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Abstract
We present a model of Selinger and Valiron’s quantum lambda calculus based on von Neumann
algebras, and show that the model is adequate with respect to the operational semantics.
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1 Introduction

In 1925, Heisenberg realised, pondering upon the problem of the spectral lines of the hydrogen
atom, that a physical quantity such as the x-position of an electron orbiting a proton is
best described not by a real number but by an infinite array of complex numbers [12]. Soon
afterwards, Born and Jordan noted that these arrays should be multiplied as matrices are [3].
Of course, multiplying such infinite matrices may lead to mathematically dubious situations,
which spurred von Neumann to replace the infinite matrices by operators on a Hilbert
space [44]. He organised these into rings of operators [25], that are now called von Neumann
algebras, and thereby set off an explosion of research (also into related structures such as
Jordan algebras [13], orthomodular lattices [2], C∗-algebras [34], AW ∗-algebras [17], order
unit spaces [14], Hilbert C∗-modules [28], operator spaces [31], effect algebras [8], . . . ), which
continues even to this day.

One current line of research (with old roots [6, 7, 9, 19]) is the study von Neumann
algebras from a categorical perspective (see e.g. [4, 5, 30]). One example relevant to this
paper is Kornell’s proof that the opposite of the category vNAMIU of von Neumann algebras
with the obvious structure preserving maps (i.e. the unital normal ∗-homomorphisms) is
monoidal closed when endowed with the spatial tensor product [18]. He argues that vNAop

MIU
should be thought of as the quantum version of Set. We would like to focus instead on the
category of von Neumann algebras and completely positive normal subunital maps, vNACPsU,
as it seems more appropriate for modelling quantum computation: the full subcategory
of vNAop

CPsU consisting of finite dimensional von Neumann algebras is equivalent to Selinger’s
category Q [35], which is used to model first order quantum programming languages.
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Figure 1 General shape of
a model of the QLC

On the syntactic side, in 2005, Selinger and Valiron [36,37]
proposed a typed1 lambda calculus for quantum computation,
and they studied it in a series of papers [38–40]. A striking
feature of this quantum lambda calculus is that functions
naturally appear as data in the description of the Deutch–Jozsa

1 An untyped quantum lambda calculus had already been proposed by Van Tonder [43].
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algorithm, teleportation algorithm and Bell’s experiment. Although Selinger and Valiron
gave a precise formulation of what might constitute a model of the quantum lambda calculus
— basically a pair of adjunctions, see Figure 1, with some additional properties [40, §1.6] — the
existence of such a model (other than the term model) was an open problem for several years
until Malherbe constructed a model in his thesis using presheaves [21]. The construction of
Malherbe’s model is quite abstract, and it is (perhaps because of this) not yet known whether
his model is adequate with respect to the operational semantics defined by Selinger and
Valiron in [37] (see also [40]). While several adequate models for variations on the quantum
lambda calculus have been proposed in the meantime (using the geometry of interaction
in [10], and quantitative semantics in [27]), Malherbe’s model remains the only model of the
original quantum lambda calculus [37] known in the literature, and so the existence of an
adequate model for the quantum lambda calculus is still open.
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Figure 2 A model of the QLC using von
Neumann algebras

In this paper, we present the a model of
Selinger and Valiron’s quantum lambda calculus,
based on von Neumann algebras, see Figure 2,
and we show that the model is adequate with
respect to the operational semantics. We should
note that it is possible to extend the quantum
lambda calculus with recursion and inductive
types, but that we have not yet been able to include these features in our model.

The paper is divided in six sections. We begin with a short review of quantum computation
(in Section 2), and the quantum lambda calculus and its operational semantics (in Section 3).
We give the denotational semantics for the quantum lambda calculus using von Neumann
algebras and prove its adequacy in Section 4. For this we use several technical results about
the categories vNAMIU and vNACPsU of von Neumann algebras, which we will discuss in
Section 5. We end with a conclusion in Section 6.

2 Quantum Computation

In a nutshell, one gets the quantum lambda calculus by taking the simply typed lambda
calculus with products and coproducts and adding a qubit type. This single ingredient
dramatically changes the flavour of the whole system e.g. forcing one to make the type system
linear, so we will spend some words on the behaviour of qubits in this section. For more
details on quantum computation, see [26].

A state of an isolated qubit is a vector |ψ〉 of length 1 in the Hilbert space C2, and can
be written as a complex linear combination (“superposition”) |ψ〉 = α|0〉+ β|1〉, since the
vectors |0〉 = (1, 0) and |1〉 = (0, 1) form an orthonormal basis for C2.

When qubits are combined to form a larger system, one can sometimes no longer speak
about the state of the individual qubits, but only of the state of the whole system (in which
case the qubits are “entangled”.) The state of a register of n qubits is a vector |ψ〉 of length 1
in the n-fold tensor product (C2)⊗n ∼= C2n , which has as an orthonormal basis the vectors of
the form |w〉 ≡ |w1〉 ⊗ · · · ⊗ |wn〉 where w ≡ w1 · · ·wn ∈ 2n.

For the purposes of this paper there are three basic operations on registers of qubits.

1. One can add a new qubit in state |0〉 to a register of n qubits in state |ψ〉, turning it to a
register of n+ 1 qubits in state |ψ〉 ⊗ |0〉. A qubit in state |1〉 can be added similarly.

2. One can apply a unitary 2n × 2n matrix U to a register of n qubits in state |ψ〉 turning
the state to U |ψ〉.
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3. One can test the first qubit in the register. If the state of the register is written as
|ψ〉 ≡ α |0〉 ⊗ |ψ0〉 + β |1〉 ⊗ |ψ1〉 where the length of |ψ0〉 and |ψ1〉 is 1, then the test
comes out negative and changes the state of the register to |0〉⊗|ψ0〉 with probability |α|2,
and comes out positive with probability |β|2 changing the state to |1〉 ⊗ |ψ1〉.
Measurement of the i-th qubit in the register is also possible and behaves similarly.

A predicate on a register of n qubits is a 2n × 2n matrix P such that both P and I − P are
positive (which is the case when P is a projection). The probability that P holds in state |ψ〉
is 〈ψ|P |ψ〉. For example, given a state |ψ〉 of a qubit, the projection |ψ〉〈ψ| (which maps |ξ〉
to 〈ψ|ξ〉|ψ〉) represents the predicate “the qubit is in state |ψ〉”.

Thus the predicates on a qubit are part of the algebraM2 of 2×2 complex matrices. There
is also an algebra for the bit, namely C2. A predicate on a bit is an element (x, y) ≡ v ∈ C2

with 0 ≤ v ≤ 1, which is interpreted as “the bit is true with probability y, false with
probability x, and undefined with probability 1− x− y”.

An operation on a register of qubits may not only be described by the effect it has on
states (Schrödinger’s view), but also by its action on predicates (Heisenberg’s view).

1. The operation which takes a bit b and returns a qubit in state |b〉 is represented by the
map fnew : M2 → C2 given by fnew(A) = ( 〈0|A|0〉, 〈1|A|1〉 ).

2. The operation which applies a unitary U to a register of n qubits is represented by the
map fU : M2n →M2n given by fU (A) = U∗AU .

3. The operation which tests a qubit and returns the outcome is represented by the
map fmeas : C2 →M2 given by fmeas(λ, %) = λ|0〉〈0|+ %|1〉〈1|.

A general operation between finite dimensional quantum data types is usually taken to be
a completely positive subunital linear map (see below) between direct sums of matrix algebras,⊕n

i=1Mmi
. The category formed by these operations is equivalent to Qop [4, Th. 8.4].

Von Neumann algebras are a generalisation of direct sums of matrix algebras to infinite
dimensions. Formally, a von Neumann algebra A is a linear subspace of the bounded
operators on a Hilbert space H , which contains the identity operator, 1, is closed under
multiplication, involution, (−)∗, and is closed in the weak operator topology, i.e. the topology
generated by the seminorms |〈x|−|x〉| where x ∈H (cf. [16, 25]).

We believe that the opposite vNAop
CPsU of the category of von Neumann algebras and

normal completely positive subunital maps (definitions are given below) might turn out
to be the most suitable extension of Q to describe operations between (possibly infinite
dimensional) quantum data types. Indeed, to support this thesis, we will show that vNAop

CPsU
gives a model of the quantum lambda calculus.

Let us end this section with the definitions that are necessary to understand vNACPsU.
An element a of a von Neumann algebra A is self-adjoint if a∗ = a, and positive if a ≡ b∗b
for some b ∈ A . The self-adjoint elements of a von Neumann algebra A are partially
ordered by: a ≤ b iff b−a is positive. Any upwards directed bounded subset D of self-adjoint
elements of a von Neumann algebra A has a supremum

∨
D in the set of self-adjoint elements

of A [16, Lem. 5.1.4]. (So a von Neumann algebra resembles a domain.)
The linear maps between von Neumann algebras which preserve the multiplication,

involution, (−)∗, and unit, 1, are called unital ∗-homomorphisms in the literature and MIU-
maps by us. A linear map f between von Neumann algebras is positive if it maps positive
elements to positive elements, unital if it preserves the unit, subunital if f(1) ≤ 1, and normal
if f is positive and preserves suprema of bounded directed sets of self-adjoint elements. (If
subunital maps are akin to partial maps between sets, then the unital maps are the total
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Type A,B ::= qbit | > | !A | A(B | A⊗B | A⊕B

Term M,N,L ::= xA | newA | measA | UA | λnxA.M |MN | ∗n | let 〈xA, yB〉n = N in M

| 〈M,N〉n | inlnA,B(M) | inrnA,B(N) | match L withn(xA 7→M | yB 7→ N)

Value V,W ::= xA | newA | measA | UA | ∗n | λnxA.M | 〈V,W 〉n | inlnA,B(V ) | inrnA,B(W )
Table 1 Types, terms and values of the quantum lambda calculus

maps. Normality is the incarnation of Scott continuity in this setting, and coincides with
continuity with respect to the σ-weak = ultraweak = weak* topology [32, Th. 1.13.2].)

Given a von Neumann algebra A on a Hilbert space H , and a von Neumann algebra B

on a Hilbert space K , the spatial tensor product A ⊗B of A and B is the least von Neumann
algebra on H ⊗K which contains all operators of the form a ⊗ b where (a ⊗ b)(x, y) =
a(x)⊗ b(y) for all a ∈ A , b ∈ B, x ∈H and y ∈ K [15, §11.2]. (The tensor product A ⊗B

may be physically interpreted as the composition of the systems A and B—recall that a
register of two qubits is represented by the von Neumann algebraM2 ⊗M2.)

Given normal positive f : A → B and g : C → D there might be a normal positive linear
map f ⊗ g : A ⊗ C → B ⊗ D given by (f ⊗ g)(a, c) = f(a) ⊗ g(c). An interesting, and
annoying, phenomenon is that such f ⊗ g need not exist for all f and g. This warrants
the following definition: if f : A → B is a positive linear map such that for every natural
number n the map Mn(f) : Mn(A ) → Mn(B) is positive, then f is called completely
positive [29]. HereMn(A ) is the von Neumann algebra of n×n matrices with entries drawn
from A , andMn(f)(A)ij = f(Aij) for all i, j and A ∈Mn(A ). If f and g are normal and
completely positive, then f ⊗ g exists, and is completely positive [41, Prop. IV/5.13].

3 The Quantum Lambda Calculus and its Operational Semantics

We review the quantum lambda calculus for which we will give a denotational semantics.
The language and its operational semantics are basically the same as Selinger and Valiron’s
ones [37], but with sum type ⊕ [40] and ‘indexed’ terms [38], see Remark 1 and Notation 2
below. For space reasons we omit many details, and refer to [37,38,40].

3.1 Syntax and Typing Rules
The language consists of types, terms and values defined in Table 1. We use obvious shorthand
!nA = ! · · · !A and A⊗n = A⊗ · · · ⊗A. The subtyping relation <: on types is defined by the
rules shown in Table 2(a). In the definition of terms and values, n ∈ N is a natural number;
x ranges over variables; and U ranges over 2k × 2k unitary matrices for k ≥ 1. The (nullary)
constructors new, meas, U are called constants and sometimes referred to by c. Clearly, values
form a subclass of terms. As usual, we identify terms up to α-equivalence.

I Remark 1. The terms are indexed terms of [38], which have explicit type annotations (cf.
Church-style vs. Curry-style in the simply-typed lambda calculus). A typing derivation for
an indexed term is unique in a suitable sense, so that we can more easily obtain Lemma 12.
In fact, for the language of [38] we can safely remove the type annotations [38, Corollary 1].
We conjecture that the same is true for our language, which is left as a future work.

I Notation 2. Following [40] (and [10, 27]), the language has sum type ⊕ instead of
the bit type (which exists in [37]). The bit type and its constructors are emulated by
bit := > ⊕ >; ffn := inln>,>(∗n); ttn := inrn>,>(∗n); and if L then M else N :=
match L with0(x> 7→M | y> 7→ N), with fresh variables x, y.
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!nqbit <: !mqbit !n> <: !m>
A1 <: B1 A2 <: B2

!n(A2 (B1) <: !m(A1 (B2)

A1 <: B1 A2 <: B2

!n(A1 ⊗A2) <: !m(B1 ⊗B2)
A1 <: B1 A2 <: B2

!n(A1 ⊕A2) <: !m(B1 ⊕B2)
(a) Rules for subtyping, with a condition (n = 0⇒ m = 0) for each rule

∆, x : A, y : B,Γ BM : C
(ex)∆, y : B, x : A,Γ BM : C

A <: B (ax1 )
∆, x : A B xB : B

!Ac <: B (ax2 )
∆ B cB : B

∆, x : A BM : B
((.I1)

∆ B λ0xA.M : A(B

Γ, !∆, x : A BM : B FV(M) ∩ |Γ| = ∅
((.I2)

Γ, !∆ B λn+1xA.M : !n+1(A(B)

!∆,Γ1 BM : A(B !∆,Γ2 B N : A
((.E)!∆,Γ1,Γ2 BMN : B

(>)∆ B ∗n : !n>
!∆,Γ1 BM : !nA !∆,Γ2 B N : !nB

(⊗.I)!∆,Γ1,Γ2 B 〈M,N〉n : !n(A⊗B)

!∆,Γ1, x : !nA, y : !nB BM : C !∆,Γ2 B N : !n(A⊗B)
(⊗.E)

!∆,Γ1,Γ2 B let 〈xA, yB〉n = N in M : C

∆ BM : !nA (⊕.I1)∆ B inlnA,B(M) : !n(A⊕B)
∆ B N : !nB (⊕.I2)∆ B inrnA,B(N) : !n(A⊕B)

!∆,Γ1, x : !nA BM : C !∆,Γ1, y : !nB B N : C !∆,Γ2 B L : !n(A⊕B)
(⊕.E)

!∆,Γ1,Γ2 B match L withn(xA 7→M | yB 7→ N) : C
(b) Typing rules

Table 2 Subtyping relation and typing rules

The set FV(M) of free variables is defined in the usual way. A context is a list ∆ = x1 :
A1, . . . , xn : An of variables xi and types Ai where the variables xi are distinct. We write
|∆| = {x1, . . . , xn} and !∆ = x1 : !A1, . . . , xn : !An. We also write ∆|M = ∆ ∩ FV(M) for
the context restricted to the free variables of M .

A typing judgement, written as ∆ BM : A, consists of a context ∆, a term M and a type
A. A typing judgement is valid if it can be derived by the typing rules shown in Table 2(b).
In the rule (ax2 ), c ranges over new, meas and 2k × 2k unitary matrices U ; and the types Ac
are defined as follows: Anew = bit ( qbit, Ameas = qbit ( !bit, AU = qbit⊗k ( qbit⊗k.

The type system is affine (weak linear). Each variable may occur at most once, unless it
has a duplicable type !A. Substitution of the following form is admissible.

I Lemma 3 (Substitution). If !∆,Γ1, x : A BM : B and !∆,Γ2 B V : A, where V is a value
and |Γ1| ∩ |Γ2| = ∅, then !∆,Γ1,Γ2 BM [V/x] : B. J

Note, however, that we need to define the substitution M [V/x] with care. For example,
if A <: A′, M = yA

′(BxA
′ and V = zA, then we substitute zA′ (not zA) for xA′ in M .

See [38, §2.5] or [42, §9.1.4] for details.

3.2 Operational Semantics
The operational semantics is taken from [37,40], but is adapted for indexed terms.

I Definition 4. A quantum closure is a triple [ |ψ〉,Ψ,M ] with m ∈ N where:

|ψ〉 is a normalised vector of the Hilbert space (C2)⊗m ∼= C2m .
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[ |ψ〉,Ψ, (λ0xA.M)V ]→1 [ |ψ〉,Ψ,M [V/x] ] (()

[ |ψ〉,Ψ, let 〈xA, yB〉n = 〈V,W 〉n in M ]→1 [ |ψ〉,Ψ,M [V/x,W/y] ] (⊗)

[ |ψ〉,Ψ, match inlnA,B(V ) withn(xA 7→M | yB 7→ N) ]→1 [ |ψ〉,Ψ,M [V/x] ] (⊕1)

[ |ψ〉,Ψ, match inrnA,B(W ) withn(xA 7→M | yB 7→ N) ]→1 [ |ψ〉,Ψ, N [W/y] ] (⊕2)
(a) Classical control

[ |ψ〉,Ψ, U qbit⊗k(qbit⊗k

〈xqbit
1 , . . . , xqbit

k 〉0 ]→1 [ |ψ′〉,Ψ, 〈xqbit
1 , . . . , xqbit

k 〉0 ] (U)

[ |ψ〉, |x1 . . . xm〉, measqbit(!nbit xqbit
i ]→p0 [ |ψ0〉, |x1 . . . xm〉, ffn ] (meas0)

[ |ψ〉, |x1 . . . xm〉, measqbit(!nbit xqbit
i ]→p1 [ |ψ1〉, |x1 . . . xm〉, ttn ] (meas1)

[ |ψ〉, |x1 . . . xm〉, newA(qbit f̃f ]→1 [ |ψ〉|0〉, |x1 . . . xmy〉, yqbit ] (new0)

[ |ψ〉, |x1 . . . xm〉, newA(qbit t̃t ]→1 [ |ψ〉|1〉, |x1 . . . xmy〉, yqbit ] (new1)
(b) Quantum data

If [ |ψ〉,Ψ,M ]→p [ |ψ′〉,Ψ′,M ′ ], the following are valid reductions (if well-formed).
[ |ψ〉,Ψ,MN ]→p [ |ψ′〉,Ψ′,M ′N ] [ |ψ〉,Ψ, V M ]→p [ |ψ′〉,Ψ′, V M ′ ]
[ |ψ〉,Ψ, 〈M,N〉n ]→p [ |ψ′〉,Ψ′, 〈M ′, N〉n ] [ |ψ〉,Ψ, 〈V,M〉n ]→p [ |ψ′〉,Ψ′, 〈V,M ′〉n ]

[ |ψ〉,Ψ, let 〈xA, yB〉n = M in N ]→p [ |ψ′〉,Ψ′, let 〈xA, yB〉n = M ′ in N ]
[ |ψ〉,Ψ, inlnA,B(M) ]→p [ |ψ′〉,Ψ′, inlnA,B(M ′) ]
[ |ψ〉,Ψ, inrnA,B(M) ]→p [ |ψ′〉,Ψ′, inrnA,B(M ′) ]

[ |ψ〉,Ψ, match M withn(xA 7→ N | yB 7→ L) ]→p [ |ψ′〉,Ψ′, match M ′ withn(xA 7→ N | yB 7→ L) ]
(c) Congruence rules

Table 3 Reduction rules

Ψ is a list of m distinct variables, written as |x1 . . . xm〉. We write |Ψ| = {x1, . . . , xm},
and Ψ(xi) = i for the position of a variable in the list.
M is a term with FV(M) ⊆ |Ψ|.

We say a quantum closure P = [ |ψ〉, |x1 . . . xm〉,M ] is well-typed of type A, written as P : A,
if the typing judgement x1 : qbit, . . . , xm : qbit B M : A is valid. We call [ |ψ〉,Ψ, V ] a
value closure if V is a value.

I Definition 5. A (small-step) reduction P →p Q consists of quantum closures P,Q and
p ∈ [0, 1], meaning that P reduces to Q with probability p. The valid reductions P →p Q

are given inductively by the reduction rules shown in Table 3. In the rules, V and W refer
to values. The ‘quantum data’ rules (b) correspond to the three basic operations explained
in §2. In the rule (U), |ψ′〉 is the state obtained by applying the 2k × 2k unitary matrix U to
the k qubits of the position Ψ(x1), . . . ,Ψ(xk) in |ψ〉. In the rule (meas0), p0 is the probability
that we obtain 0 (‘negative’ in terms of §2) by measuring the i-th qubit of |ψ〉; and |ψ0〉 is
the state after that. The rule (meas1) is similar. In the rule (new0), we denote by f̃f any
term of the form inln!k>,!h>(∗n+k) (cf. Notation 2). The term t̃t in (new1) is similar.

Reduction satisfies the following properties.

I Lemma 6 (Subject reduction). If P : A and P →p Q, then Q : A. J

I Lemma 7 (Progress). Let P : A be a well-typed quantum closure. Then either P is a value
closure, or there exists a quantum closure Q such that P →p Q. In the latter case, there are



K. Cho and A. Westerbaan 7

at most two (up to α-equivalence) single-step reductions from P , and the total probability of
all the single-step reductions from P is 1. J

The next definitions follow [37,39].

I Definition 8. We define the small-step reduction probability prob(P,Q) ∈ [0, 1] for well-
typed quantum closures P,Q by: prob(P,Q) = p if P →p Q; prob(V, V ) = 1 if V is a value
closure; prob(P,Q) = 0 otherwise. Lemma 7 guarantees that prob is a probabilistic system in
a suitable sense. For a well-typed quantum closure P and a well-typed value closure Z, the big-
step reduction probability Prob(P,Z) ∈ [0, 1] is defined by Prob(P,Z) = limn→∞ probn(P,Z),
where prob1(P,Z) = prob(P,Z) and probn+1(P,Z) =

∑
Q prob(P,Q) probn(Q,Z).

I Definition 9. For each b ∈ {ff0, tt0}, we define P ⇓ b =
∑
Z∈Ub

Prob(P,Z), where Ub is
the set of well-typed quantum closures of the form [ |ψ〉,Ψ, b ].

We will use a strong normalisation result. The proof is similar to [27, Lemma 33].

I Lemma 10 (Strong normalisation). Let P : A be a well-typed quantum closure. Then there
is no infinite sequence of reductions P →p1 P1 →p2 P2 →p3 · · · .

Proof (Sketch). Clearly it suffices to prove the strong normalisation for the underlying (non-
deterministic) reductions M → N on terms. We add a constant cqbit to replace free variables
xqbit. We then define a translation (−)† from the quantum lambda calculus (with cqbit) to a
simply-typed lambda calculus with product, unit, sum types and constants new, meas, U, cqbit.
The translation (−)† forgets the ! modality, and translates the let constructor via (let 〈x, y〉 =
N in M)† = (λz.(λx.λy.M†) fst(z) snd(z))N†. We can prove the strong normalisation for
the simply-typed lambda calculus via standard techniques. J

4 Denotational Semantics Using von Neumann Algebras

4.1 Facts about von Neumann Algebras
We need the following notation and facts concerning von Neumann algebras. Those facts for
which we could not find proof in the literature will be discussed in the next section.

Let (vNAMIU,⊗,C) be the symmetric monoidal category (SMC) of von Neumann algebras
and normal MIU-maps [18, Prop. 7.2], and (vNACPsU,⊗,C) the SMC of von Neumann
algebras and normal CPsU-maps (where ⊗ is the spatial tensor product) [4]. Note that the
unit C is initial in vNAMIU (but not in vNACPsU). Both categories have products given by
direct sums ⊕ (with the supremum norm [41, Def. 3.4]). To interpret the quantum lambda
calculus, we will use the following pair of (lax) symmetric monoidal adjunctions,

(Setop,×, 1)
`∞

00
⊥ (vNAMIU,⊗,C)
sp

qq

� |

J
00

⊥ (vNACPsU,⊗,C)
F

qq

(1)

where Setop is the opposite of the category Set of sets and functions, considered as a SMC
via cartesian products (i.e. coproducts in Setop). The functor J is the inclusion functor; the
other functors are explained in the next section. Note that J is strict symmetric monoidal
and strictly preserves products. The following facts are important:

vNAMIU is a co-closed SMC. This means the endofunctor (−)⊗A on vNAMIU has a
left adjoint (−)∗A . The von Neumann algebra B∗A is called the free exponential in [18].
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The counit of the adjunction sp a `∞ is an isomorphism (see Corollary 21).
The functors sp, `∞ and the adjunction sp a `∞ are strong monoidal (see Corollary 23).
Moreover, the functors sp and `∞ preserves products (see Cor. 20 and Lem. 22).

The tensor product ⊗ distributes over products ⊕ in vNAMIU, as A ⊗ (B ⊕ C ) ∼=
(A ⊗B)⊕ (A ⊗C ), since A ⊗ (−) is a right adjoint and thus preserves products. We denote
the canonical isomorphism by θA ,B,C : (A ⊗B)⊕ (A ⊗ C )→ A ⊗ (B ⊕ C ).

B
f−→ C ⊗A in vNACPsU

FB −→ C ⊗A in vNAMIU

(FB)∗A = A ( B
g−→ C in vNAMIU

We define a ‘Kleisli co-exponential’ ( by
A ( B := (FB)∗A . We have the bijective
correspondence as shown on the right. We
write Λf = g for the MIU-map A ( B → C

corresponding to f . We also write εA ,B =
Λ−1id : B → (A ( B) ⊗ A for the co-evaluation map, i.e. the CPsU-map correspond-
ing to id : A ( B → A ( B. Then (Λf ⊗ id) ◦ ε = f by the naturality of the bijective
correspondence.

We write L = `∞ ◦ sp for the strong symmetric monoidal monad on vNAMIU induced
by the left-hand adjunction of (1). The unit and multiplication are denoted by η and µ

respectively. From the fact that the counit of sp a `∞ is an isomorphism, it easily follows
that L is an idempotent monad, i.e. the multiplication µ : L2 ⇒ L is an isomorphism. Note
also that L preserves products. We denote the structure isomorphisms by: dLC : C → LC;
dLA ,B : LA ⊗ LB → L(A ⊗B); and eLA ,B : LA ⊕ LB → L(A ⊕B).

Because the adjunction sp a `∞ satisfies a dual condition to a linear-non-linear model [1]
(see also [23,33]), the monad L has a property which is dual to a linear exponential comonad.
Thus each object of the form LA is equipped with a map OA : LA ⊗ LA → LA which,
with a unique map !

LA : C→ LA , makes LA into a ⊗-monoid in vNAMIU.

I Remark 11. One can summarise these facts by saying that the opposite vNAop
MIU is a

(weak) linear category for duplication [38, 40]; and moreover vNAop
MIU is a concrete model

of the quantum lambda calculus defined by Selinger and Valiron [40, §1.6.8]. Although they
gave the definition of concrete models of the quantum lambda calculus, results on them (e.g.
how to interpret the quantum lambda calculus; adequacy of models) have never been given.
In the remainder of the section, therefore, we will give the interpretation of the language in
von Neumann algebras concretely, and then prove its adequacy.

4.2 The Interpretation of Types and Typing Judgements
We interpret types as von Neumann algebras, i.e. objects in vNAMIU / vNACPsU, as follows.

JqbitK =M2 J>K = C J!AK = LJAK

JA(BK = JAK ( JBK JA⊗BK = JAK⊗ JBK JA⊕BK = JAK⊕ JBK

I Remark. One familiar with Fock space might be surprised to realise that J!qbitK = {0},
because there is no normal MIU-map ϕ : M2 → C. The intuition here may be that no part of
a qubit can be duplicated, and so the assumption of a duplicable qubit amounts to nothing.
This is also the interpretation of !qbit intended by Selinger and Valiron, see [38, §5].
I Remark. The interpretation of a function type A( B is obtained by abstract means,
and at this point we know very little about it. (Might it be as intangible as an ultrafilter?)
However, applying ! makes the function type almost trivial: after §4, it will be clear that

J!(A(B)K = `∞({ f : JBK CPsU−→ JAK }).
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The interpretation of the subtyping relation A <: B is a ‘canonical’ map JBK → JAK
in vNAMIU, which exists uniquely by a coherence property for an idempotent (co)monad;
see [42, §8.3.2] for details. For instance, we have JA( !B <: !A( !!BK = ηJAK ( µJBK.

Contexts ∆ = x1 : A1, . . . , xn : An are interpreted as J∆K = JA1K⊗ · · · ⊗ JAnK. We shall
treat the monoidal structure (⊗,C) as if it were strict monoidal, which is justified by the
coherence theorem for monoidal categories.

The interpretations JnewK, JmeasK and JUK of constants are defined using the maps
fnew : M2 → C2, fmeas : C2 →M2 and fU : M⊗k2 →M⊗k2 given in §2, as follows.

JnewK = η−1
C ◦ LΛfnew : J!AnewK = L(C2 (M2) −→ C

JmeasK = η−1
C ◦ LΛ(fmeas ◦ η−1

C2 ) : J!AmeasK = L(M2 ( LC2) −→ C

JUK = η−1
C ◦ LΛfU : J!AU K = L(M⊗k2 (M⊗k2 ) −→ C

We now give the interpretation J∆ BM : AK of a typing judgement as a map JAK→ J∆K
in vNACPsU. The definition is similar to [11]. First we define a normal CPsU-map J∆ BM :
AKFV : JAK→ J∆|M K (recall that ∆|M = ∆ ∩ FV(M)) by induction on the derivation of the

typing judgement as shown in Table 4. We then define J∆ B M : AK := (JAK
J∆BM :AKFV

−−−−−−−−→
J∆|M K ι−→ J∆K). Here and in Table 4, the following notations are used (we often suppress
subscripts). We denote the symmetry isomorphism by γA ,B : A ⊗B → B⊗A . For contexts
∆ ⊆ Γ, we write ι : J∆K→ JΓK for the ‘injection’ map defined via unique MIU-maps !

A : C→
A . For a context !∆,Γ1,Γ2, we define the map merge: J!∆,Γ1K ⊗ J!∆,Γ2K → J!∆,Γ1,Γ2K
via monoid structures OJAK : J!AK⊗ J!AK→ J!AK and symmetry maps γ. We can obtain the
map dL∆ : J!∆K → LJ∆K via dLA ,B : LA ⊗ LB → L(A ⊗B). We write µ∆ : J!!∆K → J!∆K
for µJA1K ⊗ · · · ⊗ µJAnK; dL

n : LnA ⊗ LnB → Ln(A ⊗ B) for Ln−1dL ◦ · · · ◦ dL; and
eL

n : LnA ⊕ LnB → Ln(A ⊕B) similarly. Projection maps and tupling for direct sums,
products in vNACPsU, are denoted by πi : A1 ⊕A2 → Ai and 〈f, g〉 : A → B ⊕ C .

Note that the interpretation J∆ BM : AK is defined by induction on typing derivations.
Because we use indexed terms, it is not hard to prove the following fact by induction on a
typing derivation Π.

I Lemma 12. Suppose that ∆ BM : A is valid with a derivation Π, and so is ∆′ BM : A
with Π′. Then JΠ′KFV = σ ◦ JΠKFV, where σ : J∆|M K → J∆′|M K is a (unique by coherence)
isomorphism that permutes ∆|M to ∆′|M . In particular, J∆ B M : AK is well-defined, not
depending on derivations. J

Let [ |ψ〉, |x1 . . . xn〉,M ] : A be a well-typed quantum closure. The mapping A 7→ 〈ψ|A|ψ〉
defines a normal CPU-map 〈ψ|−|ψ〉 : M⊗m2 → C. The interpretation of the quantum closure
is defined by:

J[ |ψ〉, |x1 . . . xn〉,M ] : AK := JAK
Jx1:qbit,...,xn:qbitBM :AK−−−−−−−−−−−−−−−−−→M⊗n2

〈ψ|−|ψ〉−−−−−→ C

4.3 Adequacy of the Denotational Semantics
The next soundness/invariance for the small-step reduction is a key result to obtain adequacy.
Note that for normal CPsU-maps f1, . . . , fn : A → B and ri ∈ [0, 1] with

∑
i ri ≤ 1, the

(convex) sum
∑
i rifi of maps is defined in the obvious pointwise manner and is a normal

CPsU-map.

I Proposition 13 (Soundness for the small-step reduction). Let P : A be a well-typed quantum
closure. Then JP : AK =

∑
Q prob(P,Q)JQ : AK.
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J∆, x : A, y : B,Γ BM : CKFV = JCK f−→ J(∆, x : A, y : B,Γ)|M K

J∆, y : B, x : A,Γ BM : CKFV = (idJ∆|M K ⊗ γ ⊗ idJΓ|M K) ◦ f (if x, y ∈ FV(M)); f (otherwise)

J∆, x : A B xB : BKFV = JBK
JA<:BK−−−−−→ JAK J∆ B cB : BKFV = JBK

J!Ac<:BK−−−−−−→ J!AcK
JcK−−→ C

J∆ B ∗n : !n>KFV = J!n>K
J!><:!n>K−−−−−−−→ LC

(dLC )−1

−−−−−→ C

J∆, x : A BM : BKFV = JBK f−→ J(∆, x : A)|M K

J∆ B λ0xA.M : A(BKFV = JAK ( JBK Λf ′−−→ J∆|M K
where:

JBK
f
//

f ′
((

J(∆, x : A)|M K
ι��

J∆|M K⊗ JAK

JΓ, !∆, x : A BM : BKFV = JBK f−→ J(Γ, !∆, x : A)|M K

JΓ, !∆ B λn+1xA.M : A(BKFV = J!n+1(A(B)K J!(A(B)<:!n+1(A(B)K−−−−−−−−−−−−−−−−→ L(JAK ( JBK)
L(Λf ′)−−−−→ LJ!∆|M K

(dL)−1
−−−−−→ J!!∆|M K µ−→ J!∆|M K = J(!∆,Γ)|M K (f ′ defined similarly)

J!∆,Γ1 BM : A(BKFV = JA(BK f−→ J(!∆,Γ1)|M K

J!∆,Γ2 B N : AKFV = JAK g−→ J(!∆,Γ2)|N K

J!∆,Γ1,Γ2 BMN : BKFV = JBK ε−→ JA(BK⊗ JAK f⊗g−−−→ J(!∆,Γ1)|M K⊗ J(!∆,Γ2)|N K
ι⊗ι−−→ J(!∆,Γ1)|MN K⊗ J(!∆,Γ2)|MN K merge−−−−→ J(!∆,Γ1,Γ2)|MN K

J!∆,Γ1 BM : !nAKFV = J!nAK f−→ J(!∆,Γ1)|M K J!∆,Γ2 B N : !nBKFV = J!nBK g−→ J(!∆,Γ2)|N K

J!∆,Γ1,Γ2 B 〈M,N〉n : !n(A⊗B)KFV = J!n(A⊗B)K (dL
n

)−1
−−−−−−→ J!nAK⊗ J!nBK f⊗g−−−→

J(!∆,Γ1)|M K⊗ J(!∆,Γ2)|N K ι⊗ι−−→ J(!∆,Γ1)|〈M,N〉K⊗ J(!∆,Γ2)|〈M,N〉K
merge−−−−→ J(!∆,Γ1,Γ2)|〈M,N〉K

J!∆,Γ1, x : !nA, y : !nB BM : CKFV = JCK f−→ J(!∆,Γ1, x : !nA, y : !nB)|M K

J!∆,Γ2 B N : !n(A⊗B)KFV = J!n(A⊗B)K g−→ J(!∆,Γ2)|M K

J!∆,Γ1,Γ2 B let 〈xA, yB〉n = N in M : CKFV = JCK f−→ J(!∆,Γ1, x : !nA, y : !nB)|M K

ι−→ J(!∆,Γ1)|let...K⊗ J!nAK⊗ J!nBK id⊗dL
n

−−−−−→ J(!∆,Γ1)|let...K⊗ J!n(A⊗B)K id⊗g−−−→

J(!∆,Γ1)|let...K⊗ J(!∆,Γ2)|N K id⊗ι−−−→ J(!∆,Γ1)|let...K⊗ J(!∆,Γ2)|let...K
merge−−−−→ J(!∆,Γ1,Γ2)|let...K

J∆ BM : !nAKFV = J!nAK f−→ J∆|M K

J∆ B inlnA,B(M) : !n(A⊕B)KFV = J!n(A⊕B)K L
nπ1−−−→ J!nAK f−→ J∆|M K

J∆ B N : !nBKFV = J!nBK g−→ J∆|N K

J∆ B inrnA,B(N) : !n(A⊕B)KFV = J!n(A⊕B)K L
nπ2−−−→ J!nBK g−→ J∆|N K

J!∆,Γ1, x : !nA BM : CKFV = JCK f−→ J(!∆,Γ1, x : !nA)|M K

J!∆,Γ1, y : !nB B N : CKFV = JCK g−→ J(!∆,Γ1, y : !nB)|N K

J!∆,Γ2 B L : !n(A⊕B)KFV = J!n(A⊕B)K h−→ J(!∆,Γ2)|LK

J!∆,Γ1,Γ2 B match L withn(xA 7→M | yB 7→ N) : CKFV =

JCK
〈f,g〉−−−→ J(!∆,Γ1, x : !nA)|M K⊕ J(!∆,Γ1, y : !nB)|N K ι⊕ι−−→

(J(!∆,Γ1)|match...K⊗ J!nAK)⊕ (J(!∆,Γ1)|match...K⊗ J!nBK) θ−→ J(!∆,Γ1)|match...K⊗ (J!nAK⊕ J!nBK)
id⊗eL

n

−−−−−→ J(!∆,Γ1)|match...K⊗ J!n(A⊕B)K id⊗h−−−→ J(!∆,Γ1)|match...K⊗ J(!∆,Γ2)|LK
id⊗ι−−−→ J(!∆,Γ1)|match...K⊗ J(!∆,Γ2)|match...K

merge−−−−→ J(!∆,Γ1,Γ2)|match...K

Table 4 Inductive definition of the interpretation of typing judgements
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Proof. See Appendix A. J

I Proposition 14 (Soundness for the big-step reduction). Let P : A be a well-typed quantum
closure. Then JP : AK =

∑
Z Prob(P,Z)JZ : AK, where Z runs over well-typed value closures.

Proof. By Lemmas 7 and 10, Prob(P,Z) def= limn→∞ probn(P,Z) = probm(P,Z) for some
m. It is then easy to obtain JP : AK =

∑
Q probm(P,Q)JQ : AK by induction on m, using

Proposition 13. J

I Theorem 15 (Adequacy). Let P : bit be a quantum closure of type bit. For the interpre-
tation JP : bitK : C⊕C→ C, we have P ⇓ ff = JP : bitK(1, 0) and P ⇓ tt = JP : bitK(0, 1).

Proof. By Proposition 14 we have JP : bitK =
∑
Z Prob(P,Z)JZ : bitK. Note that for each

well-typed value closure [ |ψ〉,Ψ, V ] : bit, either V = ff0 or V = tt0. Then the assertion
follows since J[ |ψ〉,Ψ, ff0 ] : bitK(λ, ρ) = λ and J[ |ψ〉,Ψ, tt0 ] : bitK(λ, ρ) = ρ. J

5 Technical Results about von Neumann Algebras

Let us sketch how we obtained the two monoidal adjunctions in (1).

I Definition 16. Let `∞(X) denote the von Neumann algebra of bounded maps f : X →
C on a set X. Addition, multiplication, involution, suprema, and so on, are computed
coordinatewise in `∞(X). In fact, `∞(X) is simply the X-fold product in vNAMIU of C with
ϕ 7→ ϕ(x) as x-th projection. We extend X 7→ `∞(X) to a functor `∞ : Setop → vNAMIU
by defining `∞(f)(ϕ) = ϕ ◦ f for every map f : X → Y (in Set) and ϕ ∈ `∞(Y ).

Let sp(A ) be the set of normal MIU-maps ϕ : A → C on a von Neumann algebra A .
We extend A 7→ sp(A ) to a functor sp: vNAMIU → Setop by defining sp(f)(ϕ) = ϕ ◦ f for
every normal MIU-map f : A → B and ϕ ∈ sp(B).

Note that any normal MIU-map f : A → `∞(X) gives a map g : X → sp(A ) by “swapping
arguments” — g(x)(ϕ) = f(ϕ)(x) —, and with a little bit more work, we get:

I Lemma 17. There is an adjunction sp a `∞. J

The following two lemmas describe the normal spectrum of direct products and tensors
of von Neumann algebras, and can be proven using standard techniques.

I Lemma 18. Let I be a set, and for each i ∈ I, let Ai be a von Neumann algebra. For
each ω ∈ sp(

⊕
i∈I Ai), there is i ∈ I and ω̃ ∈ sp(Ai) with ω = ω̃ ◦ πi. J

I Lemma 19. Let A1 and A2 be von Neumann algebras. Then for every ω ∈ sp(A1 ⊗A2)
there are unique ω1 ∈ A1 and ω2 ∈ A2 with ω(a1⊗ a2) = ω1(a1) · ω2(a2) for all ai ∈ Ai. J

I Corollary 20. The functor sp: vNAMIU −→ Setop preserves products, and tensors. J

Using that `∞(X) is the X-fold product of C in vNAMIU we get:

I Corollary 21. The counit of the adjunction sp a `∞ is an isomorphism. J

I Lemma 22. Let X and Y be sets. There is a normal MIU-isomorphism

ϕ : `∞(X)⊗ `∞(Y ) −→ `∞(X × Y ) given by ϕ(f ⊗ g)(x, y) = f(x) · g(y).

Proof. Use the proof of Proposition 9.2 from [4]. J
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I Corollary 23. The adjunction sp a `∞ is strong monoidal. J

Let us turn to the second adjunction in (1). In [45] it is shown how the following result
follows from Freyd’s Adjoint Functor Theorem (see Theorem V.6.2 of [20]).

I Theorem 24 ([45]). The inclusion J : vNAMIU → vNACPsU has a left adjoint. J

I Corollary 25. The category vNACPsU is isomorphic to the co-Kleisli category of the
comonad F ◦ J on vNAMIU induced by F a J . J

Proof. See Theorem 9 of [45], or do Exercise VI.5.2 of [20] (and use the fact that an
equivalence of categories which is bijective on objects is an isomorphism.) J

I Corollary 26. The adjunction F a J is symmetric monoidal.

Proof. Clearly, J : vNAMIU → vNACPsU is strict symmetric monoidal. From this fact
alone, it follows that the adjunction F a J is symmetric monoidal, see Prop. 14 of [24]. J

In our model of the quantum lambda calculus the von Neumann algebras of the form
`∞(X) serve as the interpretation of the duplicable types (of the form !A), because `∞(X)
carries a ⊗-monoid structure. Among all von Neumann algebras `∞(X) is arguably quite
special and one might wonder if there is a broader class of von Neumann algebras that might
serve as the interpretation of duplicable types (such as the class of all commutative von
Neumann algebras, which includes L∞[0, 1].) The following result settles this matter: no.
Due to space constraints, the proof will appear somewhere else.

I Theorem 27. For a von Neumann algebra A the following are equivalent.

1. There is a duplicator on A , that is, a normal positive unital map µ : A ⊗A → A such
that µ(1⊗ a) = a = µ(a⊗ 1) and µ(a⊗ µ(b⊗ c)) = µ(µ(a⊗ b)⊗ c) for all a, b, c ∈ A .

2. A is isomorphic to `∞(X) for some set X.

Moreover, there is at most one duplicator on A . J

I Corollary 28. `∞(sp(A )) is the free ⊗-monoid on A from vNAMIU. J

6 Final Remarks

We have given a rather concrete proof of adequacy for the sake of clarity. However, it
seems that we only used the fact that vNAMIU is a ‘concrete model of the quantum lambda
calculus’ (see Remark 11), and that vNACPsU is ‘suitably’ enriched over convex sets. Thus
an abstract result might be distilled from our work stating that any concrete model of the
quantum lambda calculus is adequate when suitably enriched over convex sets, but we have
not pursued this.

We believe selling points of our model are that it is a model for Selinger and Valiron’s
original quantum lambda calculus [37] (in Selinger and Valiron’s linear fragment [39] the
! modality is absent; in Hasuo and Hoshino’s language [10] the tensor type qbit ⊗ qbit
does not represent two qubits; and only function types may be duplicable, !(A(B), in the
language of Pagani et al. [27]); that it is adequate (Malherbe’s model [21,22] is not known to
be); that the interpretation of ! is rather simple; and that it is formed using von Neumann
algebras, a mathematical classic.

We believe our model could be improved by a more concrete description of JA(BK (as
all the other models have), and by features such as recursion and inductive types (present
in e.g. Hasuo and Hoshino’s and Pagani’s models), which leaves us with ample material for
future research.
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A Proof of Soundness for the Small-Step Reduction

We need some results on the denotational semantics.
I Lemma 29. Suppose that !∆,Γ1, x : A BM : B and !∆,Γ2 B V : A, so that !∆,Γ1,Γ2 B
M [V/x] : B by Lemma 3. Then the following diagram commute.

JBK
J!∆,Γ1,Γ2BM [V/x]:BK

//

J!∆,Γ2,x:ABM :BK
��

J!∆,Γ1,Γ2K

J!∆,Γ1K⊗ JAK
id⊗J!∆,Γ2BV :AK

// J!∆,Γ1K⊗ J!∆,Γ2K
merge
OO
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Proof. By induction on M . Note that the interpretation of a value is MIU. J

I Lemma 30. We have the following equations, when terms M,N and values V,W are
appropriately well-typed.

J(λ0xA.M)V K = JM [V/x]K
Jlet 〈xA, yB〉n = 〈V,W 〉n in MK = JM [V/x,W/y]K

Jmatch inlnA,B(V ) withn(xA 7→M | yB 7→ N)K = JM [V/x]K
Jmatch inrnA,B(W ) withn(xA 7→M | yB 7→ N)K = JN [W/y]K

Here we abbreviate J∆ BM : AK to JMK.

Proof. Straightforward, using Lemma 29. J

To prove Proposition 13 by induction, we need to strengthen the statement as Lemma 32.
Note that JP : AK(0) = JP : AK.

I Definition 31. Let [ |ψ〉, |x1 . . . xm〉,M ] : A be a well-typed quantum closure such that
xi /∈ FV(M) for all i ≤ l. Then we define:

J[ |ψ〉, |x1 . . . xm〉,M ] : AK(l) =M⊗l2 ⊗ JAK
id⊗Jxl+1:qbit,...,xm:qbitBM :AK−−−−−−−−−−−−−−−−−−−−−→M⊗m2

〈ψ|−|ψ〉−−−−−→ C

I Lemma 32. Let P = [ |ψ〉, |x1 . . . xm〉,M ] : A be a well-typed quantum closure such that
xi /∈ FV(M) for all i ≤ l. Then JP : AK(l) =

∑
Q prob(P,Q)JQ : AK(l).

Proof. We prove it by induction on terms M . If M is a value, then it holds by the definition
of prob. In the other induction steps, we prove the assertion by cases.

Consider the induction step for MN , and the case where M is not a value. Then the
only possible reductions from P = [ψ,Ψ,MN ] are [ψ,Ψ,MN ] →p [ψ′,Ψ′,M ′N ] when
[ψ,Ψ,M ]→p [ψ′,Ψ′,M ′ ]. Without loss of generality,2 we may assume that

l = |y1 . . . ylz1 . . . zkx1 . . . xh〉

such that x1 : qbit, . . . , xh : qbit B M : A( B and z1 : qbit, . . . , zk : qbit B N : A. We
will simply write JMK for Jx1 : qbit, . . . , xh : qbit BM : A(BK and JNK similarly. Then

J[ψ,Ψ,MN ] : BK(l)

=M⊗l2 ⊗ JBK id⊗ε−−−→M⊗l2 ⊗ JA(BK⊗ JAK
id⊗JMK⊗JNK−−−−−−−−→M⊗l2 ⊗M

⊗h
2 ⊗M⊗k2

id⊗γ−−−→M⊗l2 ⊗M
⊗k
2 ⊗M⊗h2

〈ψ|−|ψ〉−−−−−→ C

=M⊗l2 ⊗ JBK id⊗ε−−−→M⊗l2 ⊗ JA(BK⊗ JAK id⊗γ−−−→M⊗l2 ⊗ JAK⊗ JA(BK
id⊗JNK⊗id−−−−−−−→M⊗(l+k)

2 ⊗ JA(BK
id⊗JMK−−−−−→M⊗(l+k)

2 ⊗M⊗h2
〈ψ|−|ψ〉−−−−−→ C

2 A permutation of variables in Ψ which keeps the first l variables, with the permutation of the correspond-
ing qubits in |ψ〉, does not change JP : AK(l). The same is true for the operational semantics [39, §3.2].
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Let [ψ,Ψ,M ]→pi [ψi,Ψi,Mi ] (i ∈ I) be all the reductions from [ψ,Ψ,M ]. By IH, we have

M⊗(l+k)
2 ⊗ JA(BK

id⊗JMK−−−−−→M⊗(l+k)
2 ⊗M⊗h2

〈ψ|−|ψ〉−−−−−→ C

= J[ψ,Ψ,M ] : A(BK(l+k)

=
∑
i∈I

piJ[ψi,Ψi,Mi ] : A(BK(l+k)

=
∑
i∈I

pi

(
M⊗(l+k)

2 ⊗ JA(BK
id⊗JMiK−−−−−→M⊗(l+k)

2 ⊗M⊗hi
2

〈ψi|−|ψi〉−−−−−−→ C
)

It is then straightforward to see that J[ψ,Ψ,MN ] : BK(l) =
∑
i piJ[ψi,Ψi,MiN ] : BK(l).

Next consider the case where M = U and N = 〈x1, . . . , xk〉0. Without loss of generality
we may assume P = [ |ψ〉,Ψ, U〈x1, . . . , xk〉 ] with l = |y1 . . . ylx1 . . . xkz1 . . . zh〉. The only
reduction from P is [ |ψ〉,Ψ, U〈x1, . . . , xk〉 ] →1 [ |ψ′〉,Ψ, 〈x1, . . . , xk〉 ] =: Q, where |ψ′〉 =
(Il ⊗ U ⊗ Ih)|ψ〉 (In denotes the 2n × 2n identity matrix). We need to show that JP :
qbit⊗kK(l) = JQ : qbit⊗kK(l). Note that

Jx1 : qbit, . . . , xk : qbit B U〈x1, . . . , xk〉 : qbit⊗kK = fU : M⊗k2 →M⊗k2

Thus we have

JP : qbit⊗kK(l) =M⊗l2 ⊗M
⊗k
2

id⊗fU−−−−→M⊗l2 ⊗M
⊗k
2

id⊗ι−−−→M⊗(l+k+h)
2

〈ψ|−|ψ〉−−−−−→ C

On the other hand, we have

Jx1 : qbit, . . . , xk : qbit B 〈x1, . . . , xk〉 : qbit⊗kK = id: M⊗k2 →M⊗k2

and hence

JQ : qbit⊗kK(l) =M⊗l2 ⊗M
⊗k
2

id⊗ι−−−→M⊗(l+k+h)
2

〈ψ′|−|ψ′〉−−−−−−→ C

For each elementary tensor A⊗B ∈M⊗l2 ⊗M
⊗k
2 ,

JP : qbit⊗kK(l)(A⊗B) = 〈ψ|(id⊗ ι)((id⊗ fU )(A⊗B))|ψ〉
= 〈ψ|A⊗ (U†BU)⊗ Ih|ψ〉
= 〈ψ|(Il ⊗ U† ⊗ Ih)(A⊗B ⊗ Ih)(Il ⊗ U ⊗ Ih)|ψ〉
= 〈ψ′|(id⊗ ι)(A⊗B)|ψ′〉

= JQ : qbit⊗kK(l)(A⊗B)

We conclude that JP : qbit⊗kK(l) = JQ : qbit⊗kK(l).
Consider the case whereMN is of the form (λx.M)V . Only the reduction is [ |ψ〉,Ψ, (λx.M)V ]→1

[ |ψ〉,Ψ,M [V/x] ]. The assertion holds immediately by Lemma 30.
The other cases in the induction step MN can be shown similarly. We can prove the

other induction steps similarly by cases. J
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