕ-limnan ≤ limnϕ(an) ≤ limnϕ(an) ≤ ϕ-limnan.

But ϕ-limnan = ϕ-limnan, since a1, a2, . . . is ϕ-convergent. So we get

ϕ-limnan = limnϕ(an) = limnϕ(an) = ϕ-limnan. (27)

In particular, ϕ(a1), ϕ(a2), . . . is convergent (see Definition 50).
It remains to be shown that Statement (25) holds.

To do this, combine Statement (26) and Statement (27). �

If we assume that E is σ-Dedekind complete we get a more familiar statement.

Theorem 64. Let E be a lattice ordered Abelian group.
Assume that E is σ-Dedekind complete (see Def. 214).
Let L be a lattice, and let ϕ : L→ E be a complete valuation.
Let a1, a2, . . . sequence in L which has an upper and lower bound.
Assume that a1, a2, . . . is ≈-convergent (see Def. 60).
Then the sequence ϕ(a1), ϕ(a2), . . . converges (see Def. 50), and we have

limn ϕ(an) = ϕ( limnan ) = ϕ( limnan ).

Proof. We want to apply Theorem 63. For this, we must prove that a1, a2, . . . is
upper and lower ϕ-convergent, and that limnϕ(an) and limnϕ(an) exist.

Note that a1, a2, . . . is upper and lower ϕ-convergent since a1, a2, . . . has an
upper and lower bound (see Proposition 57).

Let u, ℓ ∈ L be such that ℓ ≤ an ≤ u for all n ∈ N. Then we have, for all n ∈ N,

ϕ(ℓ) ≤ ϕ(an) ≤ ϕ(u).

Using this, and the fact that E is σ-Dedekind complete, it is not so hard to see
that limnϕ(an) and limnϕ(an) exist (cf. Proposition 57).

Now we can apply Theorem 63, and we are done. �

Example 65. If we apply Theorem 64 to the Lebesgue integral ϕL, we get the
classical form of Lebesgue’s Dominated Convergence Theorem (see Statement (19)).

Indeed, let f1, f2, . . . be a sequence of Lebesgue integrable functions. Assume
there is an Lebesgue integrable function D such that |fn| ≤ D for all n ∈ N, and
assume that f1(x), f2(x), . . . converges for almost all x ∈ R.

We must prove that there is a Lebesgue integrable f such that f1(x), f2(x), . . .
converges to f(x) for almost all x ∈ R, and ϕL(f) = limn ϕL(fn).

Since f1(x), f2(x), . . . converges for almost all x ∈ R, we know that the sequence
f1, f2, . . . is ≈-convergent (see Example 61(ii)). Now, define

f := limnfn.

It is easy to see that, f1, f2, . . . ≈-converges to f (see Definition 60).
That is, f1(x), f2(x), . . . converges to f(x) for almost all x ∈ R (see Example 61(i)).
By Theorem 64 we see that ϕ(a1), ϕ(a2), . . . converges, and that

limn ϕL(fn) = ϕL( limnfn ) = ϕL(f).

So we are done.
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There are many variants of the classical convergence theorems of integration.
For instance, a variant on Levi’s Monotone Convergence Theorem is the following.























Let f1, f2, . . . be Lebesgue integrable functions.
Assume that

∨

nϕL(fn) exists.
Assume that for every n ∈ N,

fn(x) ≤ fn+1(x) for almost all x ∈ R.

Then
∨

nfn, the pointwise supremum of f1, f2, . . . ,
is Lebesgue integrable and

ϕL(
∨

nfn) =
∨

nϕL(fn).

Note that if we want to prove the above statement it will be useful to know that

ϕL/≈ : FL/≈ −→ R

from Proposition 29 is complete. We will prove this in Proposition 66.
Of course, if we apply Lemma 59 and Theorem 63 to ϕL/≈, we obtain variants

of the Lemma of Fatou and the Dominated Convergence Theorem of Lebesgue,
respectively. We leave this to the reader.

Proposition 66. Let L be a lattice. Let E be an ordered Abelian group.
Let ϕ : L→ E be a complete valuation. Then the valuation

ϕ/≈ : L/≈ −→ E

from Proposition 29 is a complete valuation.

Proof. We leave this to the reader. �

There is a small gap that needs to filled before we continue with another topic.
Let ϕ : L → E be a valuation. We have defined what it means for a sequence
a1, a2, . . . in L to be ϕ-convergent (see Definition 55), but we have not yet given
the meaning of “a1, a2, . . . converges to a”. We will do this in Definition 67.

Definition 67. Let L be a lattice. Let E be an ordered Abelian group.
Let ϕ : L→ E be a valuation. Let a1, a2, . . . be a sequence in L.
Let a ∈ L be given. We say a1, a2, . . . ϕ-converges to a provided that

a1, a, a2, a, . . . is ϕ-convergent.

Remark 68. Let ϕ : L→ E be a valuation. While Definition 67 is certainly reason-
able, it is also quite silly, and so one wonders if there is a more direct description
of when a sequence ϕ-converges to an element a ∈ L. If we assume ϕ is complete,
then there is a slightly better description (see Proposition 69).

In Section 9 we will study a notion of convergence (see Definition 188) which
was intended to be a more aesthetically pleasing definition of ϕ-convergence, but
which turns out to be strictly weaker than ϕ-convergence (see Example 190).

Proposition 69. Let E be an ordered Abelian group.
Let L be a lattice, and ϕ : L→ E be a complete valuation.
Let a1, a2, . . . be a ϕ-convergent sequence in L, and let a ∈ L.
Then a1, a2, . . . ϕ-converges to a if and only if (see Definition 25)

a ≈ limnan.

(Recall that a1, a2, . . . is upper convergent (see Definition 50) by Lemma 59.)

Proof. We leave this to the reader. �
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4. Valuation Systems

Note that the Lebesgue measure µL is a complete valuation (see Example 36), that
extends the relatively simple valuation µS (see Example 10).

We would like to consider µL to be a completion of µS. What should this mean?
The following definition seems obvious when one thinks about valuations.











Let E be an ordered Abelian group.
Let L and K be lattices.
Let ψ : K → E and ϕ : L→ E be valuations.
We say ψ is a completion of ϕ provided that
L is a sublattice of K, ψ extends ϕ, and ψ is complete.

However, in the more concrete setting of measure theory this broad definition of
completion is not that useful. After all, if we are given a completion ψ : K → R

of µS, then we only know that K is a sublattice of AS, while we would prefer K to
be a sublattice of sets, or resemble it.

To mend this problem we might try to prove that any completion of µS is essen-
tially a completion on a lattice of subsets. Of course, the meaning of the previous
statement is not clear. We suspect that if one gives it an exact meaning, the
statement will be either false or trivial. So we will not follow this direction.

Instead, we consider a different notion of completion that involves the the sur-
rounding lattice, ℘R. More precisely, we will see that µL is a completion of µS

relative to ℘R, which means that µL extends µS and that µL is complete relative
to ℘R (see Example 80). This naturally leads to the study of the following objects.

℘R ⊇ AS
µS−→ R ℘R ⊇ AL

µL−−→ R.

That is, we are interested in objects of the following shape.

V ⊇ L
ϕ−→ E,

where ϕ : L→ E is a valuation, and where V is a lattice such that L is a sublattice
of V . We call such objects valuation systems (see Definition 72).

The drawback of this approach is that it requires quite a bit of bookkeeping, and
so this section is filled with definitions and examples, but there is little theory. We
hope the reader will bear with us; we are confident the reader will be rewarded for
his/her patience in the next sections.

Since this section is already administrative in nature, we take this chance to put
some additional restraints on the notion of valuation system which turns out to be
useful later on (see Remark 93). Given a valuation system, V ⊇ L

ϕ−→ E, we require
that E is R-complete (see Def. 44), and that V is σ-distributive (see Def. 70).

Before we give a formal definition of “valuation system” in Subsection 4.2, and
define “complete valuation system” in Subsection 4.3, we consider σ-distributive
lattices in Subsection 4.1.

We end the section with “convex valuation systems” in Subsection 4.4.

4.1. σ-Distributivity.

Definition 70. Let V be a lattice. We say V is σ-distributive provided that

(i) V is σ-complete, i.e., for every sequence c1, c2, . . . in V we have
∧

ncn exists and
∨

ncn exists,

(ii) and for every a ∈ V and c1, c2, . . . ∈ V , we have,

a ∨∧

ncn =
∧

n a ∨ cn and a ∧∨

ncn =
∨

n a ∧ cn.



36 A.A. WESTERBAAN

Examples 71. (i) Let X be a set. Then ℘(X) is σ-distributive. Indeed,

A ∪
⋂

n Cn =
⋂

nA ∪ Cn A ∩
⋃

n Cn =
⋃

nA ∩ Cn
for all A, C1, C2, . . . ⊆ X .

(ii) Let C be totally ordered and σ-complete. Then C is σ-distributive.
Indeed, let a, c1, c2, . . . ∈ C be given. We need to prove that a ∨

∧

ncn
is the supremum of a ∨ c1, a ∨ c2, . . . . To this end note that

b ≤ d1 ∨ d2 ⇐⇒ b ≤ d1 or b ≤ d2 (b, di ∈ C).

(To see this, note that d1 ∨ d2 = max{d1, d2}.) Now, for ℓ ∈ C, we have

∀n[ ℓ ≤ a ∨ cn ] ⇐⇒ ℓ ≤ a or ∀n[ ℓ ≤ cn ]

⇐⇒ ℓ ≤ a or ℓ ≤ ∧

ncn

⇐⇒ ℓ ≤ a ∨∧

ncn.

So we see that a ∨
∧

ncn is the greatest lower bound of a ∨ c1, a ∨ c2 . . . .
With the same argument, one can prove that a∧∨

ncn =
∨

a∧ cn for all
a, c1, c2, . . . ∈ C such that

∨

ncn exists. Hence C is σ-distributive.
(iii) The lattice of the real numbers R is a chain and so R is σ-distributive if R

would be σ-complete. However, R is not σ-complete. Indeed, a sequence
c1, c2, . . . in R has a supremum if and only if it is bounded from above,
i.e., there is an a ∈ R such that cn ≤ a for all n. Similarly, a sequence
c1, c2, . . . ∈ R has an infimum if and only if it is bounded from below.

(iv) Let [−∞,+∞] be the lattice of the extended real numbers. Then [−∞,+∞]
is a chain and clearly σ-complete. Hence [−∞,+∞] is σ-distributive.

(v) Let I be a set, and for each i ∈ I, let Li be a σ-distributive lattice.
Then the product L :=

∏

i∈I Li is σ-distributive.
(vi) Let X be a set. Then lattice [−∞,+∞]X of functions from X to [−∞,+∞]

is σ-distributive.

4.2. Valuation Systems.

Definition 72. We say V ⊇ L
ϕ−→ E is a valuation system provided that

(i) V is a σ-distributive lattce (see Definition 70);
(ii) L is a sublattice of V ;
(iii) E is an ordered Abelian group, which is R-complete (see Definition 44);
(iv) ϕ : L→ E is a valuation.

Example 73. Let E be an R-complete ordered Abelian group. Let X be a set, A
a ring of subsets of X , and µ : A → E a positive and additive map (see Example 9).

Then we have the following valuation system.

℘X ⊇ A µ−→ E

Indeed, ℘X is lattice with
∧

nAn =
⋂

nAn and
∨

nAn =
⋃

nAn for all Ai ∈ ℘X , the
set A is a sublattice of ℘X by definition, ℘X is σ-distributive (see Examples 71(i))
and we have already seen that µ : A → E is a valuation (in Example 9).

In particular, we have the following valuation systems.

℘R ⊇ AL
µL−−→ R ℘R ⊇ AS

µS−→ R

See Example 5 and Example 10.

Example 74. Let E be an R-complete ordered Abelian group. Let F be a Riesz
space of functions on a set X (see Example 14), and let ϕ : F → E be a positive
and linear map. Then we have the following valuation system.

[−∞,∞]X ⊇ F
ϕ−→ E
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Indeed, [−∞,∞]X is a σ-distributive lattice (see Examples 71(vi)). Further, F is a
sublattice of RX which is in turn a sublattice of [−∞,∞]X , and we already know
that ϕ is a valuation (see Example 14).

In particular, since R is R-complete, we have the following valuation systems

[−∞,+∞]
X ⊇ (FL ∩ RR)

ϕL−−→ R, [−∞,+∞]
R ⊇ FS

ϕS−−→ R,

see Example 7 and Example 15. Recall that FL ∩ RR is a Riesz space of functions
on X , while FL is not. Of course, we also have the following valuation sytem.

[−∞,+∞]
R ⊇ FL

ϕL−−→ R

Example 75. Let I = {1, 2}. For each i ∈ I, let Vi ⊇ Li
ϕi−→ Ei be a valuation

system. Then we have the following valuation system (see Example 16).

V1 × V2 ⊇ L1 × L2
ϕ1×ϕ2−−−−→ E1 × E2

Indeed, the lattice V1 × V2 is σ-distributive (see Examples 71(v)), and the ordered
Abelian group E1 × E2 is R-complete (see Examples 46(v)). We call this system
the product of V1 ⊇ L1

ϕ1−→ E1 and V2 ⊇ L2
ϕ2−→ E2. Of course, one can similarly

define the product of an I-indexed family of valuation systems where I is any set.

Notation 76. Let V ⊇ L
ϕ−→ E be a valuation system. Let a1, a2, . . . be from L.

Then a1, a2, . . . has a supremum in V and might have a supremum in L. We ignore
the latter: with

∨

nan we always mean the supremum of a1, a2, . . . in V .
Similarly, with

∧

nan we always mean the infimum of a1, a2, . . . in V .

4.3. Complete Valuation Systems.

Definition 77. Let V ⊇ L
ϕ−→ E be a valuation system.

(i) We say V ⊇ L
ϕ−→ E is Π-complete, or ϕ is Π-complete relative to V ,

or even ϕ is Π-complete (if no confusion should arise with Definition 35),
if for every ϕ-convergent a1 ≥ a2 ≥ · · · (see Definition 34), we have,

∧

nan ∈ L and ϕ(
∧

nan ) =
∧

nϕ(an).

Here,
∧

nan is the infimum of a1 ≥ a2 ≥ · · · in V (see Notation 76).
(ii) Similarly, we say V ⊇ L

ϕ−→ E is Σ-complete, etc.,
provided that for every ϕ-convergent sequence b1 ≤ b2 ≤ · · · we have

∨

nbn ∈ L and ϕ(
∨

nbn ) =
∨

nϕ(bn).

(iii) We say V ⊇ L
ϕ−→ E is complete, etc.,

provided that V ⊇ L
ϕ−→ E is both Π-complete and Σ-complete.

Remark 78. Let V ⊇ L
ϕ−→ E be a complete valuation system (see Definition 77).

Then the valuation ϕ is also complete in the sense of Definition 35.
We leave it to the reader to verify this.

Example 79. The Lebesgue integral gives us the valuation system

[−∞,+∞]R ⊇ FL
ϕL−−→ R

(see Example 7 and Example 74); we will prove that this system is complete.
Let f1 ≤ f2 ≤ · · · be a ϕL-convergent sequence (in FL). We must prove that

∨

nfn ∈ FL and ϕL(
∨

nfn ) =
∨

nϕL(fn).

This follows immediately from Levi’s Monotone Convergence Theorem.
Similarly, if g1 ≥ g2 ≥ · · · is a ϕL-convergent sequence, then

∧

ngn ∈ FL and ϕL(
∧

ngn ) =
∧

nϕL(gn).

So the valuation system [−∞,+∞]R ⊇ FL
ϕL−−→ R is complete.

Note that we have given a similar argument earlier (see Example 37) to prove
that the valuation ϕL is complete in the sense of Definition 35.
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Example 80. The Lebesgue measure gives us the valuation system

℘R ⊇ AL
µL−−→ R

(see Example 5 and Example 73); one can prove that this system is complete.
We leave this to the reader (cf. Example 36).

Convention 81. The complete valuation systems play a far more important role
in the remainder of this thesis than the complete valuations of Definition 35. So:
Whenever we later on write “ϕ is complete” we mean that ϕ is complete

relative to V , where V should be clear from the context.

4.4. Convex Valuation Systems.

We have remarked that the Lebesgue measure is complete (see Example 80). It
should be noted that “the Lebesgue measure is complete” has a different meaning
in the literature, namely that any subset of a Lebesgue neglegible set is neglegible
itself. We call this convexity and we will briefly discuss this notion in this subsection.

Definition 82. Let V ⊇ L
ϕ−→ E be a valuation system.

We say that V ⊇ L
ϕ−→ E is convex, if the following statement holds.







Let a ≤ b from L with ϕ(a) = ϕ(b) be given. Then

a ≤ z ≤ b =⇒ z ∈ L,

where z ∈ V .

Examples 83. (i) The Lebesgue measure ℘R ⊇ AL
µL−−→ R is convex.

(ii) The Lebesgue integral [−∞,+∞]
R ⊇ FL

ϕL−−→ R is convex.

Example 84. We give a serious example of a non-convex valuation system.
Let B be the set of all Borel subsets of R, that is, those subsets of R that can

be formed by countable intersection and countable union starting from the open
subsets of R. Every Borel subset of R is Lebesgue measurable.

Let AB be the set of Borel subsets of R with finite Lebesgue measure. Note that
we have AB ⊆ AL. Let µB : AB → R be the restriction of µL to AB.

Recall that ℘R ⊇ AL
µL−−→ R is a complete and convex valuation system. It is

not hard to see that the valuation system ℘R ⊇ AB
µB−−→ R is complete as well.

However, we will prove that ℘R ⊇ AB
µB−−→ R is not convex.

To this end, we will find a negligible Borel set A and a subset ∆ of A such that ∆
is not a Borel set. This is sufficient to prove that ℘R ⊇ AB

µB−−→ R is not convex.
Indeed, if ℘R ⊇ AB

µB−−→ R were convex, then ∆ would be Borel, because

∅ ⊆ ∆ ⊆ A and ∅, A ∈ AB and µB(∅) = 0 = µB(A).

To find such A and ∆, we need the following fact (see Corollary 129).






There is a set C, a negligible Borel set A ⊂ R, and maps

G : C −→ B and p : C −→ A

such that G is surjective, and p is injective.

(28)

Now, let ∆ be the subset of p(NN) given by, for all f ∈ NN,

p(f) ∈ ∆ ⇐⇒ p(f) /∈ G(f).

We prove that ∆ is not a Borel set. Suppose that ∆ is a Borel set in order to derive
a contradiction. Since G is surjective, we have ∆ ≡ G(f0) for some f0 ∈ NN. Then

p(f0) ∈ ∆ ⇐⇒ p(f0) /∈ G(f0) = ∆.

Which is absurd. Thus ∆ is not Borel set.
So we see that ∆ is a subset of a negligible Borel set, A, while ∆ is not Borel.
Hence ℘R ⊇ AB

µB−−→ R is not convex.
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Proposition 85. Let V ⊇ L
ϕ−→ E be a valuation system.

(i) Let L• be the subset of V given by, for all z ∈ V ,

z ∈ L• ⇐⇒ ∃ a, b ∈ L [ a ≤ z ≤ b ∧ ϕ(a) = ϕ(b) ].

Then L is a sublattice of L•, which is a sublattice of V .
(ii) There is a unique order preserving map ϕ• : L• → E which extends ϕ.

Moreover, ϕ• is a valuation, and V ⊇ L• ϕ•

−−→ E is convex.

Proof. We leave this to the reader. �

Definition 86. The convexification of a valuation system V ⊇ L
ϕ−→ E is the

valuation system V ⊇ L• ϕ•

−−→ E described in Proposition 85.

Proposition 87. Let V ⊇ L
ϕ−→ E be a Π-complete valuation system.

Then the valuation system V ⊇ L• ϕ•

−−→ E is Π-complete as well.

Proof. Let a1 ≥ a2 ≥ · · · be a ϕ•-convergent sequence in L•. To prove that the
valuation system V ⊇ L• ϕ•

−−→ E is Π-complete, we must show that
∧

nan ∈ L•, and

ϕ•(
∧

nan ) =
∧

nϕ
•(an).

Let n ∈ N be given. Note that since an ∈ L• there are ℓn, un ∈ L such that

ℓn ≤ an ≤ un and ϕ(ℓn) = ϕ(un).

Define ℓ :=
∧

nℓn and u :=
∧

nun. Then we have ℓ ≤
∧

nan ≤ u. So to prove that
∧

nan ∈ L•, it suffices to show that ℓ, u ∈ L, and ϕ(ℓ) = ϕ(u).
The trick is to consider ℓ′1 ≥ ℓ′2 ≥ · · · and u′1 ≥ u′2 ≥ · · · given by, for n ∈ N,

ℓ′n := ℓ1 ∧ · · · ∧ ℓn and u′n := u1 ∧ · · · ∧ un.
Note that ℓ =

∧

nℓ
′
n and u =

∧

nu
′
n. Let n ∈ N be given. We claim that

ϕ(ℓ′n) = ϕ•(an) = ϕ(u′n). (29)

Indeed, since ϕ(ℓn) = ϕ(un) and ℓn ≤ un, we have ℓn ≈ un (see Definition 25).
Then by Proposition 28(iii) and induction, we see ℓ′n ≈ u′n. Hence ϕ(ℓ′n) = ϕ(u′n).
Now, as ℓ′n ≤ an ≤ u′n, and ϕ

• is order preserving, we get ϕ(ℓ′n) ≤ ϕ•(an) ≤ ϕ(u′n).
Hence we easily see that Statement (29) holds.

Since a1 ≥ a2 ≥ · · · is ϕ•-convergent, we know that
∧

nϕ
•(an) exists. Further,

∧

nϕ(ℓ
′
n) =

∧

nϕ
•(an) =

∧

nϕ(u
′
n)

by St. (29). So we see that ℓ′1 ≥ ℓ′2 ≥ · · · and u′1 ≥ u′2 ≥ · · · are ϕ-convergent.
Because ϕ is Π-complete relative to V we see that

∧

nℓ
′
n = ℓ ∈ L and u ∈ L, and

ϕ(ℓ) =
∧

nϕ(ℓ
′
n) =

∧

nϕ
•(an) =

∧

nϕ(u
′
n) = ϕ(u). (30)

So, since ℓ ≤ ∧

nan ≤ u, Statement (30) implies that
∧

nan ∈ L•, and

ϕ•(
∧

nan ) =
∧

nϕ
•(an).

Hence ϕ• is Π-complete relative to V . �

Proposition 88. Let V ⊇ L
ϕ−→ E be a complete valuation system.

Then the valuation system V ⊇ L• ϕ•

−−→ E is complete as well.

Proof. Apply Proposition 87 and its dual. �
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5. The Completion

5.1. Introduction. Valuation systems were introduced in Section 4 to give mean-
ing to the phrase “the Lebesgue integral ϕL is a completion of ϕS”, namely,

[−∞,+∞]
R ⊇ FL

ϕL−−→ R is complete and ϕL extends ϕS.

In this section we replace ϕS and [−∞,+∞]
R
by any valuation system V ⊇ L

ϕ−→ E
and study when, so to say, ϕ has a completion with respect to V , i.e., when there is
a sublattice C of V and a valuation ψ : C → E such that

V ⊇ C
ψ−→ E is complete and ψ extends ϕ.

There is not always a completion (see Example 89). However, if ϕ has a completion
with respect to V , then ϕ also has a smallest2 completion with respect to V ,

V ⊇ L
ϕ−→ E.

We describe ϕ in Subsection 5.3, and call ϕ the completion of ϕ with respect to V .

Π-Completion. If we replace “complete” by “Π-complete” in the above discussion
the situation is much easier (see Definition 77). Indeed, we will see in Lemma 103
that ϕ has a Π-completion with respect to V iff

[

for every b ∈ L and ϕ-convergent a1 ≥ a2 ≥ · · · we have
∧

nan ≤ b =⇒ ∧

nϕ(an) ≤ ϕ(b).

Similar to before, if there is a Π-completion of ϕ with respect to V , then there is
also a smallest Π-completion with respect to V , which will be denoted by

V ⊇ ΠL
Πϕ−−→ E.

We will study Πϕ in Subsection 5.2.

Σ-Completion. We can replace “complete” by “Σ-complete” as well.
If it exists, the smallest Σ-completion of ϕ with respect to V is denoted by

V ⊇ ΣL
Σϕ−−→ E.

Since Πϕ and Σϕ are very similar, we will only study Πϕ. All the results that we
obtain about Πϕ and all the definitions for Πϕ can be easily translated to results
about Σϕ and definitions for Σϕ, respectively. We leave this to the reader.

Hierarchy of Extensions. Recall that ϕ is complete with respect to V if and only
if ϕ is both Π-complete and Σ-complete with respect to V (see Definition 77).

So if we want to find a completion of ϕ with respect to V it is natural to try and
see if ΣΠϕ is complete (when it exists) with respect to V . Unfortunately, while
Πϕ is Π-complete with respect to V , the valuation ΣΠϕ need not be Π-complete.
Nevertheless, we can continue to apply “Σ” and “Π” whenever possible, and we
will see in Subsection 5.5 that this leads to a ‘hierarchy’ of the following shape.

Σϕ

❆❆
❆❆

❆❆
❆❆

❆❆
ΣΠϕ

❊❊
❊❊

❊❊
❊❊

❊❊
❊

ΣΠΣϕ

❇❇
❇❇

❇❇
❇❇

❇❇
❇

· · ·

ϕ

⑤⑤⑤⑤

❇❇
❇❇

· · ·

Πϕ

⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

ΠΣϕ

②②②②②②②②②②②

ΠΣΠϕ

⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤

· · ·
It will become clear, that if the making of this hierarchy is hindered, e.g., if ΠΣϕ has
no Σ-completion with respect to V (and so ΣΠΣϕ does not exist), then ϕ cannot
have a completion with respect to V . On the other hand, we will see, loosely
speaking, that if the making of the hierarchy can proceed unhindered even if we

2“Smallest” with respect to the ordering on partial functions given by f ≤ g iff g extends f .
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go on endlessly using ordinal numbers, that then we eventually obtain the smallest
completion ϕ of ϕ with respect to V . This will all become clear in Subsection 5.5.

With some luck, the valuation ΣΠΣϕ might already be complete with respect
to V . We could then say that “we hit ϕ in 3 steps”. We will prove in Subsection 5.4
that in general we need to make uncountably many steps before we hit ϕ.

No Completion. Let us end the introducion with an example of a valuation system
V ⊇ L

ϕ−→ E such that ϕ has no completion with respect to V .

Example 89. Let L be the sublattice of R given by

L := { n−1 : n ∈ N } ∪ {0}.
Let ϕ : L −→ R be the valuation given by, for all n ∈ N,

ϕ(n−1 ) = 1 and ϕ( 0 ) = 0.

Then we have a valuation system R ⊇ L
ϕ−→ R.

Let C be a sublattice of R, and let ψ : C −→ R be the valuation given by

R ⊇ C
ψ−→ R is complete and ψ extends ϕ.

We will prove that this is not possible.
Consider the sequence a1 ≥ a2 ≥ · · · in L given by an = n−1. We have

ψ(an) = ϕ(an) = 1.

So
∧

nψ(an) = 1. In particular, a1 ≥ a2 ≥ · · · is ψ-convergent (see Definition 34).
Since ψ is complete with respect to R (see Definition 77), we get

1 =
∧

nψ(an) = ψ(
∧

nan ) = ψ(
∧

nn
−1 ) = ψ( 0 ) = 0,

which is absurd. Hence ϕ has no completion with respect to ϕ.
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5.2. The Π-Extension.

Definition 90. Let V ⊇ L
ϕ−→ E be a valuation system. Define

ΠL := { ∧

nan : a1 ≥ a2 ≥ · · · from L is ϕ-convergent }.

Remark 91. Let V ⊇ L
ϕ−→ E be a valuation system.

Note that if ϕ is Π-complete (see Definition 77), then ΠL = L.

Lemma 92. Let V ⊇ L
ϕ−→ E be a valuation system.

Then ΠL is a sublattice of V , and L is a sublattice of ΠL.

Proof. We first prove that ΠL is a sublattice of V . Let a, b ∈ ΠL be given; we need
to prove that a ∧ b ∈ ΠL and a ∨ b ∈ ΠL. Choose ϕ-convergent a1 ≥ a2 ≥ · · ·
and b1 ≥ b2 ≥ · · · with a =

∧

nan and b =
∧

nbn. Then a1 ∧ b1 ≥ a2 ∧ b2 ≥ · · · is
ϕ-convergent by Proposition 48, and we have

∧

nan ∧ bn = a∧ b. Hence a∧ b ∈ ΠL.
Similarly, a1 ∨ b1 ≥ a2 ∨ b2 ≥ · · · is ϕ-convergent by Proposition 48 and using
σ-distributivity one can prove that a ∨ b = ∧

nan ∨ bn. Hence a ∨ b ∈ ΠL.
To prove that L is a sublattice of ΠL, we first note that L is a subset of ΠL.

Now, since both L and ΠL are sublattices of V , and L is a subset of ΠL, we know
that L must be a sublattice of ΠL. �

Remark 93. In the proof of Lemma 92, we have used the fact that V is σ-distributive
and the fact that E is R-complete (via Proposition 48).

Definition 94. Let V ⊇ L
ϕ−→ E be a valuation system.

We say ϕ is Π-extendible if there is a valuation ψ : ΠL→ E with

ψ(
∧

nan) =
∧

nϕ(an) for all ϕ-convergent a1 ≥ a2 ≥ · · · .
Clearly, there can be at most one such map ψ; if it exists, we denote it by

Πϕ : ΠL −→ E.

Finally, note that if ϕ is Π-extendible, then Πϕ extends ϕ (hence the name).

Remark 95. Let V ⊇ L
ϕ−→ E be a valuation system.

(i) Note that if ϕ is Π-complete with respect to V ,
then ϕ is Π-extendible and Πϕ = ϕ.

(ii) On the other hand, if ϕ is Π-extendible, and Πϕ = ϕ,
then ϕ is Π-complete with respect to V .

Example 96. The following valuation systems are Π-extendible.

℘R ⊇ AL
µL−−→ R and [−∞,+∞]R ⊇ FL

ϕL−−→ R

Indeed, this follows by Remark 95(i) since these valuation systems are Π-complete.
More interestingly, the following valuation systems are complete as well.

℘R ⊇ AS
µS−→ R and [−∞,+∞]R ⊇ FS

ϕS−−→ R

This will follow from Lemma 100.

Example 97. We leave it to the reader to verify that the valuation system

R ⊇ L
ϕ−→ R

from Example 89 is not Π-extendible.

Lemma 98. Let V ⊇ L
ϕ−→ E be a valuation system.

If ϕ is Π-extendible, then V ⊇ ΠL
Πϕ−−→ E is Π-complete.
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Proof. Let a1 ≥ a2 ≥ · · · from ΠL be given and suppose that
∧

nΠϕ(a
n) exists; we

need to prove that
∧

na
n ∈ ΠL and that Πϕ(

∧

nan) =
∧

nΠϕ(an) (see Def. 77).
To begin, write an =

∧

na
n
m where an1 ≥ an2 ≥ · · · is a ϕ-convergent sequence

in L for each n ∈ N. Define for each i ∈ N an element bi ∈ L by

bi :=
∧{ anm : n,m ≤ i }.

Then b1 ≥ b2 ≥ · · · and
∧

nbn =
∧

na
n. Recall that

∧

nΠϕ(a
n) exists. We claim

that
∧

nΠϕ(a
n) is the infimum of ϕ(b1) ≥ ϕ(b2) ≥ · · · . If we can prove this, we are

done. Indeed, then b1 ≥ b2 ≥ · · · is ϕ-convergent, so
∧

na
n =

∧

nbn ∈ ΠL, and

Πϕ(
∧

na
n) = Πϕ(

∧

nbn) since
∧

na
n =

∧

nbn,

=
∧

nϕ(bn) since ϕ is Π-extendible,

=
∧

nΠϕ(a
n) by the claim.

Let us prove that
∧

nΠϕ(a
n) is the infimum of ϕ(b1) ≥ ϕ(b2) ≥ · · · .

For each i, we have bi ≥
∧

n≤ia
n = ai, so ϕ(bi) = Πϕ(bi) ≥ Πϕ(ai). Hence we

see that
∧

nΠϕ(a
n) is a lower bound of ϕ(b1) ≥ ϕ(b2) ≥ · · · .

On the other hand: Let ℓ be a lower bound of ϕb1 ≥ ϕb2 ≥ · · · ; we need
to prove that ℓ ≤

∧

nΠϕ(a
n). For all n and m, we have anm ≥ bn∨m and so

ϕ(anm) ≥ ϕ(bn∨m) ≥ ℓ. Hence Πϕ(an) =
∧

mϕ(a
n
m) ≥ ℓ for all n. So

∧

nΠϕ(a
n) ≥ ℓ.

So
∧

nΠϕ(a
n) is the infimum of ϕb1 ≥ ϕb2 ≥ · · · , and we are done. �

Remark 99. Let V ⊇ L
ϕ−→ E be a Π-extendible valuation system.

By Lemma 98 we see that Πϕ is Π-complete with respect to V .
So by Remark 95(i) we see that Πϕ is Π-extendible, and that

Π(Πϕ) = Πϕ.

Lemma 100. Let V ⊇ L
ϕ−→ E be a valuation system.

Let C be a sublattice of V . Let ψ : C → E be a valuation. Assume

ψ extends ϕ and V ⊇ C
ψ−→ E is Π-complete.

Then ϕ is Π-extendible and ψ extends Πϕ.

Proof. We must prove that ϕ is Π-extendible and that ψ extends Πϕ.
Before we do this, we will prove that for every ϕ-convergent a1 ≥ a2 ≥ · · · , we have

∧

nan ∈ C and ψ(
∧

nan) =
∧

nϕ(an). (31)

We know that
∧

nϕ(an) exists (since a1 ≥ a2 ≥ · · · is ϕ-convergent), and that
ϕ(an) = ψ(an) (since ψ extends ϕ). So

∧

nψ(an) exists too. Hence a1 ≥ a2 ≥ · · · is
ψ-convergent. Because V ⊇ C

ψ−→ E is Π-complete this implies that
∧

nan ∈ C and
ψ(

∧

nan) =
∧

nψ(an) (see Definition 77). Hence we have proven Statement (31).
Statement (31) implies that ΠL ⊆ C. So in order to prove that ϕ is Π-extendible,

let us consider the valuation µ := ψ |ΠL. In order to prove that ϕ is Π-extendible we
must show that µ(

∧

nan) =
∧

nϕ(an) for every ϕ-convergent sequence a1 ≥ a2 ≥ · · ·
(see Def. 94), but this follows immediately from St. (31). Hence ϕ is Π-extendible.

Finally, since we know that ϕ is Π-extendible, we can talk about Πϕ, and write
the second part of St. (31) as ψ(

∧

nan) = Πϕ(
∧

nan). Hence ψ extends Πϕ. �

Corollary 101. Let V ⊇ L
ϕ−→ E be a valuation system.

Then ϕ is Π-extendible iff there is a valuation ψ : C → E such that

V ⊇ C
ψ−→ E is Π-complete and ψ extends ϕ.

(So, loosely speaking, ϕ is Π-extendible iff ϕ has a Π-complete extension.)

Proof. Combine Lemma 100 and Lemma 98. �
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Lemma 102. Let V ⊇ L
ϕ−→ E be a valuation system.

Let K be a sublattice of L, and let ψ : K → E be a valuation which extends ϕ.
Suppose that ψ is Π-extendible. Then ϕ is Π-extendible and Πψ extends Πϕ.

Proof. Note that Πψ extends ϕ, and V ⊇ ΠK
Πψ−−→ E is Π-complete (see Lemma 98).

So Lemma 100 implies that ϕ is Π-extendible and Πψ extends Πϕ. �

Lemma 103. Let V ⊇ L
ϕ−→ E be a valuation system.

Then ϕ is Π-extendible if and only if ϕ has the following property.
[

For every b ∈ L and ϕ-convergent a1 ≥ a2 ≥ · · · from L,
∧

nan ≤ b =⇒
∧

nϕ(an) ≤ ϕ(b).
(32)

Proof. “=⇒” Suppose ϕ is Π-extendible. Then ϕ has Property (32), because if
b ∈ L and ϕ-convergent a1 ≥ a2 ≥ · · · with

∧

nan ≤ b are given, then we have
∧

nϕ(an) = Πϕ(
∧

nan ) ≤ Πϕ(b) = ϕ(b).

“⇐=” Suppose ϕ has Property (32); we prove ϕ is Π-extendible. We claim that
∧

nan ≤ ∧

nbn =⇒ ∧

nϕ(an) ≤ ∧

nϕ(bn), (33)

where a1 ≥ a2 ≥ · · · and b1 ≥ b2 ≥ · · · are ϕ-convergent sequences in L.
Indeed, if

∧

nan ≤ ∧

nbn, then
∧

nan ≤ bm for all m, so
∧

nϕ(an) ≤ ϕ(bm) for
all m (by Property (32)), and hence

∧

nϕ(an) ≤
∧

nϕ(bm).
Statement (33) implies that

∧

nan =
∧

nbn =⇒ ∧

nϕ(an) =
∧

nϕ(bn),

so there is a unique map ψ : ΠL→ E such that

ψ(
∧

nan ) =
∧

nϕ(an) for all ϕ-convergent a1 ≥ a2 ≥ · · · . (34)

In fact, Statement (33) also implies that ψ is order preserving.
To prove that ϕ is Π-extendible (see Definition 94), it suffices to show that ψ is

a valuation. For this, it remains to be shown that ψ is modular (see Definition 3).
Let a, b ∈ ΠL be given. To show that ψ is modular, we need to prove that

ψ(a ∧ b) + ψ(a ∨ b) = ψ(a) + ψ(b).

Write a =
∧

nan and b =
∧

nbn where a1 ≥ a2 ≥ · · · and b1 ≥ b2 ≥ · · · from L are
ϕ-convergent sequences. Then we have

ϕ(a ∧ b) + ϕ(a ∨ b) = ψ(
∧

nan ∧∧

nbn) + ψ(
∧

nan ∨∧

nbn)

= ψ(
∧

nan ∧ bn) + ψ(
∧

nan ∨ bn)
=

∧

nϕ(an ∧ bn) +
∧

nϕ(an ∨ bn)
=

∧

n(ϕ(an ∧ bn) + ϕ(an ∨ bn) )
=

∧

n(ϕ(an) + ϕ(bn) )
...

= ψ(
∧

nan) + ψ(
∧

nbn).

Hence ψ is modular, which completes the proof that ϕ is Π-extendible. �
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5.3. The Smallest Complete Extension.

In the previous subsection, we described the smallest Π-complete extension of a
valuation system (when it exists). In this subsection, we will describe the smallest
complete extension of a valuation system (when it exists).

Situation 104. Let V ⊇ L
ϕ−→ E and V ⊇ C

ψ−→ E be valuation systems such that

ψ extends ϕ and ψ is complete.

In particular V ⊇ C
ψ−→ E must be Π-complete (see Definition 77).

Hence Lemma 100 implies that ϕ is Π-extendible and that ψ extends Πϕ.
Thus, loosely speaking, Πϕ is the smallest extension of ϕ which is Π-complete.
In this subsection, we identify the smallest extension ϕ of ϕ which is complete.
We tackle this problem in order to familiarise the reader with the notions needed
to define “V ⊇ L

ϕ−→ E is extendible” (see Definition 141). These notions, which
we introduce rather informally in this subsection, will be defined rigorously and in
a more general setting later on.

Let us begin. Note that V ⊇ C
ψ−→ E is also Σ-complete. Hence ϕ is Σ-

extendible, and ψ extends Σϕ. So we have the following situation.

ψ extends both Πϕ and Σϕ and V ⊇ C
ψ−→ E is complete.

By a similar reasoning, we see that Πϕ is Σ-extendible, and that Σϕ is Π-extendible
and that ψ extends both ΣΠϕ and ΠΣϕ. (Note that Π(Πϕ) = Πϕ, see Rem. 99).
So we have the following situation.

ψ extends both ΣΠϕ and ΠΣϕ and V ⊇ C
ψ−→ E is complete.

Of course, we can continue this proces. More formally, the clauses

Πn+1ϕ = Π(Σnϕ) Σn+1ϕ = Σ(Πnϕ) Π0ϕ = ϕ = Σ0ϕ

Πn+1L = Π(ΣnL) Σn+1L = Σ(ΠnL) Π0L = L = Σ0L,

give us valuation systems V ⊇ ΠnL
Πnϕ−−−→ E and V ⊇ ΣnL

Σnϕ−−−→ E for all n ∈ ω.
Note that Πϕ extends ϕ. Hence Σ2ϕ extends Σϕ by Lemma 102. Hence Π3ϕ

extends Π2ϕ. Etcetera. Similarly, Σϕ extends ϕ, so Π2ϕ extends Πϕ, and so on.
The hierarchy which we have obtained is shown in the following diagram.

Σϕ

❅❅
❅❅

❅❅
❅❅

❅❅
Σ2ϕ

❆❆
❆❆

❆❆
❆❆

❆❆
Σ3ϕ

❆❆
❆❆

❆❆
❆❆

❆❆
Σ4ϕ

❆❆
❆❆

❆❆
❆❆

❆❆
Σ5ϕ

❆❆
❆❆

❆
· · ·

ϕ

⑤⑤⑤⑤

❇❇
❇❇

· · ·

Πϕ

⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦

Π2ϕ

⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

Π3ϕ

⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

Π4ϕ

⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

Π5ϕ

⑥⑥⑥⑥

· · ·
We say that the hierarchy collapsed at Q, where Q ∈ {L, Π1L, Σ1L, Π2L, . . . }, if

Π(Q) = Q = Σ(Q).

In that case, let q : Q → E be the associated valuation (either Πnϕ or Σnϕ for
some n). Then V ⊇ Q

q−→ E is complete, since it is Π-complete and Σ-complete.
Note that the definition of Πnϕ and Σnϕ does not depend on which complete

extension ψ of ϕ is given, only on the fact that such ψ exists. In particular, if
V ⊇ C′ ψ

′

−→ E is any complete valuation system such that ψ′ extends ϕ, then ψ′

extends ΠnL and ΣnL. In particular, such ψ′ extends q. Hence q is the smallest
complete extension of ϕ we sought.

However, in general the hierarchy need not have collapsed at any ΠnL or ΣnL, as
we will show later on, in Subsection 5.4. So to find the smallest complete extension
of ϕ, we need to push forwards.

To this end, consider the sets ΠωL and ΣωL given by

ΠωL :=
⋃

nΠnL and ΣωL :=
⋃

nΣnL.
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Since ΠnL ⊆ Σn+1L and ΣnL ⊆ Πn+1L for all n, we see that ΠωL = ΣωL.
Now, since Πnϕ extends Πmϕ for n ≥ m, there is a unique map Πωϕ : ΠωL→ E

which extends all Πnϕ. One can easily see that V ⊇ ΠωL
Πωϕ−−−→ E is a valuation

system. Similarly, there is a unique map Σωϕ : ΣωL → E which extends all Σnϕ.
Then V ⊇ ΣωL

Σωϕ−−−→ E is a valuation system.
Since Πn+1ϕ extends Σnϕ for all n, one sees that Πωϕ = Σωϕ.
Again, the hierarchy might have collapsed at ΠωL, i.e.,

Π(ΠωL) = ΠωL = Σ(ΠωL).

In that case Πωϕ the minimal completion of ϕ we sought.
However, again the hierarchy might not have collapsed at ΠωL, so we consider

the valuations Πω+nϕ := Πn(Πωϕ) and Σω+nϕ := Σn(Πωϕ).

Σϕ

❄❄
❄❄

❄❄
❄❄

❄❄
Σ2ϕ

❆❆
❆❆

❆
· · · Σωϕ

❉❉
❉❉

❉❉
❉❉

❉❉
❉

Σω+1ϕ

❋❋
❋❋

❋❋
❋❋

❋❋
❋

Σω+2ϕ

❋❋
❋❋

❋
· · ·

ϕ

⑤⑤⑤⑤

❇❇
❇❇

· · · · · ·

Πϕ

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

Π2ϕ

⑥⑥⑥⑥

· · · Πωϕ

③③③③③③③③③③③

Πω+1ϕ

①①①①①①①①①①①

Πω+2ϕ

①①①①①

· · ·
With induction on ordinal numbers, we can continue this process endlessly. How-
ever, the collapse of the hierarchy can not be postponed indefinitely.

More formally, let L := { c ∈ C : ∃α[ c ∈ ΠαL ] }. Then we have ΠαL ⊆ L for
every (ordinaln number) α. We want to prove that ΠαL = L for some α. Define

α(c) = min { β : c ∈ ΠβL } (c ∈ L).

Then the set of ordinal numbers {α(c) : c ∈ L } has a supremum, say ξ. We have

c ∈ Πα(c)L ⊆ ΠξL (c ∈ L).

So L ⊆ ΠξL. But we already had ΠξL ⊆ L. Hence ΠξL = L.
We claim that the hierarchy has collapsed at ΠξL, i.e.,

Π(ΠξL) = ΠξL = Σ(ΠξL).

Indeed, we have
ΠξL ⊆ Σ(ΠξL) ⊆ L = ΠξL.

So Σ(ΠξL) = ΠξL. Similarly, ΠξL = Π(ΠξL).
One can easily verify that ϕ := Πξϕ is the smallest complete extension of ϕ.
All in all, we have proven the following.

Proposition 105. Let V ⊇ L
ϕ−→ E be valuation system.

If there is a valuation ψ : C → E such that

ψ extends ϕ and V ⊇ C
ψ−→ E is complete,

then there is a smallest such valuation,
that is, there is a valuation ϕ : L→ E such that

ϕ extends ϕ and V ⊇ L
ϕ−→ E is complete,

and such that ψ′ extends ϕ for every valuation ψ′ : C → E with

ψ′ extends ϕ and V ⊇ C
ψ′

−→ E is complete.

Moreover, ϕ = Πξϕ for some ordinal number ξ.
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5.4. The Borel Hierarchy Theorem.

Before we continue our study of the hierarchy introduced in the Subsection 5.3, let
us take a step back and wonder: is this all — the endless hierarchy — neccesary?

Indeed, using the terminology of Subsection 5.3, it is not unthinkable that the
hierarchy is always collapsed at, say Σ37L. In that case the theory would be much
simpler; we would only need to use the symbols up to “Σ37”. In particular, the
involvement of the (infinite) ordinal numbers would not be required.

It turns out that we do need a large amount of symbols to desribe the hierarchy.
In this subsection we will give an example where the hierarchy can only be collaped
at ΠαL or at ΣαL if the ordinal number α is uncountable, see Proposition 137.

On the bright side, it does not get worse than this: we will see (in Lemma 144)
that the hierarchy is always collapsed at Πℵ1L, where ℵ1 is the set of all countable
ordinal numbers, i.e., the smallest uncountable ordinal number.

The material in the subsection will not be used later on. So the reader can safely
skip this subsection and proceed to Subsection 5.5 on page 56 if so desired.

5.4.1. Borel Subsets.
Our example involves Borel sets. Recall that the Borel subsets of a topological
space X (such as R) are those subsets one can form using countable intersection
and countable union starting from the open subsets.

Instead of R, we work with the Borel subsets of the Baire space, NN. In short,
the topology on NN is the product topology when N is given the discrete toplogy.
To understand these words, one might look at [7], but this is not necessary as we
will give a more direct description of T in Subsubsection 5.4.3.

While we could do the following for R as well, it is much easier for NN.

Notation 106. Let T denote the set of open subsets of NN,
and let B denote the set of Borel subsets of NN.

Note that B is a sublattice of ℘(NN), and B is a sublattice of T .

Definition 107. Let ψ : B → R be the map given by, for all A ∈ B,
ψ(A) = 0.

Then ψ is a valuation, and we have the following valuation system.

℘(NN) ⊇ B ψ−→ R.

Lemma 108. The valuation ψ is complete with respect to ℘(NN) (see Def. 77).

Proof. Let A1 ⊇ A2 ⊇ · · · and B1 ⊆ B2 ⊆ · · · be a ψ-convergent sequences in B.
To prove that ψ is complete relative to ℘(NN) we must show that

⋂

nAn ∈ B and
⋃

nBn ∈ B.
This follows immediately by definition of the Borel subsets. �

Remark 109. Let A be a sublattice of B and let

ϕ : A −→ R

be the restriction of ψ to A. Note that we are in Situation 104,

ψ extends ϕ and ψ is complete.

Using the notation from Subsection 5.3, let us see what ΠA and ΣA are.
Note that every sequence A1 ⊇ A2 ⊇ · · · in A is ϕ-convergent, as ψ is constant.

Further, given A1, A2, . . . ∈ A, we have
⋂

nAn =
⋂

nA
′
n, where A

′
1 ⊇ A′

2 ⊇ · · · are
defined by A′

n = A1 ∩ · · · ∩ An. So we see that

ΠA = {
⋂

nAn : A1, A2, . . . ∈ A }. (35)
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By a similar reasoning it is not hard to see that

ΣA = { ⋃

nAn : A1, A2, . . . ∈ A }. (36)

5.4.2. Statement of the Borel Hierarchy Theorem.
Let us spend words on where we are headed. We will define a sublattice A of ℘(NN)
in such a way that, using the notation of Remark 109, we have that ΣA is precisely
the family of open subsets of NN, while ΠA is the family of closed subsets of NN.
From this information, the reader can deduce with induction and the principle of
the excluded middle, that for every ordinal α > 0, and all A ⊆ NN,

A ∈ ΠαA ⇐⇒ NN\A ∈ ΣαA. (37)

The aim of this subsection is to prove the following statement.




Let α be a countable ordinal number.

There is a set S ∈ Σ(ΠαA) with S /∈ Π(ΣαA), and
there is a set P ∈ Π(ΣαA) with P /∈ Σ(ΠαA).

(38)

In particular this means that if the hierarchy has collapsed at ΠαA or at ΣαA for
some ordinal number α then α must be uncountable, see Proposition 137.

Statement (38) is known in descriptive set theory as the Borel Hierarchy Theo-
rem. We will give a proof of Statement (38) in this subsection that uses the principle
of excluded middle and is based on a beautiful paper by Veldman [6, paragraph 5].3

5.4.3. Open Subsets of NN.
Before we give a definition of A, and start with the proof of Statement (38) let us
describe the topology T on the Baire space NN in more detail.

Definition 110. Given m,n ∈ N, define Bmn by

Bmn := { f ∈ NN : f(n) = m }.

Remark 111. For A ⊆ NN, we have A ∈ T if and only if for each f ∈ A we have,

f ∈ Bm1
n1

∩ · · · ∩BmK

nK
⊆ A,

for some K ∈ N and m1, . . . ,mK ∈ N and n1, . . . , nK ∈ N.

We can formulate Remark 111 more abstractly with some notation.

Definition 112. Let S and S∩ be families of subsets of NN given by

S := { Bmn : m,n ∈ N }
S∩ := { S1 ∩ · · · ∩ SK : K ∈ N, Sk ∈ S }.

Remark 113. By Remark 111, we see that S is a subbasis for the topology T on NN,
and we see that S∩ is a basis for T . In particular, we get

T = {
⋃

nAn : A1, A2, . . . ∈ S∩ }. (39)

Remark 114. Let m,n ∈ N. Then Bmn ∈ T by Remark 113. More suprisingly,

NN\Bmn ∈ T ,
that is, Bmn is closed as well. Indeed, this follows by the following equality.

NN\Bmn =
⋃

{ Bkn : k ∈ N, k 6= m }.

3 In this paper [6], Veldman (also) gives a proof of a variant of the Borel Hierarchy Theorem
using Brouwer’s Continuity Principle instead of the principle of excluded middle.
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5.4.4. Definition of the Sublattice A of NN.
Recall that we want to define a sublattice A of ℘(NN) so that ΣA are the open
subsets of NN, while ΠA are the closed subsets (see Remark 109).

Since the elements of S are both open and closed, we let A be the sub-Boolean
algebra of ℘(NN) generated by S. More concretely:

Definition 115. Let S ′, S ′
∩ and A be the families of subsets of NN given by

S ′ := { Bmn : m,n ∈ N } ∪ { NN\Bmn : m,n ∈ N }
S ′
∩ := { S1 ∩ · · · ∩ SK : K ∈ N, Sk ∈ S ′ }
A := { T1 ∪ · · · ∪ TL : L ∈ N, Tℓ ∈ S ′

∩ }.

Lemma 116. The family A is a sublattice of ℘(NN), and

NN\A ∈ A ⇐⇒ A ∈ A

for every A ⊆ NN, and we have the following equalities.

ΣA = { U ⊆ NN : U is open },
ΠA = { C ⊆ NN : C is closed }.

Proof. We leave this to the reader. �

5.4.5. Encoding the Elements of A.
Now that we have defined A, we can start the proof of Statement (38). Maybe
the most important idea behind the proof presented here is that we can encode the
Borel subsets B of NN as elements of NN.

To warm up let us see how we can encode a tuple a1 · · ·an of natural numbers
as a natural number. We leave it to the reader to find a bijection

〈−,−〉 : N× N −→ N\{1}.

Let N∗ be the set of tuples on N. Given a tuple a1 · · · an ∈ N∗, define

〈a1a2 · · · an〉 := 〈a1, 〈a2, . . . 〈an, 1〉 · · · 〉〉 .

Then the resulting map 〈−〉 : N∗ → N is a bijection.
Let us now encode the elements of A (see Def. 115). Given k ∈ N, let

[[k]]S
′

:=











NN\Bmn if k ≡ 〈1mn〉,
Bmn if k ≡ 〈2mn〉,
∅ otherwise.

Then [[−]]S
′

: N → S ′ is a surjection. Given k ∈ N with k ≡ 〈a1 · · · aK〉, let

[[k]]S
′

∩ := [[a1]]
S′ ∩ · · · ∩ [[aK ]]S

′

.

Then [[−]]S
′

∩ : N → S ′
∩ is a surjection. Given k ∈ N with k ≡ 〈a1 · · ·aK〉, let

[[k]]A := [[a1]]
S′

∩ ∪ · · · ∪ [[aK ]]S
′

∩ .

Then [[−]]A : N → A is a surjection.
Let A ∈ A be given. If [[k]]A = A for some k ∈ N we say that k is a code for A.

Note that A might have multiple codes. This will not be a problem.
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5.4.6. Encoding Countable Ordinal Numbers.
Before we can make the step to encode all Borel subsets of NN we need an encoding
for the countable ordinal numbers. We need some notation.

Notation 117. Let f ∈ NN and n ∈ N be given. Define f [n] ∈ NN by, for m ∈ N,

f [n](m) = f( 〈n,m〉 ).
Since 〈−,−〉 is a bijection from N×N to N\{1}, an element f ∈ NN is completely

determined by f [1], f [2], . . . and f(1). More precisely, the assignment

f 7→ f(1), f [1], f [2], . . . .

gives a bijection from NN to N× (NN)N.
To encode the countable ordinal numbers, we use special elements of NN.

Definition 118. Let Stp be the subset of NN inductively given by:

(i) If f ∈ NN and f(1) 6= 1, then f ∈ Stp.
(ii) If f ∈ NN and f(1) = 1 and f [n] ∈ Stp for all n ∈ N, then f ∈ Stp.

The elements of Stp are called stumps and are used in Intuitionistic Mathematics
as a replacement for the countable ordinal numbers.

Definition 119. Let α[−] : Stp → ℵ1 be the map recursively defined by

α[f ] =

{

0 if f(1) 6= 1;
∨

n∈N
α[f [n]] + 1 if f(1) = 1.

Recall that ℵ1 is the set of all countable ordinal numbers.

Lemma 120. The map α[−] : Stp −→ ℵ1 is surjective.

Proof. To prove that α[−] is surjective, we must show that for each α ∈ ℵ1 there
is an f ∈ Stp with α[f ] = α. We use induction on α ∈ ℵ1.

First we must find an f ∈ Stp with α[f ] = 0. Simply take the f ∈ NN with
f(n) = 37 for all n ∈ N. Then f(1) 6= 0, so f ∈ Stp, and α[f ] = 0.

Let α ∈ ℵ1 be given, and assume that α = α[f ] for some f ∈ Stp. We need to
find a g ∈ Stp such that α[g] = α+ 1. Define g ∈ NN by

g(1) = 1, and g[n] = f for all n ∈ N.

Then g ∈ Stp, and α[g] =
∨

n∈N
α[f ] + 1. Since α[f ] = α, we have α[g] = α+ 1.

Let λ ∈ ℵ1 be a limit ordinal, and assume that α[−] is surjective on λ. We
must find an f ∈ Stp such that α[f ] = λ. Since λ ∈ ℵ1 there are α1, α2, . . . ∈ λ
such that λ =

∨

n∈N
αn + 1. Since α[−] is surjective on λ, we know that there are

f1, f2, . . . ∈ Stp with α[fn] = αn. Define f ∈ NN by

f(1) = 1 and f [n] = fn for all n ∈ N.

Then f ∈ Stp, and α[f ] =
∨

n∈N
α[f [n]] + 1 =

∨

n∈N
αn + 1 = λ. �

5.4.7. Encoding Borel Subsets of NN.
We are now ready to encode the Borel subsets of NN.

Definition 121. With recursion on Stp define for each f ∈ Stp maps

[[−]]Πf : NN −→ Π(Σα[f ]A) and [[−]]Σf : N
N −→ Σ(Πα[f ]A)

such that the following clauses hold.

(i) For f ∈ Stp with f(1) 6= 1 we have

[[g]]Πf =
⋂

n≥2

[[ g(n) ]]A and [[g]]Σf =
⋃

n≥2

[[ g(n) ]]A.
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(ii) For f ∈ Stp with f(1) = 1 we have

[[g]]Πf =
⋂

n∈N

[[ g[n] ]]Σf [n] and [[g]]Σf =
⋃

n∈N

[[ g[n] ]]Πf [n] .

Lemma 122. For each f ∈ Stp the maps [[−]]Πf and [[−]]Σf are surjective.

Proof. We leave this to the reader. �

Remark 123. Let f ∈ Stp and g ∈ NN be given. Note that [[g]]Πf and [[g]]Σf do not

depend on g(1). More precisely, given g′ ∈ NN with g′(n) = g(n) for all n ≥ 2 —
so possibly g(1) 6= g′(1). Then we have [[g]]Πf = [[g′]]Πf and [[g]]Σf = [[g′]]Σf .

We use Remark 123 to combine the maps [[−]]Πf and [[−]]Σf into one map [[−]]Bf .

Definition 124. Let [[−]]B− : NN ×Stp −→ B be given by, for f ∈ Stp and g ∈ NN,

[[g]]Bf =

{

[[g]]Πf if g(1) = 37,

[[g]]Σf if g(1) 6= 37.
(40)

We want to prove that [[−]]B− is surjective. To do this, we need a lemma.

Lemma 125. We have the following equality.

B = Πℵ1A. (41)

Proof. Note that we have already proven (at the end of in Subsection 5.3) that
B = ΠξA for some ordinal number ξ. Statement (41) is an improvement.

Recall that Πℵ1A ≡ ⋃

α∈ℵ1
ΠαA. Since ΠA ⊆ Σ2A, we have

T ≡ ΣA ⊆ Πℵ1A ⊆ B.
Recall that B is the family of all subsets of NN that can be formed using countable
unions and countable intersections starting from T . So to prove that Πℵ1A = B it
suffices to show that Πℵ1A is ‘closed’ under countable unions and intersections, i.e.,
given A1, A2, . . . ∈ Πℵ1A we must show that

⋃

nAn ∈ Πℵ1A and
⋂

nAn ∈ Πℵ1A.
We will only prove that

⋃

nAn ∈ Πℵ1A; the proof of
⋂

nAn ∈ Πℵ1A is similar.
Let A′

n := A1 ∪ · · · ∪ An for each n ∈ N. Then
⋃

nA
′
n =

⋃

nAn. Since Πℵ1A is

a sublattice of ℘(NN), we get that A′
n ∈ Πℵ1A ≡ ⋃

α∈ℵ1
ΠαA for all n ∈ N.

Pick α1, α2, . . . ∈ ℵ1 such that A′
n ∈ Παn

A for all n ∈ N. Let α :=
∨

n αn.
Then for all n ∈ N we have αn ≤ α, and Παn

A ⊆ ΠαA, and so A′
n ∈ ΠαA. By

definition of Σ(ΠαA) we have
⋃

nA
′
n ∈ Σ(ΠαA) ≡ Σα+1A. Now, note that since

α1, α2, . . . ∈ ℵ1, also α =
∨

n αn ∈ ℵ1, and so α+ 1 ∈ ℵ1. Hence
⋃

nAn =
⋃

nA
′
n ∈ Πα+1A ⊆ Πℵ1A.

So Πℵ1A is closed under countable union. Similarly, Πℵ1A is closed under countable
intersection. It follows that B = Πℵ1A. We have proven Statement (41). �

Proposition 126. The map [[−]]B− : NN × Stp −→ B is surjective.

Proof. Let A ∈ B be given. We must find f ∈ Stp and g ∈ NN such that A = [[g]]Bf .

By Lemma 125 we know that A ∈ Πℵ1A ≡
⋃

α∈ℵ1
ΠαA. Pick an α ∈ ℵ1 with

A ∈ ΠαA. Since the map α[−] : Stp → ℵ1 is a surjection, there is an f ∈ Stp

such that α[f ] = α. Since the map [[−]]Πf : NN −→ Π(Σα[f ]A) is a surjection and

A ∈ ΠαA ≡ Πα[f ]A ⊆ Π(Σα[f ]A), there is an h ∈ NN such that [[h]]Πf = A.

Now, let g ∈ NN be given by g[n] = h[n] for all n ∈ N and g(1) = 37. Then

[[g]]Bf = [[g]]Πf = [[h]]Πf = A.

So we see that [[−]]B− : NN × Stp −→ B is surjective. �
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5.4.8. Outstanding Debt.
We take a small detour, because in Example 84 we used a fact, Statement (28),
without proof, and we are now in a position to correct this situation.

Notation 127. Let D denote the Cantor set, see [7, Examples 17.9c].

Lemma 128. D is Borel negligble subset of R, and there is an injective map

p : NN × Stp −→ D.

Proof. We leave this to the reader. �

Corollary 129. We have the following situation.

B NN × Stp
p //

[[−]]B
−oo D

The map [[−]]B− is surjective, the map p is injective, and D is Borel negligible.

Proof. Combine Lemma 128 and Proposition 126. �

Note that Corollary 129 implies Statement (28). This ends our detour.

5.4.9. Cataloguing Borel Subsets of NN.
We have encoded the Borel subsets using elements of NN. To prove the Borel
Hierarchy Theorem (see Statement (38)) we use the encoding to go one step further.

Definition 130. For each f ∈ Stp, define

UΠ
f = { h ∈ NN : h[1] ∈ [[h[2]]]Πf }, UΣ

f = { h ∈ NN : h[1] ∈ [[h[2]]]Σf }.

One can think of the set UΠ
f as a catalogue of Π(Σα[f ]A).

Indeed, given A ∈ Π(Σα[f ]A) with A = [[g]]Πf for some g ∈ NN, we have

A = { h[1] : h ∈ UΠ
f and h[2] = g }.

The following lemma might be the essential part of the Borel Hierarchy Theorem.

Lemma 131. Let f ∈ Stp be given. Then we have

UΠ
f ∈ Π(Σα[f ]A) and UΣ

f ∈ Σ(Πα[f ]A). (42)

To give a proof of Lemma 131 we need some notation and a lemma.

Definition 132. Let F : NN −→ NN be given.

(i) Given A ⊆ NN, let F ∗(A) := { g ∈ NN : F (g) ∈ A }.
(ii) We say that F is continuous if F ∗(Bmn ) ∈ T for all m,n ∈ N.

Lemma 133. Let F : NN → NN be a continuous function.
Let α be an ordinal number with α > 0. Then, for all A ⊆ NN,

F ∗(A) ∈ ΠαA when A ∈ ΠαA,
F ∗(A) ∈ ΣαA when A ∈ ΣαA.

Proof. We leave this to the reader. �

Proof of Lemma 131. We prove Statement (42) using induction over f ∈ Stp.

Let f ∈ Stp with f(1) 6= 1 be given. We must prove that

UΠ
f ∈ ΠA and UΣ

f ∈ ΣA.

We will only prove that UΣ
f ∈ ΣA since the proof of UΠ

f ∈ ΠA is similar.
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Let h ∈ NN be given. Note that the following are equivalent.

h ∈ UΣ
f ,

h[1] ∈ [[h[2] ]]Σf ,

h[1] ∈
⋃

n≥2 [[h[2](n) ]]A,

h[1] ∈ [[h[2](n) ]]A for some n ≥ 2,

h[1] ∈ [[k]]A and h[2](n) = k for some n ≥ 2, k ∈ N.

Let F : NN → NN be given by F (g) = g[1]. Then h[1] ∈ [[k]]A iff h ∈ F ∗([[k]]A).
Further, note that h[2](n) = k iff h ∈ Bk〈2,n〉. All in all, we get

UΣ
f =

⋃

k∈N

⋃

n≥2

F ∗( [[k]]A ) ∩ Bk〈2,n〉. (43)

By Equation (43) to prove UΣ
f ∈ ΣA it suffices to show that F ∗( [[k]]A ) ∈ ΣA.

Since it is not hard to see that F is continuous (see Definition 132) and [[k]]A ∈
ΣA we get by Lemma 133 that F ∗( [[k]]A ) ∈ ΣA. Hence UΣ

f ∈ ΣA.

Recall that we are proving Statement (42) using induction on f ∈ Stp.
Let f ∈ Stp with f(1) = 1 be given. Assume that for all n ∈ N,

UΠ
f [n] ∈ Π(Σα[f [n]]A) and UΣ

f [n] ∈ Σ(Πα[f [n]]A).

We must prove that UΠ
f ∈ Π(Σα[f ]A) and UΣ

f ∈ Σ(Πα[f ]A). We will prove that

UΣ
f ∈ Σ(Πα[f ]A), (44)

and we leave the proof of UΠ
f ∈ Π(Σα[f ]A) to the reader.

To proceed, we need some notation. We will define a ‘pairing’

P : NN × NN −→ NN.

Let h1, h2 ∈ NN be given. Define P (h1, h2) ∈ NN by: P (h1, h2)(1) = 1, and

(P (h1, h2) )
[1] = h1, and (P (h1, h2) )

[2] = h2,

and (P (h1, h2) )
[n](m) = 1 for all n,m ∈ N with n > 2.

Let h ∈ NN be given. Note that the following are equivalent.

h ∈ UΣ
f ,

h[1] ∈ [[h[2] ]]Σf ,

h[1] ∈ ⋃

n∈N
[[h[2][n] ]]Πfn ,

h[1] ∈ [[h[2][n] ]]Πfn for some n ∈ N,

P (h[1], h[2][n]) ∈ UΠ
f [n] for some n ∈ N.

Now, for each n ∈ N, let Fn : N
N → NN be given by, for h ∈ NN,

Fn(h) = P (h[1], h[2][n]).

Then using the notation of Definition 132 we see that

UΣ
f =

⋃

n∈N
F ∗
n(U

Π
f [n] ). (45)

Recall that we must prove that UΣ
f ∈ Σ(Πα[f ]A). It suffices to prove that

F ∗
n(U

Π
f [n] ) ∈ Π(Σα[f [n]]A), (46)

by Statement (45), and because we have

Π(Σα[f [n]]A) ⊆ Σ(Πα[f ]A).
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By Lemma 133 to prove that Statement (46) holds it suffices to show that Fn is
continuous; we leave this to the reader. Hence we have proven Statement (44).

This completes the proof of Statement (42). �

5.4.10. Diagonalization.
With the catalogues UΣ

f and UΠ
f at our disposal we use Cantor’s diagonal argument

to prove the Borel Hierarchy Theorem (see Statement (38)).

Definition 134. Let f ∈ Stp be given. Let DΠ
f and DΣ

f be give by

DΠ
f := { g ∈ NN : g /∈ [[g]]Πf }, DΣ

f := { g ∈ NN : g /∈ [[g]]Σf }.
Theorem 135. Let f ∈ Stp be given. Then we have

DΠ
f ∈ Σ(Πα[f ]A) and DΠ

f /∈ Π(Σα[f ]A),

DΣ
f ∈ Π(Σα[f ]A) and DΣ

f /∈ Σ(Πα[f ]A).

Proof. Let f ∈ Stp be given. We will only prove that

DΠ
f ∈ Σ(Πα[f ]A) and DΠ

f /∈ Π(Σα[f ]A), (47)

because there is a similar proof of DΣ
f ∈ Π(Σα[f ]A) and DΣ

f /∈ Σ(Πα[f ]A).

Let us first prove that DΠ
f /∈ Π(Σα[f ]A). So assume DΠ

f ∈ Π(Σα[f ]A) in order to

reach a contradiction. Since the map [[−]]Πf : NN −→ Π(Σα[f ]A) is surjective, there

is a gδ ∈ NN with [[gδ]]
Π
f = DΠ

f . Then by definition of DΠ
f ,

gδ ∈ DΠ
f ⇐⇒ gδ /∈ [[gδ]]

Π
f = DΠ

f . (48)

Statement (48) leads to a contradiction. Hence we conclude that DΠ
f /∈ Π(Σα[f ]A).

Let us prove that DΠ
f ∈ Σ(Πα[f ]A). Let ∆: NN → NN be given by, for g ∈ NN,

∆(g) = P (g, g).

Then ∆ is continuous (see Definition 132) and we have, for g ∈ NN,

g ∈ DΠ
f ⇐⇒ ∆(g) /∈ UΠ

f ⇐⇒ g ∈ ∆∗(NN\UΠ
f ).

So we see that DΠ
f = ∆∗(NN\UΠ

f ). Recall that we must prove that

DΠ
f ∈ Σ(Πα[f ]A).

Since ∆ is continuous it suffices to show that NN\UΠ
f ∈ Σ(Πα[f ]A) by Lemma 133.

We already know that UΠ
f ∈ Π(Σα[f ]A), so by Statement (37) we get

NN\UΠ
f ∈ Σ(Πα[f ]A).

So DΠ
f ∈ Σ(Πα[f ]A). Hence we have proven Statement (47). �

Corollary 136. The Borel Hierarchy Theorem holds, see Statement (38).

Proposition 137. Using the terminology from Subsection 5.3,
if α is an ordinal number such that the hierarchy collapsed at ΠαA or at ΣαA,
then α must be uncountable.

Proof. Let α be an ordinal number. We will only prove that α must be uncountable
when the hierarchy collapsed at ΠαA, because the proof that αmust be uncountable
when the hierarchy collapsed at ΣαA is similar.

Assume that the hierarchy hierarchy collapsed at ΠαA, that is,

Π(ΠαA) = ΠαA = Σ(ΠαA).

Assume that α is countable in order to reach a contradiction.
By the Borel Hierarchy Theorem, see Corollary (136), there is an

S ∈ Σ(ΠαA) with S /∈ Π(ΣαA).
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However, we have the following inclusion

Σ(ΠαA) = ΠαA ⊆ Π(ΣαA).

So since S ∈ Σ(ΠαA), we get S ∈ Π(ΣαA), which contradicts S /∈ Π(ΣαA).
Hence α is not countable. So α must be uncountable. �
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5.5. The Hierarchy of Extensions.

To get the smallest complete extension of a valuation ϕ with respect to some V
(when it exists) we can make a hierarchy of extensions of ϕ, see Subsection 5.3:

Σϕ

❄❄
❄❄

❄❄
❄❄

❄❄
Σ2ϕ

❆❆
❆❆

❆
· · · Σωϕ

❉❉
❉❉

❉❉
❉❉

❉❉
❉

Σω+1ϕ

❋❋
❋❋

❋❋
❋❋

❋❋
❋

Σω+2ϕ

❋❋
❋❋

❋
· · ·

ϕ

⑤⑤⑤⑤

❇❇
❇❇

· · · · · ·

Πϕ

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

Π2ϕ

⑥⑥⑥⑥

· · · Πωϕ

③③③③③③③③③③③

Πω+1ϕ

①①①①①①①①①①①

Πω+2ϕ

①①①①①

· · ·

We have seen that if ϕ has a complete extension, then ϕ also has a smallest complete
extension ϕ, and that ϕ = Πξϕ for some ordinal number ξ, see Proposition 105.

Even if we do not know whether ϕ has a complete extension, we can still try to
make the hierarchy, and this is what we are going to do in this subsection.

It is possible that the making of the hierarchy is hindered at some point, e.g., if
Σ2ϕ is not Π-extendible, then we can not define Π3ϕ = Π(Σ2ϕ).

If we can define the hierarchy up to Παϕ unhindered we will say that

ϕ is Πα-extendible.

We will prove that ϕ has a complete extension iff ϕ is Πℵ1 -extendible. Moreover,
the valuation Πℵ1ϕ will be the smallest complete extension of ϕ (see Corollary 145).

Let us begin by giving a formal definition of the hierarchy and “Πα-extendible”.

Definition 138. Let V ⊇ L
ϕ−→ E be a valuation system.

We are going to define the following statements and valuation systems.

(i) For each ordinal number α, statements

“ϕ is Πα-extendible” and “ϕ is Σα-extendible”.

(ii) For each α such that ϕ is Πα-extendible, a valuation system

V ⊇ ΠαL
Παϕ−−−→ E.

(iii) For each α such that ϕ is Σα-extendible, a valuation system

V ⊇ ΣαL
Σαϕ−−−→ E.

We will define them in such a way that we get a hierarchy of the following shape.

Σϕ

❅❅
❅❅

❅❅
❅❅

❅❅
Σ2ϕ

❆❆
❆❆

❆
· · · Σωϕ

❇❇
❇❇

❇
· · · · · · Σλϕ

❇❇
❇❇

❇
· · ·

ϕ

⑤⑤⑤⑤

❇❇
❇❇

· · · · · · · · · · · ·

Πϕ

⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦

Π2ϕ

⑥⑥⑥⑥

· · · Πωϕ

⑤⑤⑤⑤⑤

· · · · · · Πλϕ

⑤⑤⑤⑤

· · ·

More precisely, the following statements will be true.

(I) For all β < γ, if ϕ is Πγ-extendible, then ϕ is both Πβ- and Σβ-extendible,
and the map Πγϕ extends both Πβϕ and Σβϕ.

(II) For all β < γ, if ϕ is Σγ-extendible, then ϕ is both Πβ- and Σβ-extendible,
and the map Σγϕ extends both Πβϕ and Σβϕ.

(III) Let λ be zero or a a limit ordinal. Then ϕ is Πλ-extendible if and only if ϕ
is Σλ-extendible. Furthermore, if ϕ is Πλ-extendible, then Πγϕ = Σγϕ.

Now, we define the aforementioned statements and valuation systems by recursion
over the ordinal number using the following clauses.

(i) ϕ is Π0-extendible and ϕ is Σ0-extendible. Moreover,

Π0L = L Σ0L = L Π0ϕ = ϕ Σ0ϕ = ϕ.
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(ii) Let α be an ordinal number. Then we have

ϕ is Πα+1-extendible ⇐⇒
[

ϕ is Σα-extendible, and

Σαϕ is Π-extendible.

Moreover, if ϕ is Πα+1-extendible, then

Πα+1L = Π(ΣαL) and Πα+1ϕ = Π(Σαϕ),

where V ⊇ Π(ΣαL)
Π(Σαϕ)−−−−−→ E is the valuation system from Definition 94.

(iii) Let α be an ordinal number. Then we have

ϕ is Σα+1-extendible ⇐⇒
[

ϕ is Πα-extendible, and

Παϕ is Σ-extendible.

Moreover, if ϕ is Σα+1-extendible, then

Σα+1L = Σ(ΠαL) and Σα+1ϕ = Σ(Παϕ).

(iv) Let λ be a limit ordinal. Then we have

ϕ is Πλ-extendible ⇐⇒
[

ϕ is Πα-extendible,

for every α ∈ λ.

Moreover, if ϕ is Πλ-extendible, then

ΠλL =
⋃

α∈λ ΠαL and Πλϕ(c) = Πβϕ(c),

where β ∈ λ and c ∈ ΠβL.
(v) Let λ be a limit ordinal. Then we have

ϕ is Σλ-extendible ⇐⇒
[

ϕ is Σα-extendible,

for every α ∈ λ.

Moreover, if ϕ is Σλ-extendible, then

ΣλL =
⋃

α∈λ ΣαL and Σλϕ(c) = Σβϕ(c),

where β ∈ λ and c ∈ ΣβL.

Definition 139. Let V ⊇ L
ϕ−→ E be a valuation system.

(i) We say the hierarchy has collapsed at Q if






ϕ is Πα+1-extendible and Σα+1-extendible, and

Π(Q) = Q = Σ(Q),

where Q = Παϕ or Q = Σαϕ.

(ii) We say the hierarchy collapses if the hierarchy has collapsed at some Q.

We will prove that if the hierarchy of a valuation ϕ collapses then ϕ has a complete
extension (see Lemma 142). After that, we will prove the converse, namely, if ϕ has
a complete extension, then then the hierarchy of ϕ collapses (see Proposition 148).

Lemma 140. Let V ⊇ L
ϕ−→ E be a valuation system.

(i) Let α < β be ordinal numbers.
Suppose that the hierarchy has collapsed at Παϕ.
Then ϕ is Πβ-extendible and Σβ-extendible, and

Πβϕ = Παϕ = Σβϕ.

(ii) If the hierarchy collapses at Παϕ and at Σαϕ for some α, then Παϕ = Σαϕ.
(iii) Suppose the hierarchy has collapsed at Q1 and at Q2. Then Q1 = Q2.
(iv) The hierarchy collapses if and only if it has collapsed at Παϕ for some α.

Proof. We leave this to the reader. �

Definition 141. Let V ⊇ L
ϕ−→ E be a valuation system.
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(i) We say that ϕ (or V ⊇ L
ϕ−→ E) is extendible if the hierarchy collapses.

(ii) Suppose that ϕ is extendible. Then there is precisely one valuation at which
the hierarchy has collapsed (see Lemma 140(iii)); we denote it by

V ⊇ L
ϕ−→ E.

Lemma 142. Let V ⊇ L
ϕ−→ E be an extendible valuation system. Then

V ⊇ L
ϕ−→ E is complete.

Proof. To prove that ϕ is complete, it suffices to show that ϕ is Π-complete and
Σ-complete. We know that ϕ = Πϕ (since the hierarchy has collapsed at ϕ, see Def-
inition 141(ii) and Definition 139(i)), and that Πϕ is Π-complete (see Lemma 98).
Hence ϕ is Π-complete. Similarly, ϕ is Σ-complete. So ϕ is complete. �

Remark 143. Let V ⊇ L
ϕ−→ E be a valuation system.

(i) Note that if ϕ is complete with respect to V (see Definition 77),
then ϕ is extendible, and ϕ = ϕ.

(ii) On the other hand, if ϕ is extendible and ϕ = ϕ,
then ϕ is complete with respect to V (see Lemma 142).

Lemma 144. Let V ⊇ L
ϕ−→ E be a valuation system.

If ϕ is Πℵ1-extendible, then the hierarchy has collapsed at Πℵ1ϕ.

Proof. Suppose that ϕ is Πℵ1 -extendible. We need to prove that the hierarchy has
collapsed at Πℵ1ϕ. For this, we must show that (see Definition 139(i)),

Π(Πℵ1ϕ) = Πℵ1ϕ = Σ(Πℵ1ϕ).

Let a1 ≥ a2 ≥ · · · be a Πℵ1ϕ-convergent sequence. In order to show that Π(Πℵ1ϕ) =
Πℵ1ϕ, it suffices to prove that

∧

nan ∈ Πℵ1ϕ.
Since ℵ1 is a limit ordinal, we know that Πℵ1L =

⋃

α<ℵ1
ΠαL (see Defintion 138).

Define for each n ∈ N an ordinal number α(n) by

α(n) := min {α < ℵ1 : an ∈ ΠαL }.
Now, the set {α(1), α(2), . . . } of ordinals has a supremum,

ξ :=
∨

nα(n) ≡ ⋃

nα(n).

Since ℵ1 is the smallest uncountable ordinal, and α(n) < ℵ1, we know that all α(n)
are countable. Hence ξ is countable as well, and so ξ < ℵ1.

Now, we have an ∈ ΠξL for all n ∈ N. Hence
∧

nan ∈ Π(ΠξL) = Πξ+1L ⊆ Πℵ1L.

So we see that Π(Πℵ1ϕ) = Πℵ1ϕ. Similarly, Σ(Πℵ1ϕ) = Πℵ1ϕ.
Hence the hierarchy has collapsed at Πℵ1ϕ. �

Corollary 145. Let V ⊇ L
ϕ−→ E be a valuation system. Then

ϕ is extendible ⇐⇒ ϕ is Πℵ1-extendible.

Moreover, if ϕ is extendible, then ϕ = Πℵ1ϕ.

Proof. Assume ϕ is extendible in order to show that ϕ is Πℵ1 -extendible. Then
we know that the hierarchy collapses (see Definition 139(ii)). So it collapsed at
some Παϕ (see Lemma 140(iv)). Pick an ordinal number β with β > α and β > ℵ1.
Then ϕ is Πβ-extendible by Lemma 140(i). But ℵ1 < β, so ϕ is also Πℵ1 -extendible.

Suppose ϕ is Πℵ1 -extendible. Then the hierarchy has collapsed at Πℵ1ϕ by
Lemma 144. Hence ϕ is extendible and ϕ = Πℵ1ϕ (see Definition 141(ii)). �
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Lemma 146. Let V ⊇ L
ϕ−→ E and V ⊇ C

ψ−→ E be two valuation systems.
Assume that ψ extends ϕ. Then for every ordinal number α, we have

ψ is Πα-extendible =⇒ ϕ is Πα-extendible and Παψ extends Παϕ

ψ is Σα-extendible =⇒ ϕ is Σα-extendible and Σαψ extends Σαϕ.

Proof. We prove this lemma using induction on α.
(Zero) For α = 0, the proposition is trivial.
(Successor) Let α be an ordinal number such that if ψ is Σα-extendible, then ϕ is
Σα-extendible and Σαψ extends Σαϕ. Suppose ψ is Πα+1-extendible. We prove

ϕ is Πα+1-extendible and Πα+1ψ extends Πα+1ϕ. (49)

Since ψ is Πα+1-extendible, we know that (see Definition 138),

ψ is Σα-extendible and Σαψ is Π-extendible.

By assumption, the former implies that ϕ is Σα-extendible and Σαψ extends Παψ;
by Lemma 102, the latter implies Σαϕ is Π-extendible and Π(Σαψ) extends Π(Σαϕ).
In other words, we have proven Statement (49).

Let α be an ordinal number such that if ψ is Πα-extendible, then we have that ϕ
is Πα-extendible and that Παψ extends Παϕ. Suppose that ψ is Σα+1-extendible.
By a similar reasoning as before one can prove that

ϕ is Σα+1-extendible and Σα+1ψ extends Σα+1ϕ.

(Limit) Let λ be a limit ordinal such that for all α < λ, we have

ψ is Πα-extendible =⇒ ϕ is Πα-extendible and Παψ extends Παϕ.

Further, assume ψ is Πλ-extendible in order to prove that

ϕ is Πλ-extendible and Πλψ extends Πλϕ. (50)

Let α < λ be given. Since ψ is Πλ-extendible, we know that ψ is Πα-extendible.
So by assumption, ϕ is Πα-extendible, and Παψ extends Παϕ.

So we see that ϕ is Πλ-extendible. Further (since Πλψ extends Παψ), we see
that Πλψ extends all Παϕ. Hence Πλψ extends Πλϕ. So we have proven (50). �

Proposition 147. Let V ⊇ L
ϕ−→ E and V ⊇ C

ψ−→ E be valuation systems.
Assume that ψ extends ϕ, and that ψ is extendible. Then

ϕ is extendible and ψ extends ϕ.

Proof. By Corollary 145, we get the conclusion from Lemma 146 with α = ℵ1. �

Proposition 148. Let V ⊇ L
ϕ−→ E and V ⊇ C

ψ−→ E be valuation systems.
Assume that ψ extends ϕ and that ψ is complete with respect to V . Then

ϕ is extendible and ψ extends ϕ.

(So, loosely speaking, ϕ is the smallest complete extension of ϕ.)

Proof. Since ψ is complete, ψ is clearly extendible and ψ = ψ (see Remark 143).
Hence ϕ is extendible and ψ = ψ extends ϕ by Proposition 147. �

Remark 149. Let V ⊇ L
ϕ−→ E be a valuation system.

By Lemma 142 and Proposition 148 we see that

ϕ is extendible ⇐⇒ ϕ has an complete extension.

Hence the name “extendible”.
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6. Closedness of the Completion under Operations

We have seen how we can obtain the Lebesgue measure and the Lebesgue integral
as the (convexification of) the completion of relatively simple valuations systems,

℘R ⊇ AS
µS−→ R and [−∞,+∞]

R ⊇ FS
ϕS−−→ R.

It is now time to derive some simple facts about the completion. In this section we
will prove statements of the following form.

(i) If A,B ∈ AS, then A\B ∈ AS (see Example 156).
(ii) If f, g ∈ FS ∩ RR, then f + g ∈ FS (see Example 159).

Definition 150. Let P and Q be posets. Let f : S → Q be a map, where S ⊆ P .
We say f is σ-preserving with respect to P provided that

(i) if
∧

nan exists (in P ) for a1 ≥ a2 ≥ · · · from S, and if
∧

nan ∈ S, then

f(
∧

nan) =
∧

nf(an);

(ii) if
∨

nbn exists for b1 ≤ b2 ≤ · · · from S, and if
∨

nbn ∈ S, then

f(
∨

nbn) =
∨

nf(bn).

Let P and Q be posets. Let f : P → Q be a map. We say f is σ-preserving
provided that f is σ-preserving with respect to P .

Remark 151. If in the setting of Definition 150 f is σ-preserving (with respect
some S), then f is order preserving as well.

Theorem 152. Let V ⊇ L
ϕ−→ E and W ⊇ K

ψ−→ F be extendible valuation sys-
tems. Let A : V →W and f : E → F be σ-preserving maps, such that

A(L) ⊆ K and f ◦ ϕ = ψ ◦A|L.

V

A
��

L
ϕ //

A|L

��

? _oo E

f

��
W K

ψ //? _oo F

Then A(L) ⊆ K and f ◦ ϕ = ψ ◦A|L.
Proof. We prove with induction that for every ordinal number α we have

A(ΠαL) ⊆ K f ◦Παϕ = ψ ◦A|ΠαL
A(ΣαL) ⊆ K f ◦Σαϕ = ψ ◦A|ΣαL.

(51)

This is sufficient, because L = Πℵ1L and ϕ = Πℵ1ϕ (see Corollary 145).

(i) We prove (51) holds for α = 0. Since Π0ϕ = Σ0ϕ = ϕ, we need to prove
that A(L) ⊆ K and f ◦ ϕ = A|L. But this is valid by assumption.

(ii) Let α be an ordinal number and assume (51) holds for α; we prove (51) holds

for α+1. We only prove A(Πα+1L) ⊆ K and f ◦Πα+1ϕ = ψ◦A|Πα+1L; the
other part, A(Σα+1L) ⊆ K and f ◦Σα+1ϕ = ψ ◦A|Σα+1L follows similarly.

Let a ∈ Πα+1L be given. We need to prove that

A(a) ∈ K and ψ(A(a)) = f(Πα+1ϕ(a)). (52)

Recall that Πα+1L = Π(ΣαL), so write a =
∧

nan for some Σαϕ-convergent
a1 ≥ a2 ≥ · · · and note that Πα+1ϕ(a) =

∧

nΣαϕ(an). We have

f(Πα+1ϕ(a)) = f(
∧

nΣαϕ(an))

=
∧

nf(Σαϕ(an)) since f is σ-preserving

=
∧

nψ(A(an)) since (51) holds for α.
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So we see that A(a1) ≥ A(a2) ≥ · · · is ψ-convergent. Since W ⊇ K
ψ−→ F

is complete, this implies
∧

nA(an) ∈ K and
∧

nψ(A(an)) = ψ(
∧

nA(an)).

Because A is σ-preserving, we have
∧

nA(an) = A(a). Hence A(a) ∈ K and

f(Πα+1ϕ(a)) =
∧

nψ(A(an))

= ψ(
∧

nA(an))

= ψ(A(a)).

So we have proven Statement (52).
(iii) Let λ be a limit ordinal, and assume that (51) holds for all α < λ; we prove

that (51) holds for λ. Since Πλϕ = Σλϕ, we must prove that

A(ΠλL) ⊆ K and f ◦Πλϕ = ψ ◦A|ΠλL. (53)

Let a ∈ ΠλL be given in order to proveA(a) ∈ K and ψ(A(a)) = f(Πλϕ(a)).
Recall that ΠλL =

⋃

α<λΠαL, and Πλϕ |ΠαL = Παϕ for all α < λ. So
choose α < λ such that a ∈ ΠαL. Since (51) holds for α, we know that

A(ΠαL) ⊆ K and f ◦Παϕ = ψ ◦A|ΠαL.
Hence A(a) ∈ A(ΠαL) ⊆ K and f(Πλϕ(a)) = f(Παϕ(a)) = ψ(A(a)). �

Example 153. Let A be a ring of subsets of X . Let µ : A → R be a positive and
additive map. Recall that ℘X ⊇ A µ−→ R is a valuation system (see Example 73).
Assume that ℘X ⊇ A µ−→ R is extendible.

We would like to prove that A is also a ring of subsets of X (as is A). For the
moment, we will prove this under the assumption that X ∈ A, see Example 156.

To prove that A is a ring, we need to show that Z\Y ∈ A for all Z, Y ∈ A. Note
that Z\Y = (X\Y ) ∩ Z. So it suffices to show that X\Y ∈ A for all Y ∈ A.

Consider the order reversing maps A : ℘X → ℘X and f : R → R given by

A(Y ) = X\Y (Y ⊆ X)

f(x) = µ(X)− x (x ∈ R).

In order to apply Theorem 152 to these maps, let us rebaptise them as order
preserving maps A : ℘X → (℘X)op and f : R → Rop (see Example 17).

We have the following situation.

℘X

A

��

A µ //

A|L

��

? _oo R

f

��
(℘X)op Aop µ //? _oo Rop

We leave it to the reader to verify that (℘X)op ⊇ Aop µ−→ Rop is again valuation
system which is extendibe. We have A(A) ⊆ A, because X\Y ∈ A for all Y ∈ A
since A is a ring containing X . Further, since µ is additive, we have

µ(A(Y )) = µ(X\Y ) = µ(X)− µ(Y ) = f(µ(Y )).

So µ ◦A and f ◦ µ are identical on A. Note that

X\⋃nAn =
⋂

nX\An and µ(X)−∨

nxn =
∧

n µ(X)− xn

where Y1 ⊆ Y2 ⊆ · · · are from ℘X and x1 ≤ x2 ≤ · · · is a bounded sequence in R.
So A and f are σ-preserving (see Definition 150).

Hence by Theorem 152, we get A(A) ⊆ A and secondly f ◦ µ = µ ◦A on A.
From the first fact we get that X\Y ∈ Y for all Y ∈ A, and hence A is a ring.
From the second fact, we get µ(X\Y ) = µ(X)− µ(Y ) for all Y ∈ A. From this,

one might say, we see that µ is additive. However, we already knew this as µ is
modular (and µ(∅) = 0, see Definition 138).
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Theorem 154. Let V ⊇ L
ϕ−→ E and W ⊇ K

ψ−→ F be extendible valuation sys-
tems. Let A : V → W be a σ-preserving map such that A(L) ⊂ K. Let f : E → F
be a σ-preserving group-homomorphism such that

dψ(A(c), A(d)) ≤ f(dϕ(c, d)) (54)

for all c, d ∈ V with A(c), A(d) ∈ K.

V

A
��

L
ϕ //

A|L

��

? _oo E

f

��
W K

ψ //? _oo F

Then A(L) ⊆ K.

Proof. With induction, we prove that for every ordinal number α, we have

A(ΠαL) ⊆ K and A(ΣαL) ⊆ K.

This is sufficient, because L = Πℵ1L.
As one can see, such a proof might be quite similar to the proof of Theorem 152.

Therefore, we leave the details to the reader and only prove the following statement.

A(ΣαL) ⊆ K =⇒ A(Πα+1L) ⊆ K. (55)

Assume A(ΣαL) ⊆ K and let a ∈ Πα+1L be given; we must prove A(a) ∈ K.
Write a =

∧

nan for some Σαϕ-convergent sequence a1 ≥ a2 ≥ · · · in ΣαL. Because

we have assumed A(ΣαL) ⊆ K, we know that A(ai) ∈ K. To prove A(a) ∈ K, it

suffices to show that A(a1) ≥ A(a2) ≥ · · · is ψ-convergent. Indeed, then

A(a) ≡ A(
∧

nan) =
∧

nA(an) ∈ K,

because A is σ-preserving and W ⊇ K
ψ−→ F is complete.

To prove that the sequence A(a1) ≥ A(a2) ≥ · · · is ψ-convergent, we must show
that

∧

nψ(A(an)) exists. Note that by Inequality (54), we have

ψ(A(an+1)) − ψ(A(an)) = dψ(A(an+1), A(an))

≤ f(dϕ(an+1, an)) = f(ϕ(an+1, an)) − f(ϕ(an)).

So since F is R-complete (see Definition 44), in order to show that
∧

nψ(A(an))
exists, it suffices to prove that

∧

nf(ϕ(an)) exists. For this we need to prove that
∧

nϕ(an) exists (as f is σ-preserving). That is, we must show that a1 ≥ a2 ≥ · · ·
is ϕ-convergent. Of course, this follows quickly from the fact that a1 ≥ a2 ≥ · · · is
Σαϕ-convergent. We have proven Statement (55). �

Proposition 155. Let V ⊇ L
ϕ−→ E be an extendible valuation system. Note that

its completion is denoted by V ⊇ L
ϕ−→ E. Given ℓ ≤ u from L, consider

[ℓ, u] ⊇ L ∩ [ℓ, u]
ϕ|[ℓ,u]−−−−→ E;

it is an extendible valuation system. Note that its completion is denoted by

[ℓ, u] ⊇ L ∩ [ℓ, u]
ϕ|[ℓ,u]−−−−→ E.

We have L ∩ [ℓ, u] = L ∩ [ℓ, u]. Moreover, ϕ and ϕ|[ℓ, u] are identical on L ∩ [ℓ, u].

Proof. One can easily see that ϕ|[ℓ, u] extends ϕ|[ℓ, u] and that the valuation system

[ℓ, u] ⊇ L ∩ [ℓ, u]
ϕ|[ℓ,u]−−−−→ E

is complete. Hence ϕ|[ℓ, u] is extendible, and ϕ|[ℓ, u] extends ϕ|[ℓ, u] (see Propo-

sition 147). In particular, L ∩ [ℓ, u] ⊆ L ∩ [ℓ, u] and ϕ and ϕ|[ℓ, u] are identical

on L ∩ [ℓ, u]. It remains to be shown that

L ∩ [ℓ, u] ⊆ L ∩ [ℓ, u]. (56)
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To this end, consider the map ̺ : V → [ℓ, u] given by ̺(x) = ℓ ∨ (x ∧ u). Note that
̺(x) = x for all x ∈ [ℓ, u], and thus ̺(L) = L ∩ [ℓ, u]. So in order to prove (56), we

must show that ̺(L) ⊆ L ∩ [ℓ, u]. To do this, we apply Theorem 154.

V

̺

��

L
ϕ //

̺|L

��

? _oo E

1E

��
[ℓ, u] L ∩ [ℓ, u]

ϕ|[ℓ,u] //? _oo E

We must verify that ̺ is σ-preserving and that

dϕ|[ℓ,u](̺(c), ̺(d)) ≤ dϕ(c, d) (57)

for all c, d ∈ V with ̺(c), ̺(d) ∈ L ∩ [ℓ, u]. One can easily see that ̺ is σ-preserving,
because V is σ-distributive (see Definition 70). Concerning Inequality (57), note

that for c, d ∈ V with ̺(c), ̺(d) ∈ L ∩ [ℓ, u] we have

dϕ|[ℓ,u](̺(c), ̺(d)) = dϕ(̺(c), ̺(d)) since ϕ|L ∩ [ℓ, u] = ϕ|[ℓ, u]
= dϕ( ℓ ∨ (c ∧ u), ℓ ∨ (d ∧ u) ) by definition of ̺

≤ dϕ( c ∧ u, d ∧ u ) by Lemma 24

≤ dϕ(c, d) by Lemma 24.

Hence Theorem 154 is applicable, and we obtain Inequality (56). �

Example 156. Let A be a ring of subsets of X . Let µ : A → R be a positive and
additive map. Recall that ℘X ⊇ A µ−→ R is a valuation system (see Example 73).
Assume that ℘X ⊇ A µ−→ R is extendible (see Definition 141).

We prove that A is a ring. (In Example 153, we saw that this is the case
if X ∈ A.)

Let Y, Z ∈ A be given. To prove that A is a ring, we must show that

Y \Z ∈ A.
We restrict our attention to the interval I := [∅, Y ∪ Z ]. Note that A ∩ I is a

ring of subset of Y ∪Z with Y ∪Z ∈ A∩I. So by Example 153, we know that A ∩ I
is a ring. Note that Y, Z ∈ A ∩ I because A∩ I = A ∩ I by Proposition 155. So we
get Y \Z ∈ A ∩ I, and thus Y \Z ∈ A ∩ I by Proposition 155.

Hence A is a ring of subsets of X .

Theorem 157. Let V ⊇ L
ϕ−→ E and W ⊇ K

ψ−→ F be extendible valuation sys-
tems. Let R be a sublattice of V with L ⊆ R. Let f : E → F be a σ-preserving map,
and let A : R →W be σ-preserving with respect to V . Assume that A(L) ⊆ K and
f ◦ ϕ = ψ ◦A|L.

V R

A
��

? _oo L
ϕ //

A|L

��

? _oo E

f

��
W K

ψ //? _oo F

Assume that R is convex in V , and that for every c ∈ R, there are ϕ-convergent
sequences a1 ≤ a2 ≤ · · · and b1 ≥ b2 ≥ · · · such that

∧

nan ≤ c ≤ ∨

nbn.

Then A(L ∩R) ⊆ K and f ◦ ϕ = ψ ◦A on L ∩R.

Proof. Let us first prove the following special case.
[

Let c ∈ L ∩R with ℓ ≤ c ≤ u for some ℓ, u ∈ L. Then

A(c) ∈ K and f(ϕ(c)) = ψ(A(c)).
(58)
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Let c ∈ L ∩ R with ℓ ≤ c ≤ u for some ℓ, u ∈ L be given. Then clearly c ∈ [ℓ, u].
Further, [ℓ, u] ⊆ R since R is convex and ℓ, u ∈ R (as L ⊆ R). So we have:

[ℓ, u]

A|[ℓ,u]

��

L ∩ [ℓ, u]
ϕ|[ℓ,u] //

A |L∩[ℓ,u]

��

? _oo E

f

��
W K

ψ //? _oo F

Moreover, by Proposition 155, we know that c ∈ L ∩ [ℓ, u] and ϕ(c) = ϕ|[ℓ, u](c).
Hence Theorem 152 yields A(c) ∈ K and ψ(A(c)) = f(ϕ|[ℓ, u](c)). But then

ψ(A(c)) = f(ϕ(c)). This proves Statement (58).

We proceed by proving another special case.
[

Let c ∈ L ∩R and suppose c ≥ ℓ for some ℓ ∈ L. Then

A(c) ∈ K and f(ϕ(c)) = ψ(A(c)).
(59)

Let c ∈ L ∩ R with c ≥ ℓ for some ℓ be given. Pick ϕ-convergent u1 ≤ u2 ≤ · · ·
such that c ≤ ∨

nun. Since u1 ≥ u2 ≥ · · · is ϕ-convergent and c ∈ L, we know that

c ∧ u1 ≤ c ∧ u2 ≤ · · · is ϕ-convergent (see Proposition 48). Since V ⊇ L
ϕ−→ E is

complete, this implies ϕ(c) = ϕ(
∨

nc ∧ un) =
∨

nϕ(c ∧ un). We get:

f(ϕ(c)) = f(
∨

nϕ(c ∧ un))
=

∨

nf(ϕ(c ∧ un)) since f is σ-preserving

Note that ℓ ≤ c ∧ un ≤ un. So by (58), we get A(c ∧ un) ∈ K and:

f(ϕ(c)) =
∨

nψ(A(c ∧ un))
From this we see A(c ∧ u1) ≤ A(c ∧ u2) ≤ · · · is ψ-convergent. Since W ⊇ K

ψ−→ F
is complete, we get f(ϕ(c) =

∨

nA(c ∧ un) ∈ K and

f(ϕ(c)) = ψ(
∨

nA(c ∧ un))
= ψ(A(

∨

nc ∧ un)) since A is σ-preserving

= ψ(A(c)).

This completes the proof of Statement (59).

We are now ready to give the proof of the general case. Let c ∈ R ∩ L be
given. We need to prove that A(c) ∈ K and f(ϕ(c)) = ψ(A(c)). Pick ϕ-convergent
ℓ1 ≥ ℓ2 ≥ · · · such that

∧

nℓn ≤ c. Since ℓ1 ≥ ℓ2 ≥ · · · is ϕ-convergent and c ∈ L,

we know that ℓ1 ∨ c ≥ ℓ2 ∨ c ≥ · · · is ϕ-convergent. Since V ⊇ L
ϕ−→ E is complete,

this implies that ϕ(c) = ϕ(
∧

nℓn ∨ c) = ∧

nϕ(ℓn ∨ c). We get:

f(ϕ(c)) = f(
∧

nϕ(ℓn ∨ c))
=

∧

nf(ϕ(ℓn ∨ c)) since f is σ-preserving

Note that ℓn ≤ ℓn∨c. Further, since R is a sublattice of V , and c ∈ R, ℓn ∈ L ⊆ R,
we get ℓn ∨ c ∈ R. So by (59), we have A(ℓn ∨ c) ∈ K and:

f(ϕ(c)) =
∧

nψ(A(ℓn ∨ c))
From this we see A(ℓ1 ∨ c) ≥ A(ℓ2 ∨ c) ≥ · · · is ψ-convergent. Since W ⊇ K

ψ−→ F
is complete, we get f(ϕ(c) =

∧

nA(ℓn ∨ c) ∈ K and

f(ϕ(c)) = ψ(
∧

nA(ℓn ∨ c))
= ψ(A(

∧

nℓn ∨ c)) since A is σ-preserving

= ψ(A(c)).

We are done. �



A GENERALISATION OF MEASURE AND INTEGRAL 65

Proposition 158. Let V ⊇ L
ϕ−→ E be an extendible valuation system. Let R be a

sublattice of V endowed with a group structure. Assume L is a subgroup of R and
that ϕ is a group homomorphism (recall that E is an ordered Abelian group).

Further, assume that R is convex and that for every c ∈ R, there are ϕ-convergent
sequences a1 ≥ a2 ≥ · · · and b1 ≤ b2 ≤ · · · such that

∧

nan ≤ c ≤ ∨

nbn.

Then L ∩R is a subgroup of R, and ϕ|R is a group homomorphism.

Proof. In order to show that L∩R is a subgroup of R, we must prove the following.

(i) If a, b ∈ L ∩R, then a+ b ∈ L.
(ii) If a ∈ L ∩R, then −a ∈ L.

We only give a proof for (i). It will then be clear how to prove (ii).
We aim to apply Theorem 157. To this end, the reader can easily verify that

V × V ⊇ L×L
ϕ×ϕ−−−→ E × E is an extendible valuation system; that its completion

is V ×V ⊇ L×L ϕ×ϕ−−−→ E × E; that R×R is a convex sublattice of V ×V ; that the
assignment (c, d) 7→ c + d yields a σ-preserving map A : R × R → V with respect
to V × V ; that the map f : E × E → E given by f(x, y) = x+ y is σ-preseving.

Further, note that A(L × L) ⊆ L because L is a subgroup of R. Note that
for all c1, c2 ∈ R × R there are ϕ-convergent ℓi1 ≥ ℓi2 ≥ · · · and ui1 ≤ ui2 ≤ · · ·
such that

∧

nℓ
i
n ≤ ci ≤

∨

nu
i
n, and thus

∧

n(ℓ
1
n, ℓ

2
n) ≤ (c1, c2) ≤

∨

n(u
1
n, u

2
n), where

(ℓ11, ℓ
2
1) ≥ (ℓ12, ℓ

2
2) ≥ · · · and (u11, u

2
1) ≤ (u12, u

2
2) ≤ · · · are ϕ×ϕ-convergent. Finally,

note that f ◦ (ϕ× ϕ) = ϕ ◦A|(L × L), because ϕ is a group homomorphism.

V × V R×R

+

��

? _oo L× L
ϕ×ϕ //

+

��

? _oo E × E

+

��
V L

ϕ //? _oo E

So we are in a position to apply Theorem 157. It gives us that A(L×L∩R×R) ⊆
L and f ◦ (ϕ× ϕ) = ϕ ◦A on L× L ∩R×R. In other words, if c, d ∈ L ∩R, then
c+ d ∈ L, and ϕ(c+ d) = ϕ(c) +ϕ(d). Hence we have proven statement (i), and at
the same time we have shown that ϕ is a group homomorphism. �

Example 159. Let X be a set. Let F be a Riesz space of functions on X . Let
ϕ : F → R be a positive linear map. Recall that [−∞,∞]X ⊇ F

ϕ−→ R is a valuation
system. Assume that ϕ is extendible.

We would like to prove that F is a Riesz space of functions and ϕ is linear.
However, since addition is only defined on R := RX , we will instead show that
F ∩ R is a Riesz space of functions and that ϕ|R is linear. Moreover, we assume
that for every f ∈ F ∩ R there are ϕ-convergent sequences ℓ1 ≥ ℓ2 ≥ · · · and
u1 ≤ u2 ≤ · · · such that

∧

nℓn ≤ f ≤ ∨

nun.

To prove that F ∩R is a Riesz space, we must show that

(i) f + g ∈ F for all f, g ∈ F ∩R, and
(ii) λ · f ∈ F for all λ ∈ R and f ∈ F ∩R.

We only prove the first statement; we leave it to the reader to prove the second.
Of course, it suffices to establish that F ∩R is a subgroup of R. To do this, we

apply Proposition 158. Indeed, one can easily see that all the prerequisites are met.
To name a few: one sees that R is a sublattice of V , that F is a subgroup of R
(since F is a Riesz space of functions), that ϕ is a group homomorphism (since ϕ
is linear), and that R is convex (since R is convex in [−∞,∞]).

Proposition 158 not only gives us that F ∩ R is a subgroup of R, but also
that ϕ|R is a group homomorphism. We leave it to the reader to prove that ϕ|R is
homogeneous, i.e., ϕ(λ · f) = λ · ϕ(f) for all f ∈ F ∩R and λ ∈ R.

Hence F ∩R is a Riesz space of functions, and ϕ|R is linear.
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7. Extendibility

Let V ⊇ L
ϕ−→ E be a valuation space, and suppose we want to prove that ϕ can be

extended to a complete valuation. We have seen that it suffices to prove that ϕ is
Πℵ1 -extendible (see Corollary 145). However, to prove ϕ is Πℵ1 -extendible already
seems like a monumental task when one has only barely started to unfold the
definition of “ϕ is Πℵ1 -extendible” (see Definition 138):

ϕ is Π-extendible, and ϕ is Σ-extendible;

Πϕ is Π-extendible, and Σϕ is Σ-extendible;

Π2ϕ is Π-extendible, and Σ2ϕ is Σ-extendible;

...
...

...

Πωϕ is Π-extendible, and Σωϕ is Σ-extendible;

Πω+1ϕ is Π-extendible, and Σω+1ϕ is Σ-extendible;

...
...

...

It turns out that for some E the situation is more tractable. For instance, we
will see that if E = R, then to prove that ϕ is extendible it suffices to show that ϕ
is Π2-extendible or Σ2-extendible. Actually, we have a sharper result: it suffices to
show that ϕ is continuous (see Definition 160). Those E for which we have

ϕ is continuous =⇒ ϕ is extendible.

will be called benign (see Definition 165).

7.1. Continuous Valuations. Below we define what it means for a valuation
system to be continuous. We will see that we have the following implications

Σ2-extendible

&.❚❚
❚❚❚

❚
❚❚❚

❚❚❚
Σ-extendible

continuous

&.❚❚
❚❚❚

❚❚

❚❚❚
❚❚❚

❚

19❥❥❥❥❥❥❥
❥❥❥❥❥❥❥

Π2-extendible

08❥❥❥❥❥❥❥
❥❥❥❥❥❥❥

Π-extendible.

In fact, we prove that ϕ is continuous if and only if it can be extended to ΠL∪ΣL in
some sense (see Lemma 162), so that we might have dubbed it “Π∪Σ-extendible”.

Definition 160. Let V ⊇ L
ϕ−→ E be a valuation system.

We say ϕ (or more precisely V ⊇ L
ϕ−→ E) is continuous provided that

∧

nan ≤ ∨

nbn =⇒ ∧

nϕ(an) ≤ ∨

nϕ(bn)

for all ϕ-convergent a1 ≥ a2 ≥ · · · and ϕ-convergent b1 ≤ b2 ≤ · · · .

Example 161. We leave it to the reader to verify that the valaution systems

℘R ⊇ AS
µS−→ R and [−∞,+∞]

R ⊇ FS
ϕS−−→ R

are continuous.

Lemma 162. Let V ⊇ L
ϕ−→ E be a valuation system. The following are equivalent.

(i) ϕ is continuous.
(ii) ϕ is Π-extendible and Σ-extendible, and there is an order preserving map

f : ΠL ∪ ΣL→ E

that extends both Πϕ and Σϕ.
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Proof. (i) =⇒ (ii) Suppose that ϕ is continuous. By Lemma 103, we see that
ϕ is Π-extendible. Similarly, ϕ must be Σ-extendible. We need to find an order
preserving map f : ΠL ∪ ΣL → E that extends both Πϕ and Σϕ. We have little
choice,

f(c) :=

{

Πϕ(c) if c ∈ ΠL;

Σϕ(c) if c ∈ ΣL.
(60)

To see that Equation (60) is a valid definition of a map f : ΠL∪ΣL→ E, we need
to verify that Πϕ and Σϕ are identical on ΠL∩ΣL. Let c ∈ ΠL∩ΣL be given. We
must prove Πϕ(c) = Σϕ(c). Choose ϕ-convergent a1 ≥ a2 ≥ · · · and ϕ-convergent
b1 ≤ b2 ≤ · · · such that

∧

nan = c =
∨

nbn.
Then bn ≤ an for all n, so ϕ(bn) ≤ ϕ(an) for all n. Hence

Σϕ(c) =
∨

nϕ(bn) ≤
∧

nϕ(an) = Πϕ(c).

Conversely, we have
∧

nan ≤ ∨

nbn, so since ϕ is continuous we get

Πϕ(c) =
∧

nϕ(an) ≤ ∨

nϕ(bn) = Σϕ(c).

Hence Πϕ(c) = Σϕ(c). So Equation (60) is a valid definition of f .
Since by defintion, f extends both Πϕ and Σϕ, it only remains to be shown

that f is order preserving. Let c, d ∈ ΠL ∪ ΣL with c ≤ d be given. We prove

f(c) ≤ f(d).

Of course, if c, d are both in ΠL, then we done, because Πϕ is order preserving and
f extends Πϕ. Similarly, if c, d ∈ ΣL, we also immediately get f(c) ≤ f(d).

Suppose c ∈ ΠL and d ∈ ΣL. Choose ϕ-convergent sequences b1 ≤ b2 ≤ · · · and
a1 ≥ a2 ≥ · · · such that

∨

nbn = c and
∧

nan = d. Then bm ≤ ∨

nbn ≤ ∧

nan ≤ am
for all m, so ϕ(bm) ≤ ϕ(am) for all m, and hence

f(c) = Σϕ(c) =
∨

nϕ(bn) ≤
∧

nϕ(an) = Πϕ(d) = f(d).

Suppose c ∈ ΠL and d ∈ ΣL. Choose ϕ-convergent sequences a1 ≥ a2 ≥ · · · and
b1 ≤ b2 ≤ · · · such that

∧

nan = c and
∨

nbn = d. Then
∧

nan ≤ ∨

nbn. So since f
is continuous, we get f(c) = Πϕ(c) =

∧

nϕ(an) ≤
∨

nϕ(bn) = Σϕ(d) = f(d).

(ii) =⇒ (i) Let f : ΠL∪ΣL → E be an order preserving map that extends both Πϕ
and Σϕ. We prove that ϕ is continuous. Let ϕ-convergent sequences a1 ≥ a2 ≥ · · ·
and b1 ≤ b2 ≤ · · · with

∧

nan ≤ ∨

nbn be given. We need to prove that
∧

nϕ(an) ≤ ∨

nϕ(bn).

This is easy; since f is order preserving and extends Πϕ and Σϕ, we get
∧

nϕ(an) = Πϕ(
∧

nan) = f(
∧

nan) ≤ f(
∨

nb) = Σϕ(
∨

nbn) =
∨

nϕ(bn). �

Corollary 163. Let V ⊇ L
ϕ−→ E be a valuation system.

(i) If ϕ is continuous, then ϕ is Π-extendible and Σ-extendible.
(ii) ϕ is continuous provided that ϕ is either Π2-extendible or Σ2-extendible.

Proof. Point (i) follows immediately from Lemma 162. Point (ii) is also a conse-
quence of Lemma 162. Indeed, assume that ϕ is Π2-extendible. We prove that ϕ
is continuous. Note that Π2ϕ is order preserving and extends both Πϕ and Σϕ.
Hence ϕ satisfies condition (i) of Lemma 162. Thus ϕ is continuous. �

Lemma 164. Let V ⊇ L
ϕ−→ E be a valuation system.

Let K be a sublattice of L such that ψ := ϕ|K is continuous.
Then ϕ is continuous under the following assumptions.
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(i) Given a ϕ-convergent sequence a1 ≥ a2 ≥ · · · in L, we have
∧

nϕ(an) =
∨
{

Πψ(ℓ) : ℓ ∈ S
}

,

for some S ⊆ ΠK with ℓ ≤
∧

nan for all ℓ ∈ S.
(ii) Given a ϕ-convergent sequence b1 ≤ b2 ≤ · · · in L, we have

∨

nϕ(bn) =
∨

{

Σψ(u) : u ∈ T
}

,

for some T ⊆ ΣK with
∨

nbn ≤ u for all u ∈ T .

Proof. Let ϕ-convergent sequences a1 ≥ a2 ≥ · · · and b1 ≤ b2 ≤ · · · from L with
∧

nan ≤ ∨

nbn be given. To prove that ϕ is continuous (see Definition 160), we
must show that

∧

nϕ(an) ≤ ∨

nϕ(bn). Let ℓ ∈ S and u ∈ T be given. Note that
ℓ ≤

∧

nan ≤
∨

nbn ≤ u, so Πψ(ℓ) ≤ Σψ(u) since ψ is continuous.
Hence

∧

nϕ(an) ≤
∨

nϕ(bn) by Assumptions (i) and (ii). �

7.2. Benign E.

Definition 165. Let E be an ordered Abelian group. We say E is benign provided
that for every valuation system V ⊇ L

ϕ−→ E, we have

ϕ is continuous =⇒ ϕ is extendible.

Example 166. We will prove that R is benign (see Corollary 187).

Example 167. Let I be a set and let Xi be a benign ordered Abelian group for
every i ∈ I. We leave it to the reader to verify that

∏

i∈I Xi is benign.
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8. Uniformity on E

To prove that R is benign (see Definition 165), we study ordered Abelian groups E
which are endowed with a certain uniformity (such as R) in Subsection 8.1. We
prove that all such E are benign (see Theorem 186), in the following way.

Let V ⊇ L
ϕ−→ E be a valuation system. Recall that in order to prove that E is be-

nign we must show that if ϕ is continuous, then ϕ is extendible (see Definition 165).
We will first prove that if ϕ is continuous, then both Πϕ and Σϕ are continuous
(see Lemma 183). Then, by induction, we see that ϕ is both Πn-extendible and
Σn-extendible, and both Πnϕ and Σnϕ are continuous, for every n ∈ N. Hence ϕ
is Πω-extendible. However, it is not clear a priori that Πωϕ is continuous.

Secondly, we prove that if ϕ is Πλ-extendible for some ordinal number λ, then
Πλϕ is continuous. So by induction we see that ϕ is both Πα-extendible and Σα-
extendible, and both Παϕ and Σαϕ are continuous, for every ordinal number α (see
Lemma 185). Hence ϕ is extendible (see Corollary 145).

To prove the second statement we use the fact that elements of ΠαL (or ΣαL) can
be approximated from below by elements of ΠL, in some sense (see Lemma 181).
We will express this by ΣL is lower Παϕ-dense in ΠαL. We will formally introduce
this notion, and study it, in Subsection 8.2.

8.1. Fitting Uniformity.

Definition 168. Let E be an ordered Abelian group. A fitting uniformity on E
is a countable set Φ of binary relations on E with the following properties.

(i) We have s ε s for all ε ∈ Φ and s ∈ E.
(ii) There is a map ∧ : Φ× Φ → Φ such that

s ε ∧ δ t =⇒ s ε t and s δ t (ε, δ ∈ Φ, s, t ∈ E).

(iii) There is a map −/2 : Φ → Φ such that

r ε/2 s ε/2 t =⇒ r ε t (ε ∈ Φ, r, s, t ∈ E).

(iv) Given ε ∈ Φ and r, s, t ∈ E with r ≤ s ≤ t, we have

r ε t =⇒ r ε s and s ε t.

(v) Let s, t ∈ E with s ≤ t. Then s = t provided that s ε t for all ε ∈ Φ.
(vi) If a sequence s1 ≥ s2 ≥ · · · from E has an infimum s ∈ E, then

∀ε ∈ Φ ∃N ∈ N s ε sN .

(vii) Let s1 ≥ s2 ≥ · · · be a sequence in E, and assume that for every ε ∈ Φ
there is an N ∈ N such that sn ε sNε

(n ≥ N).
Then s1 ≥ s2 ≥ · · · has an infimum

∧

nsn.
(viii) Let r, s, t ∈ E and ε ∈ Φ be given. Then s ε t implies r + s ε r + t.

Example 169. We define a fitting uniformity on R. For each natural number n,
let εn be the binary relation on R given by

s εn t ⇐⇒ s ≤ t and t− s ≤ 2−n.

Then Φ := {εn : n ∈ N} is a fitting uniformity on R.
(Take εn ∧ εm := εn∨m and εn/2 := εn+1 for all n,m ∈ N.)

Remark 170. The fitting uniformities defined here are related to the uniform spaces
(or more precisely, quasi uniform spaces) studied in topology, see [7].

However we do not involve uniform spaces, because the usual way of reasoning
about them does not seem to fit well with property (iv). Moreover, we do not wish
to assume that the reader is familiar with uniform spaces.
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To the list of properties that a fitting uniformity must have (see Definition 168),
we add some easy observations in Lemma 171. When we speak of “property (q)”,
where q is some Roman numeral, we refer to this list.

Lemma 171. Let E be an ordered Abelian group with a fitting uniformity Φ.

(ix) Let s, t ∈ E and ε ∈ Φ be given. Then s ε t implies −t ε −s.
(x) If a sequence s1 ≤ s2 ≤ · · · from E has an supremum s ∈ E, then

∀ε ∈ Φ ∃N ∈ N sN ε s.

(xi) Let s1 ≤ s2 ≤ · · · be a sequence in E, and assume that for every ε ∈ Φ
there is an Nε ∈ N such that sNε

ε sn (n ≥ Nε).
Then s1 ≤ s2 ≤ · · · has a supremum

∨

nsn.

Proof. (ix) Let s, t ∈ E and ε ∈ Φ be given, and assume s ε t. We prove −t ε −s.
Indeed, by property (viii), we have

−t = −(t+ s) + s ε − (t+ s) + t = −s.
(x) Let s1 ≤ s2 ≤ · · · be a sequence in E which has a supremum s in E. Let ε ∈ Φ
be given. We need to find an N ∈ N such that sN ε s.

Let us consider the sequence −s1 ≥ −s2 ≥ · · · . By Lemma 206 the sequence
−s1 ≥ −s2 ≥ · · · has an infimum, −s. By property (vi) we have −s ε −sN for
some N . Then by property (ix), we get sN ε s, and we are done.

(xi) Similar: apply property (vii) to the sequence −s1 ≥ −s2 ≥ · · · . �

Notation 172. Let E be an ordered Abelian group with a fitting uniformity Φ.

(i) Given binary relations ε and δ on E (for instance, ε, δ ∈ Φ), we write

ε ≤ δ ⇐⇒ ∀s, t ∈ E [ s ε t =⇒ s δ t ].

(ii) Given binary relations ε and δ on E, let ε+ δ be the relation on E given by

s ε+ δ t ⇐⇒ ∃q ∈ E [ s ε q δ t ].

Remark 173. The operation “+” defined in Notation 172(ii) is associative, but not
in general commutative (contrary to the expectation the symbol “+” evokes).

The chosen notation does have advantages: property (iii) can be written as

ε/2 + ε/2 ≤ ε (ε ∈ Φ).

Lemma 174. Let E be an ordered Abelian group with fitting uniformity Φ.
Then E is R-complete (see Definition 44).

Proof. Let x1 ≤ x2 ≤ · · · and y1 ≤ y2 ≤ · · · from E be given such that

xN+1 − xN ≤ yN+1 − yN (N ∈ N). (61)

Assume
∨

nyn exists. To that E is R-complete, we must show that
∨

nxn exists.
Let ε ∈ Φ be given. By property (xi), we know that to prove

∨

nxn exists, it
suffices to find N ∈ N such that xN ε xn for all n ≥ N .

By property (x), we know there is an N such that yN ε
∨

mym. Let n ≥ N
be given. We will prove that xN ε xn. We already know yN ε yn by property (iv)
because yN ≤ yn ≤ ∨

mym and yN ε
∨

nym. So 0 ε (yn − yN) by property (viii).
From Inequality (61) one can easily derive that

0 ≤ xn − xN ≤ yn − yN .

Since 0 ε (yn − yN ) we get 0 ε (xn − xN ) by property (iv).
Hence xN ε xn by property (viii). So we are done. �

The following lemma will be useful.
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Lemma 175. Let E be an ordered Abelian group with fitting uniformity Φ.
Let S ⊆ E be non-empty and downwards directed, i.e., for all s1, s2 ∈ S, there

is an s ∈ S such that s ≤ s1 and s ≤ s2.
Let t ∈ E be a lower bound of S which is close to S in the sense that

∀ε ∈ Φ ∃s ∈ S t ε s. (62)

Then t is the infimum of S.

Proof. To show that t is the infimum of S, we need to prove that ℓ ≤ t for every
lower bound ℓ of S. To do this, we take a detour.

Let ε1, ε2, · · · be an enumeration of Φ. Using Equation (62), and the fact that S
is non-empty and directed, choose s1 ≥ s2 ≥ · · · in S such that

t εn sn (n ∈ N). (63)

We will prove that s1 ≥ s2 ≥ · · · has an infimum s and that s = t.
This is sufficient to prove that t is the infimum of S. Indeed, if ℓ is a lower bound

of S, then ℓ is a lower bound of s1 ≥ s2 ≥ · · · , and so ℓ ≤ ∧

nsn = t.
We use property (vi) to show that s1 ≥ s2 ≥ · · · has an infimum. Given ε ∈ Φ,

we need to find an N such that sn ε sN for all n ≥ N . Pick k such that ε = εk
and take N = k. Let n ≥ N be given. Note that t ≤ sn ≤ sN = sk and t εk sk by
Equation (63). So we have sn εk sN by property (iv).

Hence property (vi) implies that s1 ≥ s2 ≥ · · · has an infimum, s. It remains to
be shown that s = t. For this we use property (v).

Note that t ≤ s because t ≤ sn for all n. Let ε ∈ Φ be given. We need to
prove that t ε s. Choose k such that ε = εk. Then t ≤ s ≤ sk and t εk sk by
Equation (63). So t εk s by property (iv). Hence s = t by property (v). �

8.2. Denseness. Throughout this subsection, E will be an ordered Abelian group
endowed with a fitting uniformity Φ (see Definition 168).

Definition 176. Let V ⊇ L
ϕ−→ E be a valuation system. Let S ⊆ T be subsets

of L. We say S is lower ϕ-dense in T provided that the following condition holds.

For every a ∈ T and ε ∈ Φ there is an ℓ ∈ S such that

ℓ ≤ a and ϕ(ℓ) ε ϕ(a).

The notion of upper ϕ-denseness is defined similarly.

Example 177. Let V ⊇ L
ϕ−→ E be a Σ-extendible valuation system (see Def. 94).

Then L is lower Σϕ-dense in ΣL.
Indeed, given a ∈ ΣL and ε ∈ Φ, we need to find an ℓ ∈ L such that ϕ(ℓ) ε Σϕ(a).

Write a =
∨

nan for some ϕ-convergent sequence a1 ≤ a2 ≤ · · · . Then we have

Σϕ(a) =
∨

nϕ(an).

By property (x), there is an N such that ϕ(aN ) ε Σϕ(a). So take ℓ = aN .

Lemma 178. Let V ⊇ L
ϕ−→ E be a valuation system.

(i) Let R ⊆ S ⊆ T be subsets of L. Suppose R is lower ϕ-dense in S, and
suppose that S is lower ϕ-dense in T . Then R is lower ϕ-dense in T .

(ii) Let R be a subset of L, and let S be a family of subsets of L.
If R is lower ϕ-dense in each S ∈ S, then R is lower ϕ-dense in

⋃S.
Proof. (i) Let t ∈ T and ε ∈ Φ be given. To prove R is lower ϕ-dense in T , we
need to find an r ∈ R with r ≤ t and ϕ(r) ε ϕ(t). This is easy. Choose an s ∈ S
such that s ≤ t and ϕ(s) ε/2 ϕ(t) (see Definition 168(iii) for the meaning of “ε/2”).
Choose an r ∈ R such that r ≤ s and ϕ(r) ε/2 ϕ(s). Then r ≤ s and ϕ(r) ε ϕ(t).

(ii) We leave this to the reader. �
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The proof that E is benign hinges on the following lemma.

Lemma 179. Let V ⊇ L
ϕ−→ E be a valuation system.

Let K be a lower ϕ-dense sublattice of L.
Then for every ϕ-convergent sequence a1 ≥ a2 ≥ · · · from L and ε ∈ Φ
there is a ϕ-convergent sequence ã1 ≥ ã2 ≥ · · · from K with

ãn ≤ an and
∧

nϕ(ãn) ε
∧

nϕ(an). (64)

Proof. Let a1 ≥ a2 ≥ · · · be a ϕ-convergent sequence in L, and let ε ∈ Φ be
given. We need to find a ϕ-convergent sequence ã1 ≥ ã2 ≥ · · · in K which satisfies
Condition (64). To this end, we seek a sequence ã1 ≥ ã2 ≥ · · · in K such that

ϕ(ãn) η ϕ(an) and ∀i ∈ N ∃N ∈ N ∀n ≥ N [ ϕãn εi ϕãN ], (65)

where ε1, ε2, . . . is an enumeration of Φ, and η ∈ Φ with 2η ≤ ε (see Notation 172).
Such a sequence ã1 ≥ ã2 ≥ · · · is ϕ-convergent (by property (vii)). We prove

that ã1 ≥ ã2 ≥ · · · satisfies Condition (64). Indeed: We know
∧

nϕ(ãn) exists.
Hence, there is an N ∈ N with

∧

nϕ(ãn) η ϕ(ãN ) by property (vi). Then
∧

nϕ(ãn) η ϕ(ãN ) η ϕ(aN ).

So we have
∧

nϕ(ãn) ε ϕ(aN ). But
∧

nϕ(ãn) ≤ ∧

nϕ(an) ≤ ϕ(aN ). Thus
∧

nϕ(ãn) ε
∧

nϕ(an) by property (iv). Hence ã1 ≥ ã2 ≥ · · · satisfies Condition (64).
Finding a sequence ã1 ≥ ã2 ≥ · · · which satisfies Condition (65) is a subtle affair.

Pick η1, η2, . . . and ζ1, ζ2, . . . from Φ (using properties (iii) and (ii)) such that

2ηi ≤ εi, ηi ≤ η, 2ζi ≤ ηi, 2ζi+1 ≤ ζi.

Then we have
ζi + · · ·+ ζj ≤ ηi (i, j ∈ N, i ≤ j). (66)

Pick ℓ1, ℓ2, . . . from K such that ℓn ≤ an and ϕ(ℓn) ζn ϕ(an) and define

ãij = ℓi ∧ · · · ∧ ℓj , ãn = ã1n = ℓ1 ∧ · · · ∧ ℓn,
where i, j, n ∈ N with i ≤ j. Then ãij ∈ K and ãn ≤ ℓn ≤ an. We will prove that
the sequence ã1 ≥ ã2 ≥ · · · satisfies Condition (65).

Note that for all i, j ∈ N with i ≤ j, we have, by Lemma 24,

dϕ(ãij , aj) = dϕ(ℓi ∧ · · · ∧ ℓj, ai ∧ · · · ∧ aj) ≤ dϕ(ℓi, ai) + · · ·+ dϕ(ℓj , aj).

Since ϕ(ℓk) ζk ϕ(ak) for all k, the inequality above yields, using property (viii),

ϕ(ãij) ζi + · · ·+ ζj ϕ(aj).

So because ζi + · · ·+ ζj ≤ ηi (see Inequality (66)), we have

ϕ(ãij) ηi ϕ(aj). (67)

In particular, we get ϕ(ãn) ≡ ϕ(ã1n) η1 ϕ(an). Hence ϕ(ãn) η ϕ(an) as η1 ≤ η.
Let i ∈ N be given. To prove that ã1 ≥ ã2 ≥ · · · satisfies Condition (65), it

remains to be shown that there is an N ∈ N such that

ϕ(ãn) εi ϕ(ãN ) (n ≥ N) (68)

Using property (vi), determine N ≥ i such that
∧

nϕ(an) ηi ϕ(aN ). We will show
that Statement (68) holds. Let n ≥ N be given. Note that by Lemma 23,

dϕ(ãn, ãN ) = dϕ( ãi−1 ∧ ãin, ãi−1 ∧ ãiN ) ≤ dϕ(ãin, ãiN ).

So to prove Statement (68), it suffices to show that ϕ(ãin) εi ϕ(ãiN ).
Recall that

∧

mϕ(am) ηi ϕ(aN ) by choice of N . Then in particular, we get
ϕ(an) ηi ϕ(aN ) by property (iv). Further, ϕ(ãin) ηi ϕ(an) by Inequality (67). So

ϕ(ãin) ηi ϕ(an) ηi ϕ(aN ).

Hence ϕ(ãn) εi ϕ(aN ), because 2ηi ≤ εi. Note that ϕ(ãin) ≤ ϕ(ãiN ) ≤ ϕ(aN ).
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So by property (iv), we get ϕ(ãin) εi ϕ(ãiN ). �

Corollary 180. Let V ⊇ L
ϕ−→ E be a Π-extendible valuation system.

Let K be a sublattice of L. Then

K is lower dense in L =⇒ ΠK is lower dense in ΠL.

Proof. Follows immediately from Lemma 179. �

Lemma 181. Let V ⊇ L
ϕ−→ E be a valuation system which is both Σ-extendible

and Π-extendible. Then for every ordinal number α:

(i) If ϕ is Πα-extendible, then

ΠL is upper dense in ΠαL, and ΣL is lower dense in ΠαL.

(ii) If ϕ is Σα-extendible, then

ΠL is upper dense in ΣαL, and ΣL is lower dense in ΣαL.

Proof. We use induction on α.

For α = 0, Statements (i) and (ii) are trivial.

Let α be an ordinal number such that Statement (i) holds for α in order to prove
that Statement (ii) holds for α + 1. Suppose ϕ is Σα+1-extendible. We need to
prove that ΠL is upper dense in Σα+1L and that ΣL is lower dense in Σα+1L.

Note that ϕ is Πα-extendible, because ϕ is Σα+1-extendible.
By Statement (i) for α, we know that ΠL is lower dense in ΠαL. Further, ΠαL

is lower dense in Σ(ΠαL) = Σα+1L by Example 177. So we see that ΠL is lower
dense in Σα+1L by Lemma 178(i).

By Statement (i) for α, we know that ΣL is upper dense in ΠαL. So by the dual
of Corollary 180, we have ΣL = Σ(ΣL) is upper dense in Σ(ΠαL) = Σα+1L.

Hence, Statement (ii) holds for α+ 1 (if Statement (i) holds for α).
Similarly, if Statement (ii) holds for α, then Statement (i) holds for α+ 1.

Let λ be a limit ordinal such that Statement (i) holds for all α < λ. We prove
that Statement (i) holds for λ. Suppose that ϕ is Πλ-extendible. We need to prove
that ΠL is upper dense in ΠλL and ΣL is lower dense in ΠλL.

We know that ϕ is Πα-extendible for all α < λ.
As Statement (i) holds for all α < λ, we see that ΠL is upper dense in all ΠαL.

So by Lemma 178(ii), ΠL is upper dense in ΠλL =
⋃

α<λΠαL.
Similarly, ΣL is lower dense in ΣλL =

⋃

α<λΣαL. �

Corollary 182. Let V ⊇ L
ϕ−→ E be a valuation system.

Let K be a lower ϕ-dense sublattice of L and assume that ψ := ϕ|K is Π-extendible.
Let a1 ≥ a2 ≥ · · · be a ϕ-convergent sequence in L. Then

∧

nϕ(an) =
∨

{

Πψ(ℓ) : ℓ ∈ S
}

, (69)

where S :=
{
∧

nãn : ψ-convergent ã1 ≥ ã2 ≥ · · · with ãn ≤ an for all n
}

.

Proof. To prove Statement (69), we apply the dual of Lemma 175. We need to
verify that Πψ(S) := {Πψ(ℓ) : ℓ ∈ S } is upwards directed, that

∧

nϕ(an) is a lower
bound of Πψ(S), and that

∀ε ∈ Φ ∃ℓ ∈ S Πψ(ℓ) ε
∧

nϕ(an). (70)

To begin, note that Statement (70) follows immediately from Lemma 179.
Let ψ-convergent ã1 ≥ ã2 ≥ · · · with ãn ≤ an for all n be given. Then we

have ψ(ãn) = ϕ(ãn) ≤ ϕ(an) for all n, so Πψ(
∧

nãn) =
∧

nψ(ãn) ≤ ∧

nϕ(an).
Hence

∧

nϕ(an) is a lower bound of Πψ(S).
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To prove that Πψ(S) is upwards directed, it suffices to show that S is upwards
directed (as Πψ is order preserving). Let ψ-convergent sequences ã1 ≥ ã2 ≥ · · ·
and ã′1 ≥ ã′2 ≥ · · · with ãn ≤ an and ã′n ≤ an be given. Then

ã1 ∨ ã′1 ≤ ã1 ∨ ã′2 ≤ · · ·
is again a ψ-convergent sequence by Proposition 48. Further ãn∨ ã′n ≤ an for all n.
Hence

∧

nãn ∨ ã′n ∈ S. But also
∧

nãn ≤
∧

nãn ∨ ã′n and
∧

nã
′
n ≤

∧

nãn ∨ ã′n. So
we see that S is upwards directed. �

Lemma 183. Let V ⊇ L
ϕ−→ E be a valuation system.

Assume ϕ is continuous. Then Πϕ is continuous.

Proof. Note that L is an upper Πϕ-dense sublattice of ΠL (see Example 177). We
apply Lemma 164 to prove that ϕ is continuous. We must verify that Conditions (i)
and (ii) of Lemma 164 hold.

(i) Let a1 ≥ a2 ≥ · · · be a Πϕ-convergent sequence in ΠL. We need to find
S ⊆ ΠL such that

∧

nϕ(an) =
∨

S and ℓ ≤ ∧

nan for all ℓ ∈ S. By Lemma 98, we
know that Πϕ is Π-complete. Hence

∧

nan ∈ ΠL. So simply take S = {∧nan}.
(ii) Follows immediately from Corollary 182. �

Lemma 184. Let V ⊇ L
ϕ−→ E be a valuation system.

Let K be a sublattice of L. Then ϕ is continuous provided that:

(i) The restriction ϕ|K of ϕ to K is continuous.
(ii) K is lower and upper ϕ-dense in L.

Proof. This follows from Lemma 164. Indeed, condition (i) holds by Corollary 182,
and condition (ii) holds by the dual of Corollary 182. �

Lemma 185. Let V ⊇ L
ϕ−→ E be a continuous valuation system, and α an ordinal.

Then ϕ is both Πα-extendible and Σα-extendible, and Παϕ and Σαϕ are continuous.

Proof. With induction on α.

For α = 0, the statement is trivial.

Let α be an ordinal number and assume that ϕ is Πα-extendible and Παϕ is
continuous. We prove that ϕ is Σα+1-extendible and Σα+1ϕ is continuous. Indeed,
since Παϕ is continuous, Παϕ is Σ-extendible and so ϕ is Σα+1-extendible. Finally,
Σ(Παϕ) = Σα+1ϕ is continuous by the dual of Lemma 183.

Similarly, if ϕ is Σα-extendible and Σαϕ is continuous, then ϕ is Πα+1-extendible
and Πα+1ϕ is continuous.

Let λ be a limit ordinal such that for each α < λ, we have that ϕ is Πα-extendible
and Παϕ is continuous. Note that ϕ is Πλ-extendible. We prove that Πλϕ is
continuous. For this, we use Lemma 184. Consider ψ := Π2ϕ. By assumption, ψ is
continuous. We know that Πλϕ extends ψ, and that ψ extends both Πϕ and Σϕ.
Since ΠL is lower dense in ΠαL, and ΣL is upper dense in ΠαL (by Lemma 181),
we get that K := Π2L is both upper and lower dense in ΠαL. So by Lemma 184,
we see that Πλϕ is continuous. (Of course, the argument is also valid for other
choices for ψ, such as Σ3ϕ and Π42ϕ.) �

Theorem 186. Let E be an ordered Abelian group.
If E has a fitting uniformity, then E is benign.

Proof. Let V ⊇ L
ϕ−→ E be a continuous valuation system. To prove that E is

benign, we must show that ϕ is extendible (see Definition 165). It suffices to prove
that ϕ is Πℵ1 -extendible by Corollary 145. Now apply Lemma 185. �

Corollary 187. The ordered Abelian group R is benign.
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9. Fubini’s Theorem

In this section we study Fubini’s Theorem. We have not found a satisfactory gener-
alisation of this theorem to the setting of valuations. However, we will see that it is
possible to split the proof of Fubini’s Theorem into two parts, so that the first part
(Subsection 9.1) is algebraic in nature and specific to the setting of step functions,
and the second part (Subsection 9.2) is more analytic in nature and a consequence
of a general extension theorem for valuations (see Theorem 199).

9.1. Algebraic Part. Let us first formulate Fubini’s Theorem. This takes time.
Let X be a set, let AX be a ring of subsets of X , and let

µX : AX → R

be a positive and additve map (see Example 9).
Similarly, let Y be a set, let AY be a ring of subsets of Y , and let

µY : AY → R

be a positive and additve map.
Now, let AX×Y be the ring of subsets of X × Y generated by the subsets

{ A×B : A ∈ AX , B ∈ AY }
Let µX×Y : AX×Y → R be the unique positive and additive map such that

µX×Y (A×B ) = µX(A) · µY (B)

for all A ∈ AX and B ∈ AY . Such µX×Y exists, as the reader can verify.
Let FX be the set of all AX -stepfunctions, i.e., functions of the form

∑N
n=1 λn · 1An

,

where A1, . . . , AN ∈ AX and λi ∈ R. As the reader may verify, the expression

ϕX(
∑N

n=1 λn · 1An
) =

∑N
n=1 λn · µX(An)

determines a unique positive and linear map ϕX : FX → R.
Similarly, we get a map ϕY : FY → R, and a map ϕX×Y : FX×Y → R.
One can verify that any f ∈ FX×Y is of the form

∑N
n=1 λn · 1An×Bn

,

where A1, . . . , AN ∈ AX , and B1, . . . , BN ∈ AY , and λn ∈ R.
So it is not hard to verify that the equality

FX
(
∑N

n=1 λn · 1An×Bn

)

=
∑N
n=1 λn · µX(An) · 1Bn

gives us positive and linear map FX : FX×Y → FY .
Let f ∈ FX×Y be given. For each y ∈ Y , define fy ∈ FX by, for all x ∈ X ,

fy(x) = f(x, y)

One can easily verify that we have, for all y ∈ Y ,

FX(f)(y) = ϕX(fy).

So, informally, FX(f) =
∫

f(x, y) dx.
Since ϕX is linear one quickly sees that ϕY ◦ FX = ϕX×Y . Informally,

∫ ∫

f(x, y) dx dy =

∫

f (f ∈ FX×Y ).

This is Fubini’s Theorem for stepfunctions, FX×Y .
Of course, we want to prove Fubini’s Theorem for the extension FX×Y .
So let us assume ϕX , ϕY , and ϕX×Y are extendible (see Definition 141).
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Alternatively, we can assume that ϕY and ϕY are continuous (see Definition 160);
we leave it to the reader to verify that then ϕX×Y is continuous (which is not too
easy), and so ϕX×Y is extendible, since R is benign (see Definition 165).

Note that it is not possible to find an FY : FX×Y → FY such that, for all y ∈ Y ,

FY (f)(y) = ϕX(fy).

So to formulate Fubini’s Theorem for FX×Y we need a slightly different approach
than the one we used for the stepfunctions.

Consider the space EY := FY /≈ (see Proposition 29). We leave it to the reader
to verify that EY can be endowed with the structure of an ordered Abelian group,
and a fitting uniformity (see Definition 168) such that the map FX×Y → EY given
by f 7→ FX(f)/ ≈ is a group homomorphism.

We can now formulate Fubini’s Theorem as follows.
















The valuation

FX : FX×Y → FY /≈
is extendible, and dom(ϕX×Y ) ⊆ dom(FX), and

ϕX×Y (f) = (ϕ/≈ ◦ FX )(f)

for all f ∈ FX×Y .

(71)

Of course, to be true to the usual formulation of Fubini’s Theorem we would need
to prove that that FX(f)(y) = ϕX(fy) for almost all y ∈ Y . We will not do this.

9.2. Extension of Operations. Let V ⊇ L
ϕ−→ E be a valuation system. In

Section 6 we saw that the completion L of ϕ is closed under various operations. It
is also possible to extend operations to L, which are (initially only) defined on L.
The aim of this subsection is to prove Theorem 199 which is an example of this
principle in case that E has a fitting uniformity Φ (see Definition 168).

It should be noted that from the methods found in the proof of Theorem 199
one can easily obtain a stronger version of this theorem. More interestingly, the
patterns in the proof strongly suggest that we should make a study of the uniform
structure on L given by the relations ε (where ε ∈ Φ) defined by

a ε b ⇐⇒ 0 ε dϕ(a, b) (a, b ∈ L).

However, we have refrained from proving a stronger version of the theorem and
introducing yet another notion of uniform structure. Indeed, we have not found
a clear favorite among the several approaches to the strengthening of the theorem
and the axiomatisation of the uniform structure on L. Accordingly, we introduce
few new notions, and the proofs in this subsection are sometimes ad hoc.

One new notion we do present is that of weak ϕ-convergence (see Definition 188).
As the name suggests, ϕ-convergence (see Definition 55) implies weak ϕ-convergence
(see Lemma 189), but the reverse implication does not hold (see Example 190).
Nevertheless, any weakly ϕ-convergent sequence has a ϕ-convergent subsequence
(see Proposition 192).

Due to this all the notions of ϕ-convergent and weakly ϕ-convergent can be
used somewhat interchangeably. The main merit of “weak ϕ-convergent” is that
some useful statements concerning it (see Lemma 193 and Lemma 194) can be
easily proven, while it is not clear if the same statement (or a variant) holds for
“ϕ-convergent”.

The main application of Theorem 199 is the proof of Fubini’s Theorem 200. Let
us start the work towards a proof.

Definition 188. Let E be an ordered Abelian group.
Let Φ be a fitting uniformity on E.
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Let L be a lattice, and let ϕ : L→ E be a valuation.
Let a ∈ L and let a1, a2, . . . be a sequence in L.
We say a1, a2, . . . weakly ϕ-converges to a if

∀ε ∈ Φ ∃N ∀n ≥ N [ 0 ε dϕ(an, a) ].

Lemma 189. Let E be an ordered Abelian group.
Let Φ be a fitting uniformity on E.
Let L be a lattice, and let ϕ : L→ E be a complete valuation.
Let a ∈ L and let a1, a2, . . . be a sequence in L. We have:

a1, a2, . . . ϕ-converges to a =⇒ a1, a2, . . . weakly ϕ-converges to a.

Proof. Let ε ∈ Φ be given. To prove that a1, a2, . . . weakly ϕ-converges to a we
must find an N ∈ N such that 0 ε dϕ(an, a) for all n ≥ N .

To find such N takes some preparation, so bear with us.
Since a1, a2, . . . ϕ-converges to a, i.e., a1, a, a2, a, . . . is ϕ-convergent, we know

that a1, a, a2, a, . . . is upper ϕ-convergent. That is, we know the following exists.

u :=
∧

N

∨

n≥N ϕ(a ∨ aN ∨ · · · ∨ an) (72)

In particular, we see that for each N ∈ N, the sequence

a ∨ aN ≤ a ∨ aN ∨ aN+1 ≤ · · ·
is ϕ-convergent (in the sense of Definition 34). Since ϕ is complete, we see that
aN :=

∨

n≥N a∨ an exists in L and that ϕ(aN ) =
∨

n≥N ϕ(a∨ aN ∨ · · · ∨ an). Now,
note that we can phrase Statement (72) as u =

∧

Nϕ(aN ).
Since a1, a2, . . . ϕ-converges to a, we know that the sequence a1, a, a2, a, . . . is

lower ϕ-convergent. That is, the following exists.

ℓ :=
∨

N

∧

n≥N ϕ(a ∧ aN ∧ · · · ∧ an) (73)

In particular we see that for each N ∈ N the sequence

a ∧ aN ≥ a ∧ aN ∧ aN+1 ≥ · · ·
is ϕ-convergent. As before, aN :=

∧

n≥N a ∧ an exists, and ℓ =
∨

Nϕ(aN ).
Now, note that for each N ∈ N and n ≥ N we have

aN ≤ a ∧ an ≤ a ∨ an ≤ aN .

In particular, we have the following inequalities.

ϕ(aN ) ≤ ϕ(a ∧ an) ≤ ϕ(a ∨ an) ≤ ϕ(aN ). (74)

Recall that we want to prove (for someN) that 0 ε dϕ(a, an). That is, we must show
that ϕ(a∧an) ε ϕ(a∨an) (see Definition 168(viii)). To prove this it suffices to show
that ϕ(aN ) ε ϕ(aN ) as we can see from Statement (74) (see Definition 168(iv)).

So to complete the proof of this lemma, we need to find an N ∈ N with

ϕ(aN ) ε ϕ(aN ).

Since a1, a, a2, a, . . . is ϕ-convergent, we know that u = ℓ. Now, recall that we
have u =

∧

Nϕ(aN ) and ℓ =
∧

Nϕ(aN ). Determine an N with

ϕ(aN ) ε/2 ℓ and u ε/2 ϕ(aN )

using Definition 168(vi) and Lemma 171(x). Hence we see that ϕ(aN) ε ϕ(aN ). �

Example 190. Let ϕ be a complete valuation. We know that ϕ-convergence im-
plies weak ϕ-convergence (see Lemma 188). The reverse implication does not hold.
Indeed, consider the Lebesgue integral ϕL : FL → R and the sequence f1, f2, . . . of
functions on R given by fn = 1

n · 1[n,n+1]. Note that

dϕL
(fn,0) = ϕL(|fn|) = 1

n .
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So we see that f1, f2, . . . weakly ϕL-converges to 0.
However, we prove that the sequence f1, f2, . . . does not ϕL-converge to 0. In-

deed, assume (towards a contradiction) that f1, f2, . . . does ϕL-converge to 0. Then
f1, f2, . . . is ϕL-convergent. So in particular f1, f2, . . . is upper ϕL-convergent (see
Definition 55). So we know that the following exists.

ϕL-limnfn =
∧

N

∨

n≥N ϕL(fN ∨ · · · ∨ fn)
Now, note that any N ∈ N and n ≥ N we have fN ∨ · · · ∨ fn = fN + · · ·+ fn, so

ϕL(fN ∨ · · · ∨ fn) = ϕL(fN ) + · · ·+ ϕL(fn) = 1
N + · · ·+ 1

n .

So we see that
∑

n
1
n =

∨

n ϕL(f1∨· · ·∨fn), which is absurd. Hence f1, f2, . . . does
not ϕL-converge to 0.

Let ϕ be a complete valuation. If a1, a2, . . . weakly ϕ-converges to a, then
a1, a2, . . . might not ϕ-converge to a (as we saw in Example 190). However, there is
always a subsequence of a1, a2, . . . which does ϕ-converge to a (see Proposition 192).
To prove this, we need a lemma.

Lemma 191. Let E be an ordered Abelian group.
Let Φ be a fitting uniformity on E.
Let L be a lattice, and let ϕ : L→ E be a valuation.
Let a ∈ L and let a1, a2, . . . be a sequence in L that weakly ϕ-converges to a.

Assume that
∑

n dϕ(a, an) :=
∨

N

∑N
n=1 dϕ(a, an) exists.

Then a1, a2, . . . ϕ-converges to a.

Proof. To prove that a1, a2, . . . ϕ-converges to a, we must show that a1, a, a2, a, . . .
is ϕ-convergent (see Definition 67). For this, we must show that the following exist,

u :=
∧

N

∨

n≥N ϕ(a ∨ aN ∨ · · · ∨ an)
ℓ :=

∨

N

∧

n≥N ϕ(a ∧ aN ∧ · · · ∧ an),
and we must prove that ℓ = u.

Let N ∈ N be given. We prove that
∨

n≥N ϕ(a ∨ aN ∨ · · · ∨ an) exists. Let us

write a′n := a∨aN ∨· · ·∨an for brevity. To prove that
∨

n≥N ϕ(a′n) exists, we want

to use the fact that E is R-complete (see Proposition 174). So the task at hand is
to study given n ≥ N the value ϕ(a′n+1)− ϕ(a′n). Note that

ϕ(a′n+1)− ϕ(a′n) = dϕ( a
′
n+1, a

′
n ) = dϕ( a

′
n ∨ an+1, a

′
n ∨ a ), (75)

since a′n+1 = a′n ∨ an+1 and a′n = a′n ∨ a (as a ≤ a′n). By Lemma 23 we have

dϕ( a
′
n ∨ an+1, a

′
n ∨ a ) ≤ dϕ( an+1, a ). (76)

So if we combine Statement (75) and Statement (76) we get

ϕ(a′n+1)− ϕ(a′n) ≤ dϕ(an+1, a). (77)

Recall that we have assumed that
∑

n dϕ(an, a) exists. From this, Statement (77),
and the fact that E is R-complete it follows that

∨

n≥N ϕ(a
′
n) exists.

We prove that u :=
∧

N

∨

n≥N ϕ(a∨ aN ∨ · · · ∨ an) exists. Again we use the fact

that E is R-complete: it is sufficient to prove that ξN − ξN+1 ≤ dϕ(a, aN) where

ξN :=
∨

n≥N ϕ(a ∨ aN ∨ · · · ∨ an).
Let n ∈ N be given. It is useful to begin by considering the value ϕ(a′′N )−ϕ(a′′N+1)
where a′′N := a ∨ aN ∨ · · · ∨ an for all N ≤ n. We obtain

ϕ(a′′N )− ϕ(a′′N+1) ≤ dϕ(a, aN )

using a similar reasoning as before. Written differently, we have

ϕ(a ∨ aN ∨ · · · ∨ an) ≤ dϕ(a, aN ) + ϕ(a ∨ aN+1 ∨ · · · ∨ an)
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for all N ∈ N and n ≥ N . This implies
∨

n≥N ϕ(a ∨ aN ∨ · · · ∨ an) ≤ dϕ(a, aN ) + ϕ(a ∨ aN+1 ∨ · · · ∨ an)
≤ dϕ(a, aN ) +

∨

n≥N+1 ϕ(a ∨ aN+1 ∨ · · · ∨ an).
Or in other words, ξN ≤ dϕ(a, aN ) + ξN+1. Hence we have proven:

u :=
∧

N

∨

n≥N ϕ(a ∨ aN ∨ · · · ∨ an) exists.

Of course, the above argument can be adapted to yield:

ℓ :=
∨

N

∧

n≥N ϕ(a ∧ aN ∧ · · · ∧ an) exists.

It remains to be shown that ℓ = u. Let ε ∈ Φ be given. Since reader can easily verify
that ℓ ≤ u, to prove that ℓ = u, it suffices to show that ℓ ε u (see Definition 168(v)).
Let N ∈ N be given. Note that we have the following inequalities.

∧

n≥N ϕ(a ∧ aN ∧ · · · ∧ an) ≤ ℓ ≤ u ≤
∨

n≥N ϕ(a ∨ aN ∨ · · · ∨ an).
So to prove ℓ ε u, it suffices to show that for some N (see Definition 168(iv)),

∧

n≥N ϕ(a ∧ aN ∧ · · · ∧ an) ε
∨

n≥N ϕ(a ∨ aN ∨ · · · ∨ an). (78)

Since
∑

n dϕ(a, an) exists, we can find an N ∈ N such that (see Lemma 171(x))

0 ε/4 dϕ(a, aN ) + · · · + dϕ(a, an) (n ≥ N). (79)

We will prove that Statement (78) holds for this N . Since
∧

n≥N ϕ(a∧aN ∧· · ·∧an)
and

∨

n≥N ϕ(a ∨ aN ∨ · · · ∨ an) exist, we can find n ≥ N such that
∧

n≥N ϕ(a ∧ aN ∧ · · · ∧ an) ε/4 ϕ(a ∧ aN ∧ · · · ∧ an)
ϕ(a ∨ aN ∨ · · · ∨ an) ε/4

∨

n≥N ϕ(a ∨ aN ∨ · · · ∨ an).
So to prove that Statement (78) it suffices to show that

ϕ(a ∧ aN ∧ · · · ∧ an) ε/2 ϕ(a ∨ aN ∨ · · · ∨ an). (80)

Note that we have the following inequalities.

ϕ(a ∧ aN ∧ · · · ∧ an) ≤ ϕ(a) ≤ ϕ(a ∨ aN ∨ · · · ∨ an).
So to prove that Statement (80) holds, we will show that

ϕ(a ∧ aN ∧ · · · ∧ an) ε/4 ϕ(a) ε/4 ϕ(a ∨ aN ∨ · · · ∨ an). (81)

Now, note that vteration of Lemma 24 yields

ϕ(a ∧ aN ∧ · · · ∧ an) − ϕ(a) = dϕ( a ∧ aN ∧ · · · ∧ an, a )

= dϕ( a ∧ aN ∧ · · · ∧ an, a ∧ a ∧ · · · ∧ a )

≤ dϕ(aN , a) + · · · + dϕ(an, a).

So by Statement (79) and Definition 168(viii) we get

ϕ(a ∧ aN ∧ · · · ∧ an) ε/4 ϕ(a).

Using a similar argument, we obtain

ϕ(a) ε/4 ϕ(a ∨ aN ∨ · · · ∨ an).
So we have proven Statement (81) and thereby completed the proof. �

Proposition 192. Let E be an ordered Abelian group.
Let Φ be a fitting uniformity on E.
Let L be a lattice, and ϕ : L→ E a valuation.
Let a1, a2, . . . be a sequence in L that weakly ϕ-converges to some a ∈ L.
Then: there are j1 < j2 < · · · in N such that aj1 , aj2 , . . . ϕ-converges to a.



80 A.A. WESTERBAAN

Proof. It suffices to find j1 < j2 < · · · in N such that
∑

k dϕ(a, ajk) exists. Indeed,
then we have aj1 , aj2 , . . . weakly ϕ-converging to a since a1, a2, . . . ϕ-converges to a.
So by Lemma 191 we aj1 , aj2 , . . . ϕ-converges to a, as we must prove.

Let ε′1, ε
′
2, . . . be an enumeration of Φ. Pick ε1, ε2, . . . in Φ such that for all n,

εn ≤ ε′n and εn+1 ≤ εn/2.

Note that for all N ∈ N and n ≥ N + 1 we have (see Notation 172),

εN+1 + · · ·+ εn ≤ εN . (82)

Pick j1 < j2 < · · · in N such that for all k ∈ N,

0 εk+1 dϕ(a, ajk).

Then by Statement (82) and Definition 168(viii) for all N ∈ N and n ≥ N ,

0 εN dϕ(a, ajN ) + · · · + dϕ(a, ajn). (83)

Recall that we need to prove that
∑

k dϕ(a, ajk) exists. Let ε ∈ Φ be given. By
Lemma 171(xi) it suffices to find an N ∈ N such that for all n ≥ N ,

0 ε dϕ(a, ajN ) + · · · + dϕ(a, ajn). (84)

Since ε′1, ε
′
2, . . . enumerates Φ we can find an N ∈ N such that ε′N = ε. Recall that

ε ≤ ε′N ≤ εN . So Statement (84) follows directly from Statement (83). �

Lemma 193. Let E be an ordered Abelian group.
Let Φ be a fitting uniformity on E.
Let L be a lattice, and ϕ : L→ E a valuation.
Let a1, a2, . . . be a sequence in L which weakly ϕ-converges to some a ∈ L
For each N ∈ N, let bN1 , b

N
2 , . . . be a sequence in L which weakly ϕ-converges to aN .

Then there are j1 < j2 < · · · in N such that b1j1 , b
2
j2 , . . . weakly ϕ-converges to a.

Proof. To find a suitable sequence j1 < j2 < · · · we need some preparation.
We know that Φ is countable (see Definition 168). Let ε′1, ε

′
2, . . . be an enumer-

ation of Φ. Define a sequence ε1 ≥ ε2 ≥ · · · in Φ (see Notation (ii)) by

ε1 = ε′1 and εn+1 = εn ∧ ε′n+1.

Note that we have εn ≤ ε′n for all n.
Let N ∈ N be given. Since bN1 , b

N
2 , . . . weakly ϕ-converges to aN , we know by

Definition 188 that there is an M ∈ N such that dϕ(b
N
n , aN ) εN 0 for all n ≥M .

Now, choose j1 < j2 < · · · such that dϕ(b
N
n , aN ) εN 0 for all n ≥ jN .

We will prove that b1j1 , b
2
j2
, . . . weakly ϕ-converges to a. Let ε ∈ Φ be given. We

must find an n ∈ N such that dϕ(b
N
jN
, aN ) ε 0 for all N ≥ n (see Definition 188).

Find an k ∈ N such that ε/2 = ε′k. (Recall that ε
′
1, ε

′
2, . . . enumerates Φ.)

Pick n ≥ k such that dϕ(aN , a) ε/2 0. We prove that dϕ(b
N
jN , a) ε 0 for all N ≥ n.

Let N ≥ n be given. We have dϕ(b
N
jN , aN ) εN 0 by choice of jN . So in particular

dϕ(b
N
jN , aN ) ε/2 0 since ε/2 = ε′k ≥ εk ≥ εn ≥ εN .

Further, we have dϕ(aN , a) ε/2 0 since N ≥ n.
So by property (viii) of a fitting uniformity (see Definition 168) we have

dϕ(b
N
jN , aN) + dϕ(aN , a) ε/2 dϕ(aN , a) ε/2 0.

So by property (iii) of a fitting uniformity we have

dϕ(b
N
jN , aN ) + dϕ(aN , a) ε 0.

Now, by points (i) and (iv) of Lemma 21 we get

0 ≤ dϕ(b
N
jN , a) ≤ dϕ(b

N
jN , aN ) + dϕ(aN , a).

So by property (iv) we get dϕ(b
N
jN , a) ε 0. �
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Lemma 194. Let E be an ordered Abelian group.
Let Φ be a fitting uniformity on E.
Let L be a lattice, and ϕ : L→ E a valuation. Let a, b ∈ L be given.
Let a1, a2, . . . be a sequence in L which weakly ϕ-converges to a.
Let b1, b2, . . . be a sequence in L which weakly ϕ-converges to b.
Then a1 ∧ b1, a2 ∧ b2, . . . weakly ϕ-converges to a ∧ b,
and a1 ∨ b1, a2 ∨ b2, . . . weakly ϕ-converges to a ∨ b.
Proof. We will only prove that a1 ∧ b1, a2 ∧ b2, . . . weakly ϕ-converges to a ∧ b.

Let ε ∈ Φ be given. To prove a1 ∧ b1, a2 ∧ b2, . . . weakly ϕ-converges to a ∧ b,
we must find an N ∈ N such that

0 ε dϕ( an ∧ bn, a ∧ b ) (n ≥ N). (85)

Since a1, a2, . . . weakly ϕ-converges to a and b1, b2, . . . weakly ϕ-converges to b we
know that there is an N ∈ N such that

0 ε/2 dϕ(an, a) and 0 ε/2 dϕ(bn, b) (n ≥ N). (86)

We will prove that Statement (85) holds for this N .
To this end, note by Lemma 21(i) and Lemma 24 we have, for all n ∈ N,

0 ≤ dϕ( an ∧ bn, a ∧ b ) ≤ dϕ(an, a) + dϕ(bn, b)

So by property (iv) of Φ (see Def. 168) to prove (85) it suffices to show that

0 ε dϕ(an, a) + dϕ(bn, b) (87)

for any n ≥ N . By Statement (86) and property (viii) of Φ, we get

0 ε/2 dϕ(an, a) ε/2 dϕ(an, a) + dϕ(bn, b)

for all n ≥ N . So we see that Statement (87) holds by property (viii) of Φ. �

Example 195. Given Lemma 48, one might surmise that Lemma 194 holds if one
replaces “weakly ϕ-converges” by “ϕ-converges”. This is not the case, as we will
show.

Recall that Lebesgue integral ϕL : FL → R is a valuation. For all n ∈ N, define

fn = (−1)n · 1
n · 1[n,n+1].

Then fn ∈ FL for all n, and the sequence f1, f2, . . . ϕL-converges to 0. As one
expects, the sequence −f1,−f2, . . . also ϕL-converges to 0. However, the sequence

f1 ∨ (−f1), f2 ∨ (−f2), . . .
does not ϕL-converge to 0, because fn ∨ (−fn) = 1

n · 1[n,n+1] (see Example 190).

Lemma 196. Let E be an ordered Abelian group.
Let Φ be a fitting uniformity on E.
Let V ⊇ L

ϕ−→ E be an extendible valuation system. Let a ∈ L be given.
Then there is a sequence a1, a2, . . . in L that weakly ϕ-converges to a.

Proof. By Corollary 145 we know that L = Πℵ1L. So it suffices to prove that the
following statement holds for every ordinal number α.

[

Let a ∈ ΠαL ∪ ΣαL be given.
There is a sequence a1, a2, . . . in L that ϕ-converges to a.

Let us name the above statement P (α). We prove ∀α P (α) with induction.
Clearly, P (0) holds, since Π0L = L = Σ0L.

Let α be an ordinal such that P (α) holds. We prove that P (α + 1) holds. Let
a ∈ Πα+1L∪Σα+1L be given. We must find a sequence in L that ϕ-converges to a.

Assume that a ∈ Πα+1L. There is a Σαϕ-convergent sequence b1 ≥ b2 ≥ · · · in
ΣαL such that

∧

nbn = a. In particular, a1, a2, . . . ϕ-converges to a. Since P (α)
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holds, we can find for each N ∈ N a sequence bN1 , b
N
2 , . . . in L that ϕ-converges

to aN . Then by Lemma 193 there are j1 < j2 < · · · in N such that b1j1 , b
2
j2
, . . .

ϕ-converges to a. So we see that there is a sequence in L that ϕ-converges to a.
By a similar reasoning we see that if a ∈ Σα+1L then there is a sequence in L

that ϕ-converges to a. Hence P (α+ 1).

Let λ be a limit ordinal such that P (α) holds for all α < λ. We must prove
that P (λ) holds. Let a ∈ ΠλL ∪ ΣλL be given. We must find a sequence in L
that ϕ-converges to a. By definition of ΠλL and ΣλL, there is an α < λ such that
a ∈ ΠαL ∪ ΣαL (see Definition 138). Since we know that P (α) holds, there must
be a sequence in L that ϕ-converges to a. Hence P (λ). �

Corollary 197. Let E be an ordered Abelian group.
Let Φ be a fitting uniformity on E.
Let V ⊇ L

ϕ−→ E be an extendible valuation system. Let a, b ∈ L with a ≤ b be
given.
Then there is a sequence a1, a2, . . . in L that weakly ϕ-converges to a,
and there is a sequence b1, b2, . . . in L that weakly ϕ-converges to b,
such that an ≤ bn for all n ∈ N.

Proof. Let a, b ∈ L with a ≤ b be given. Using Lemma 196 find a sequence a′1, a
′
2, . . .

in L that weakly ϕ-converges to a and find a sequence b′1, b
′
2, . . . in L that weakly

ϕ-converges to b. Consider the sequences a1, a2, . . . and b1, b2, . . . in L given by

an := a′n ∧ b′n and bn := a′n ∨ b′n (n ∈ N).

Clearly an ≤ bn for all n ∈ N. Moreover, by Lemma 194 we know that a1, a2, . . .
weakly ϕ-converges to a = a∧ b and weakly b1, b2, . . . ϕ-converges to b = a∨ b. �

Proposition 198. Let E be an ordered Abelian group.
Let Φ be a fitting uniformity on E.
Let V ⊇ L

ϕ−→ E be an extendible valuation system.

(i) Given a ∈ L, there is a sequence a1, a2, . . . in L which ϕ-converges to a.
(ii) Let a, b ∈ L with a ≤ b be given.

There is a sequence a1, a2, . . . in L which ϕ-converges to a, and
there is a sequence b1, b2, . . . in L which ϕ-converges to b, such that

an ≤ bn (n ∈ N).

Proof. Combine Lemma 196, Corollary 197, and Proposition 192. �

Theorem 199. Let E be a lattice ordered Abelian group.
Let Φ be a fitting uniformity on E.
Let V ⊇ L

ϕ−→ E be an extendible valuation system.
Let ψ : C → E be a complete Hausdorff valuation.
Let f : L→ C be an order preserving map such that ψ ◦ f = ϕ.
Then there is a unique order preserving extension g : L→ C of f such that ψ◦g = ϕ.

L

ϕ
❄❄
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��❄
❄❄

g
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Proof. (Uniqueness) Let g1, g2 : L → C be order preserving extensions of f such
that ψ ◦ gi = ϕ. We prove that g1 = g2. Let a ∈ L be given. By Proposition 198
there is a ϕ-convergent sequence a1, a2, . . . in L which ϕ-converges to a.

We must show that g1(a) = g2(a). To this end we prove that f(a1), f(a2), . . .
weakly ψ-converges to gi(a). Then g1(a) = g2(a) because ψ is Hausdorff.

Let i ∈ {1, 2} be given. Note that gi(an) = f(an) because gi extends f . So
we must prove that gi(a1), gi(a2), . . . weakly ψ-converges to gi(a). Let ε ∈ Φ be
given. We must find an N ∈ N such that

dψ( gi(an), gi(a) ) ε 0 (n ≥ N). (88)

Since a1, a2, . . . ϕ-converges to a we know that a1, a2, . . . weakly ϕ-converges to a
so we know there is an N ∈ N with

dϕ(an, a) ε 0 (n ≥ N).

We will prove that Statement (88) holds for this N .
Let n ≥ N be given. Since g is order preserving, we have

gi(an ∧ a) ≤ gi(an) ∧ gi(a) gi(an) ∨ gi(a) ≤ gi(an ∨ a).
In particular (recall that ψ ◦ gi = ϕ),

dψ( gi(an), gi(a) ) = ψ(gi(an) ∨ gi(a)) − ψ(gi(an) ∧ gi(a))
≤ ψ(gi(an ∨ a)) − ψ(gi(an ∧ a))
= ϕ(an ∨ a) − ϕ(an ∧ a) = dϕ(an, a).

(89)

So we know that 0 ε dϕ(an, a) and we have the following inequalities.

0 ≤ dψ( gi(an), gi(a) ) ≤ dϕ(an, a)

Hence 0 ε dψ(gi(an), gi(a)) by property (iv) of a fitting uniformity. So we have
shown that Statement (88) holds. Thus, g1 = g2.

(Existence) We will prove the following statement.




Let a ∈ L be given. There is a unique b ∈ C such that for
every sequence a1, a2, . . . in L that ϕ-converges to a, we
have f(a1), f(a2), . . . ψ-converges to b.

(90)

Of course, we will later define g : L→ C by g(a) = b.
Let a ∈ L be given. For each i ∈ {1, 2}, let bi ∈ C and ai1, a

i
2, . . . ∈ L be given,

such that ai1, a
i
2, . . . ϕ-converges to a, and f(a

i
1), f(a

i
2), . . . ψ-converges to bi.

We must prove that b1 = b2. Let ε ∈ Φ be given. Since ψ is Hausdorff, it suffices
to show that 0 ε dψ(b1, b2) (see 22).

Note that by points (i) and (iv) of Lemma 21 we have

0 ≤ dψ(b1, b2) ≤ dψ(b1, f(a
1
n) ) + dψ( f(a

1
n), f(a

2
n) ) + dψ( f(a

2
n), b2).

So to prove 0 ε dψ(b1, b2), it sufficient to find N ∈ N such that for all n ≥ N the
following statement holds (see Definition 168, points (iv), (iii) and (viii)).

0 ε/4 dψ(b1, f(a
1
n) ), and

0 ε/4 dψ( f(a
1
n), f(a

2
n) ), and

0 ε/4 dψ( f(a
2
n), b2).

Recall that f(ai1), f(a
i
2), . . . ψ-converges to bi for all i. Hence f(a

i
1), f(a

i
2), . . .

weakly ψ-converges to bi for all i. So we know there is an N ∈ N such that
0 ε/4 dψ(f(a

i
n), bi) for all n ≥ N and i.
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It remains to be shown that there is an N ∈ N such that 0 ε/4 dψ(f(a
1
n), f(a

2
n))

for all n ≥ N . To this end, note that f is order preserving and that ψ ◦ f = ϕ. So
with a similar reasoning as before (see Statement (89)), we see that

dψ( f(a
1
n), f(a

2
n) ) ≤ dϕ(a

1
n, a

2
n).

So to complete the proof Statement (90) it suffices to find an N ∈ N such that

0 ε/4 dϕ(a
1
n, a

2
n) (n ≥ N). (91)

Note that by points (i) and (iv) of Lemma 21 we have

0 ≤ dϕ(a
1
n, a

2
n) ≤ dϕ(a

1
n, a) + dϕ(a, a

2
n).

Since the sequence ai1, a
i
2, . . . ϕ-converges to a (and hence also weakly) we can find

an N ∈ N such that 0 ε/4 dϕ(a
i
n, a) for all n ≥ N and i ∈ {1, 2}.

So by points (iv), (iii) and (viii) of Definition 168 we see that Statement (91)
holds.

Hence we have proven Statement (90). So we now know there is a unique
map g : L → C such that for every a ∈ L and every sequence a1, a2, . . . in L
that ϕ-converges to a we have f(a1), f(a2), . . . ψ-converges to g(a).

To complete the proof of this theorem, we show that g extends f , we show that
g is order preserving, and that ψ ◦ g = ϕ.

Let a ∈ L be given. To prove that g extends f we show that g(a) = f(a). Note
that a, a, . . . ϕ-converges to a. So by definition of g we know that f(a), f(a), . . . ψ-
converges to g(a). But f(a), f(a), . . . ψ-converges to f(a) too, and ψ is Hausdorff.
So we see that f(a) = g(a).

Let a, b ∈ L with a ≤ b be given. To prove that g is order preserving we must
show that g(a) ≤ g(b). By Proposition 198 we can find a sequence a1, a2, . . . in L
that ϕ-converges to a and a sequence b1, b2, . . . in L that ϕ-converges to b such that
we have an ≤ bn for all n ∈ N. Now, note that by Lemma 194 we know that

f(a1) ∧ f(b1), f(a2) ∧ f(b2), . . . weakly ψ-converges to g(a) ∧ g(b).

Let n ∈ N be given. Since f is order preserving and an ≤ bn we have f(an) ≤ f(bn)
and so f(an)∧ f(bn) = f(an). Hence f(a1), f(a2), . . . weakly ψ-converges to both
g(a) and g(a) ∧ g(b). So we see that g(a) = g(a) ∧ g(b) and thus g(a) ≤ g(b).

Let a ∈ L be given. We show that ψ(g(a)) = ϕ(a). Find a sequence a1, a2, . . .
in L that ϕ-converges to a (see Lemma 196).

Recall that E is a lattice ordered Abelian group. By Theorem 63 we see that

ϕ(a) = limnϕ(an). (92)

By definition of g we have f(a1), f(a2), . . . ψ-converges to g(a). So by Theorem 63
we have ψ(g(a)) = limn ψ(f(an)). But ψ(f(an)) = ϕ(an) for all n ∈ N, so we have

ψ(f(a)) = limnϕ(an). (93)

If we combine Equalities (92) and (93) we get ϕ(a) = ψ(f(a)). �

Theorem 200. Statement (71) holds.
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Proof. We only give hints and leave the details to the reader. With the notation of
Subsection 9.1 apply Theorem (199) to the following situation.

FX×Y

ϕ
X×Y

❈❈
❈

!!❈
❈❈

❈
G

((◗
◗

◗
◗

◗
◗

◗

R FY /≈oo

FX×Y

FX

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠
ϕ
③③③③

==③③③③

?�

OO

Now, note that G is a complete valuation which extends FX . �
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10. Epilogue

Starting from the similarity between the Lebesgue measure and the Lebesgue inte-
gral as shown on page 9 I have tried to rebuild a small part of the theory of measure
and integration in a more general setting. When I look back at the result I am most
pleased that it was possible to introduce the Lebesgue measure and the Lebesgue
integral with such natural and old primitives. Indeed, completeness and convexity
together is nothing more than the method of exhaustion used by the ancient Greeks
to determine the area of the disk (see title page).

The price for simple primitives seems to be that much more effort is required to
prove even the simplest statements, as attested by the size of this text. Of course,
the number of pages could be greatly reduced if we worked with R instead of any E,
but even then I doubt that the approach taken in this thesis would be suitable for
a first course on the Lebesgue measure and the Lebesgue integral.

Whether the theory in this thesis will bear any fruit I cannot tell, but nevertheless
I am content, because I have enjoyed writing it, and I hope that you have enjoyed
reading it as well.
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Appendix A. Ordered Abelian Groups

In this thesis we do not only consider R-valued measures and integrals, but also E-
valued ones, where E is an ordered Abelian group. Since we do not expect reader to
be familiar with this particular generalisation of R, we have collected the relevant
definitions and basic results in this appendix.

Definition 201. An ordered Abelian group E is a set that is endowed with an
Abelian group operation, +, and a partial order, ≤, such that

x ≤ y =⇒ w + x ≤ w + y (w, x, y ∈ E).

Examples 202. (i) The integers, Z, the rationals, Q, and the reals, R, en-
dowed with the usual addition and order are ordered Abelian groups.

(ii) Let Q◦ be the set of rational numbers q with q > 0. Order Q◦ by

q 4 r ⇐⇒ ∃n ∈ N [ q · n = r ].

Then Q◦ with the usual multiplication is an ordered Abelian group.
(iii) Let E1 and E2 be ordered Abelian groups. Then E1 × E2 with pointwise

order and pointwise group operation is an ordered Abelian group.
(iv) Consider R2 with the pointwise addition. By point (iii), R2 with the usual

order is an ordered Abelian group. Further, R2 with the lexicograpgic order,

(x1, x2) ≤ (y1, y2) ⇐⇒
[

x1 < y1 or

x1 = y1 and x2 ≤ y2
,

is also an ordered Abelian group, called the lexicographic plane, L.

Let us prove some simple statements concerning ordered Abelian groups.

Lemma 203. Let E be an ordered Abelian group. Then, for x, y, w ∈ E,

x ≤ y ⇐⇒ w + x ≤ w + y.

Proof. “=⇒” By the definition of ordered Abelian group.
“⇐=” If w + x ≤ w + y, then x = −w + (w + x) ≤ −w + (w + y) = y. �

Lemma 204. Let E be an ordered Abelian group. Let A ⊆ E and x ∈ E be given.

(i) If A has an infimum, then so has x+A := {x+ a : a ∈ A}, and
∧

x+A = x+
∧

A.

(ii) If A has a supremum, then so has x+A, and
∨

x+A = x+
∨

A.

Proof. It suffices to prove that the map E → E given by u 7→ x + u is an order
isomorphism. This follows easily using Lemma 203. �

Lemma 205. Let E be an ordered Abelian group. Then, for x, y ∈ E,

x ≤ y ⇐⇒ −x ≥ −y.
Proof. “=⇒” If x ≤ y, then −y = (−x− y) + x ≤ (−x− y) + y = −x.
“⇐=” If −y ≤ −x, then x = −(−x) ≤ −(−y) = y by “=⇒”. �

Lemma 206. Let E be an ordered Abelian group, and A ⊆ E.

(i) If A has an infimum, then −A := {−a : a ∈ A} has a supremum, and

−∧

A =
∨−A.

(ii) If A has an supremum, then −A has an infimum, and

−∨

A =
∧−A.

Proof. The map E → E given by u 7→ −u is an order reversing isomorphism. �
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We use the following lemma regularly.

Lemma 207. Let E be an ordered Abelian group.
Let x1 ≤ x2 ≤ · · · be from E such that

∨

nxn exists.
Let y1 ≤ y2 ≤ · · · be from E such that

∨

nyn exists. Then

(
∨

nxn) + (
∨

nyn) =
∨

k xk + yk. (94)

Proof. By Lemma 204 we know that

(
∨

nxn) + (
∨

mym) =
∨

n,m xn + ym.

So to prove Equation (94) holds, it suffices to show that
∨

n,m xn + ym =
∨

k xk + yk.

That is, writing z :=
∨

n,m xn + ym, we must show that z is the supremum of

S := { x1 + y1, x2 + y2, . . . }.
That is, we must show that z is the smallest upper bound of S.

Given s ∈ S, we have s ≡ xk + yk for some k ∈ N, and

xk + yk ≤
∨

n,m xn + ym ≡ z.

So we see that z is an upper bound of S.
Let u ∈ E be an upper bound of S. To prove that z is the smallest upper bound

of S, we must show that z ≤ u. It suffices to prove that, for all n,m ∈ N,

xn + ym ≤ u. (95)

Let n,m ∈ N be given, and define k := max{n,m}. Then we see that

xn + ym ≤ xk + yk ≤ u.

Hence Statement (95) holds, and we are done. �

Of course, we have a similar statement concerning infima.

Lemma 208. Let E be an ordered Abelian group.
Let x1 ≥ x2 ≥ · · · be from E such that

∧

nxn exists.
Let y1 ≥ y2 ≥ · · · be from E such that

∧

nyn exists. Then

(
∧

nxn) + (
∧

nyn) =
∧

k xk + yk.

Proof. Similar to the proof of Lemma 207. �

We will occasionally use the following notation.

Definition 209. Let E be an ordered Abelian group. We write

E+ := { a ∈ E : a ≥ 0 }, E− := { a ∈ E : a ≤ 0 }.
Let us now turn to a special class of ordered Abelian groups.

Definition 210. A lattice ordered Abelian group is an ordered Abelian groupE,
such that the order ≤ makes E a lattice, i.e., each pair x, y ∈ E has an infimum,
x ∧ y, and a supremum, x ∨ y.
Examples 211. (i) The sets Z, Q, and R are lattices under the usual or-

der. The supremum of two elements is their maximum, the infimum is the
minimum.

(ii) More generally, any partially ordered set E that is totally ordered, i.e.,

either x ≤ y or y ≤ x for all x, y ∈ E,

is a lattice. The supremum of x, y ∈ E is simply the maximum of x and y,
the infimum x and y is the minimum of x and y.
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(iii) The space L (see Example 202(iv)) is totally ordered and hence a lattice.
(iv) The set Q◦ ordered by 4 (see Examples 202(ii)) is a lattice.

Let m,n ∈ Q◦ be given. If m,n ∈ Z, then the supremum of m and n is
the least common multiple of m and n, and the infimum of m and n is the
greatest common divisor of m and n.

The following result is quite suprising.

Lemma 212. Let E be a lattice ordered Abelian group. Then we have

a ∧ b + a ∨ b = a + b (a, b ∈ E).

Proof. a ∨ b− a− b = (a− a− b) ∨ (b− a− b) = (−b) ∨ (−a) = −(a ∧ b). �

Examples 213. (i) Let x, y ∈ R be given. Then Lemma 212 gives us

x+ y = min{x, y} + max{x, y}.
Of course, this is trivial.

(ii) Let m,n ∈ Z with m,n ≥ 0 be given. Then Lemma 212 gives us

m · n = gcd{m,n} · lcm{m,n}.
The above equality is more difficult to derive directly.

We now turn to ‘complete’ ordered Abelian groups.

Definition 214. Let E be an ordered Abelian group.
We say E is σ-Dedekind complete if the following statement holds.





Let x1, x2, . . . be a sequence in E.
Assume x1, x2, . . . has an upper bound.
Then

∨

nxn exists.

Examples 215. (i) The ordered Abelian group R is σ-Dedekind complete.
(ii) The ordered Abelian Q is not σ-Dedekind complete.
(iii) The lexicographic plane L (see Examples 202(iv)) is not σ-Dedekind com-

plete.
Indeed, consider the following elements of L.

(0, 0) ≤ (0, 1) ≤ (0, 2) ≤ · · · ≤ (1, 0)

If L were σ-Dedekind complete, then S := { (0, n) : n ∈ N } would have a
supremum; we will prove that S does not have a supremum.

Suppose (towards a contradiction) that S has a supremum, (x, y).
Then we have (0, n) ≤ (x, y) for all n ∈ N. In other words, for all n ∈ N,

0 < x or ( 0 = x and n ≤ y ).

Hence 0 < x, because there is no y ∈ R such that n ≤ y for all n ∈ N.
But then (x, y − 1) is an upper bound of S as well.
Since (x, y) is the smallest upper bound of S, we have (x, y) ≤ (x, y − 1).
So y ≤ y − 1, which is absurd. Hence S has no supremum.

Remark 216. The requirement in Definition 214 that x1, x2, . . . has an upper bound
is essential to make the notion of σ-Dedekind completeness non-trivial.

Indeed, if E is an ordered Abelian group in which every sequence x1, x2, . . . has
a supremum

∨

nxn, then we have E = {0} !
Let a ∈ E+ be given. We prove that a = 0. Note that the sequence

1 · a ≤ 2 · a ≤ 3 · a ≤ · · ·
has a supremum,

∨

n n · a. Note that by Lemma 204, we have

(
∨

n n · a) − a =
∨

n (n− 1) · a =
∨

n n · a.
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So we see that b− a = b, where b :=
∨

n n · a. Hence a = 0.
Let a ∈ E be given. We must prove that a = 0. Note that by Lemma 212,

a = 0 ∧ a + 0 ∨ a. (96)

We have 0 ∧ a = 0, since 0 ∧ a ∈ E+. We also have 0 ∨ a = 0, because 0 ∨ a ∈ E−,
so −(0 ∨ a) ∈ E+, so −(0 ∨ a) = 0, and thus 0 ∨ a = 0.

So we see that a = 0 by Equation (96). Hence E = {0}.
Remark 217. Let E be an ordered Abelian group.
Using the order reversing isomorphism x 7→ −x, the reader can easily verify that
E is σ-Dedekind complete if and only if the following statement holds.





Let x1, x2, . . . be a sequence in E.
Assume x1, x2, . . . has a lower bound.
Then

∧

nxn exists.



A GENERALISATION OF MEASURE AND INTEGRAL 91

References

1. E.M. Alfsen, Order theoretic foundations of integration, Mathematische Annalen 149 (1963),
no. 5, 419–461.

2. Garrett Birkhoff, Lattice Theory, second ed., Amarican Mathematical Society, 1960.
3. Brian A Davey and Hilary A Priestley, Introduction to lattices and order, Cambridge University

Press, 2002.
4. M. H. Stone, Notes on integration: I, Proceedings of the National Academy of Sciences 34

(1948), no. 7, 336–342.
5. Willem van Zuijlen, Integration of functions with values in a Riesz space, Master’s thesis,

Radboud University Nijmegen, 2012.
6. Wim Veldman, The Borel hierarchy theorem from Brouwer’s intuitionistic perspective, The

Journal of Symbolic Logic 73 (2008), no. 1, pp. 1–64.
7. Stephen Willard, General topology, Courier Dover Publications, 1970.

E-mail address: bram@westerbaan.name


	Preface
	1. Introduction
	2. Valuations
	3. Complete Valuations
	4. Valuation Systems
	5. The Completion
	6. Closedness of the Completion under Operations
	7. Extendibility
	8. Uniformity on E
	9. Fubini's Theorem
	10. Epilogue
	Appendix A. Ordered Abelian Groups
	References

