An Effect-Theoretic Account of Lebesgue Integration

Bart Jacobs
bart@cs.ru.nl

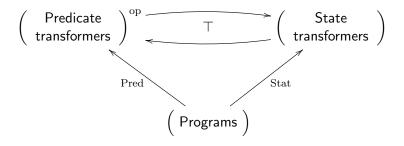
Bram Westerbaan awesterb@cs.ru.nl

Radboud University Nijmegen

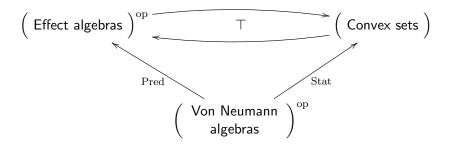
June 23, 2015

Some locals

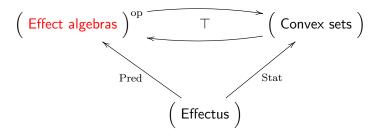
Our usual business: categorical program semantics



Our usual business: semantics of quantum programs



Our usual business: effectus theory

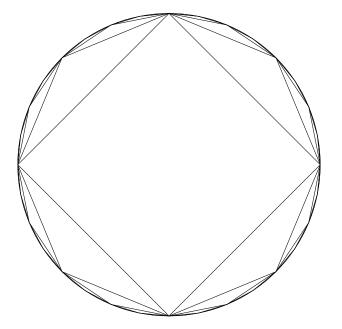


Some related work

1. method of exhaustion by Eudoxos, \sim 390, BC

1. method of exhaustion by Eudoxos, \sim 390, BC

Method of exhaustion



1. method of exhaustion by Eudoxos, \sim 390, BC

- 1. method of exhaustion by Eudoxos, \sim 390, BC
- 2. integration of functions *Newton*, ~ 1665 , ...

- 1. method of exhaustion by Eudoxos, \sim 390, BC
- 2. integration of functions *Newton*, ~ 1665 , ...
- 3. formalised by Riemann, 1854

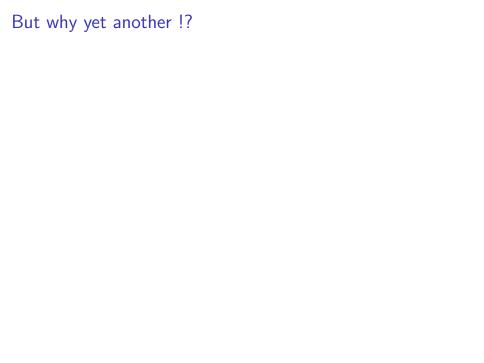
- 1. method of exhaustion by Eudoxos, \sim 390, BC
- 2. integration of functions Newton, ~ 1665 , ...
- 3. formalised by Riemann, 1854
- 4. completed by Lebesgue, 1902

- 1. method of exhaustion by Eudoxos, \sim 390, BC
- 2. integration of functions *Newton*, \sim 1665, . . .
- 3. formalised by Riemann, 1854
- 4. completed by Lebesgue, 1902
- 5. generalised by *Daniell* in 1918, *Bochner* in 1933, *Haar* in 1940, *Pettis* around 1943, *Stone* in 1948, . . .

- 1. method of exhaustion by Eudoxos, \sim 390, BC
- 2. integration of functions *Newton*, \sim 1665, . . .
- 3. formalised by Riemann, 1854
- 4. completed by Lebesgue, 1902
- 5. generalised by *Daniell* in 1918, *Bochner* in 1933, *Haar* in 1940, *Pettis* around 1943, *Stone* in 1948, . . .
- 6. we present another generalisation* based on **effect algebras**

- 1. method of exhaustion by Eudoxos, \sim 390, BC
- 2. integration of functions *Newton*, \sim 1665, . . .
- 3. formalised by Riemann, 1854
- 4. completed by Lebesgue, 1902
- 5. generalised by *Daniell* in 1918, *Bochner* in 1933, *Haar* in 1940, *Pettis* around 1943, *Stone* in 1948, . . .
- 6. we present another generalisation* based on effect algebras

* of integration of [0,1]-valued functions with respect to probability measures ($\approx [0,1]$ -valued measures)



But why yet another !?

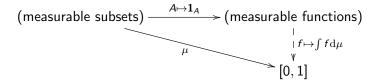
The theory of integration, because of its central rôle in mathematical analysis and geometry, continues to afford opportunities for serious investigation.

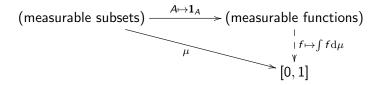
— M.H. Stone, 1948

But why yet another !?

The theory of integration, because of its central rôle in mathematical analysis and geometry, continues to afford opportunities for serious investigation.

— M.H. Stone, 1948





An **effect algebra** is a set E with 0, 1, $(-)^{\perp}$, and partial \otimes

- 1. [0,1] $a \otimes b = a + b$ if $a + b \leq 1$
- 2. $\wp(X)$ $A \otimes B = A \cup B$ if $A \cap B = \emptyset$

An **effect algebra** is a set E with 0, 1, $(-)^{\perp}$, and partial \otimes with

- 1. $a \otimes b = b \otimes a$
- 2. $a \otimes (b \otimes c) = (a \otimes b) \otimes c$
- 3. $a \otimes 0 = a$
- 4. $a \otimes a^{\perp} = 1$

- 1. [0,1] $a \otimes b = a + b$ if $a + b \leq 1$
- 2. $\wp(X)$ $A \otimes B = A \cup B$ if $A \cap B = \emptyset$

An **effect algebra** is a set E with 0, 1, $(-)^{\perp}$, and partial \otimes with

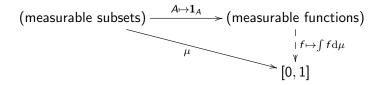
- 1. $a \otimes b = b \otimes a$
- 2. $a \otimes (b \otimes c) = (a \otimes b) \otimes c$
- 3. $a \otimes 0 = a$
- 4. $a \otimes a^{\perp} = 1$
- 5. $a \otimes b = 0 \implies a = b = 0$
- 6. $a \otimes b = a \otimes c \implies b = c$

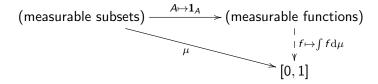
- 1. [0,1] $a \otimes b = a + b$ if $a + b \leq 1$
- 2. $\wp(X)$ $A \otimes B = A \cup B$ if $A \cap B = \emptyset$

An **effect algebra** is a set E with 0, 1, $(-)^{\perp}$, and partial \otimes with

- 1. $a \otimes b = b \otimes a$
- 2. $a \otimes (b \otimes c) = (a \otimes b) \otimes c$
- 3. $a \otimes 0 = a$
- 4. $a \otimes a^{\perp} = 1$
- 5. $a \otimes b = 0 \implies a = b = 0$
- 6. $a \otimes b = a \otimes c \implies b = c$

- 1. [0,1] $a \otimes b = a + b$ if $a + b \leq 1$
- 2. $\wp(X)$ $A \otimes B = A \cup B$ if $A \cap B = \emptyset$
- 3. $\mathcal{E}f(\mathcal{H})$ $A \otimes B = A + B$ if $A + B \leq I$





Let E be an effect algebra.

$$a \le b \iff \exists d \ a \otimes d = b$$

Let E be an effect algebra.

$$a \le b \iff \exists d \ a \otimes d = b$$

The effect algebra E is ω -complete if each chain

$$a_1 \leq a_2 \leq \cdots$$

has a supremum, $\bigvee_n a_n$.

Let E be an effect algebra.

$$a \le b \iff \exists d \ a \otimes d = b$$

The effect algebra E is ω -complete if each chain

$$a_1 \leq a_2 \leq \cdots$$

has a supremum, $\bigvee_n a_n$.

- **1**. [0, 1]
- 2. $\wp(X)$ $\bigvee_n A_n = \bigcup_n A_n$
- 3. $\mathcal{E}f(\mathcal{H})$

Let E be an effect algebra.

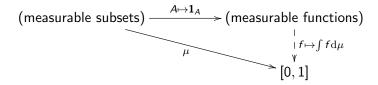
$$a \le b \iff \exists d \ a \otimes d = b$$

The effect algebra E is ω -complete if each chain

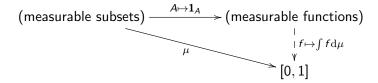
$$a_1 \leq a_2 \leq \cdots$$

has a supremum, $\bigvee_n a_n$.

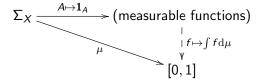
- 1. [0, 1]
- 2. $\wp(X)$ $\bigvee_n A_n = \bigcup_n A_n$
- 3. $\mathcal{E}f(\mathcal{H})$
- 4. σ -algebra on $X = \text{sub-}(\omega\text{-complete EA})$ of $\wp(X)$!



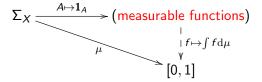
Let Σ_X be a σ -algebra on a set X.



Let Σ_X be a σ -algebra on a set X.



Let Σ_X be a σ -algebra on a set X.



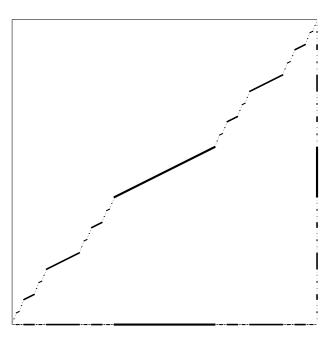
Measurable functions

Let Σ_X be a σ -algebra on a set X

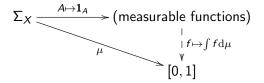
A map $f: X \rightarrow [0,1]$ is **measurable** if

$$f^{-1}([a,b]) \in \Sigma_X$$
 for all $a \le b$ in $[0,1]$

$$\operatorname{Meas}(X,[0,1]) = \{ f: X \rightarrow [0,1]: f \text{ is measurable } \}$$

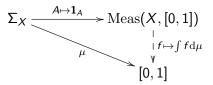


Let Σ_X be a σ -algebra on a set X.



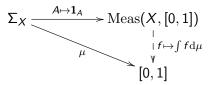
key observation: both μ and $\int (-)d\mu$ are homomorphisms of ω -complete effect algebras

Let Σ_X be a σ -algebra on a set X.



key observation: both μ and $\int (-)d\mu$ are homomorphisms of ω -complete effect algebras

Let Σ_X be a σ -algebra on a set X.



key observation: both μ and $\int (-) d\mu$ are homomorphisms of ω -complete effect algebras

 $f: F \to E$ is a homomorphism of effect algebras if

- 1. f(0) = 0 f(1) = 1 $f(a^{\perp}) = f(a)^{\perp}$
- 2. if $a \otimes b$ is defined, then $f(a \otimes b) = f(a) \otimes f(b)$

 $f: F \to E$ is a homomorphism of effect algebras if

1.
$$f(0) = 0$$
 $f(1) = 1$ $f(a^{\perp}) = f(a)^{\perp}$

2. if
$$a \otimes b$$
 is defined, then $f(a \otimes b) = f(a) \otimes f(b)$

f is a homomorphism of ω -complete effect algebras if

3.
$$\bigvee_n f(a_n) = f(\bigvee_n a_n)$$
 for $a_1 \le a_2 \le \cdots$ in F

 $f: F \to E$ is a homomorphism of effect algebras if

1.
$$f(0) = 0$$
 $f(1) = 1$ $f(a^{\perp}) = f(a)^{\perp}$

2. if $a \otimes b$ is defined, then $f(a \otimes b) = f(a) \otimes f(b)$

f is a homomorphism of ω -complete effect algebras if

3.
$$\bigvee_n f(a_n) = f(\bigvee_n a_n)$$
 for $a_1 \le a_2 \le \cdots$ in F

Examples:

1. $\mathbf{1}_{(-)} \colon \Sigma_X \longrightarrow \operatorname{Meas}(X, [0, 1])$

 $f: F \to E$ is a homomorphism of effect algebras if

1.
$$f(0) = 0$$
 $f(1) = 1$ $f(a^{\perp}) = f(a)^{\perp}$

2. if $a \otimes b$ is defined, then $f(a \otimes b) = f(a) \otimes f(b)$

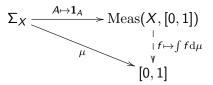
f is a homomorphism of ω -complete effect algebras if

3.
$$\bigvee_n f(a_n) = f(\bigvee_n a_n)$$
 for $a_1 \le a_2 \le \cdots$ in F

Examples:

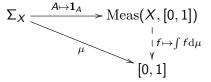
- 1. $\mathbf{1}_{(-)} \colon \Sigma_X \longrightarrow \operatorname{Meas}(X, [0, 1])$
- 2. homomorphisms of ω -complete EA $\mu \colon \Sigma_X \to [0,1]$ = probability measures on X (!)

Let Σ_X be a σ -algebra on a set X.



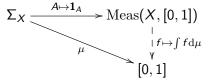
key observation: both μ and $\int (-)d\mu$ are homomorphisms of ω -complete effect algebras

Let Σ_X be a σ -algebra on a set X.



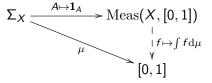
For every homomorphism of ω -complete effect algebras μ there is a unique hom. of (...?...) $\int (-) d\mu$ such that $\int \mathbf{1}_A d\mu = \mu(A)$.

Let Σ_X be a σ -algebra on a set X.



For every homomorphism of ω -complete effect algebras μ there is a unique hom. of (...?...) $\int (-) d\mu$ such that $\int \mathbf{1}_A d\mu = \mu(A)$.

Let Σ_X be a σ -algebra on a set X.



For every homomorphism of ω -complete effect algebras μ there is a unique hom. of ω -complete effect modules $\int (-) \mathrm{d}\mu$ such that $\int \mathbf{1}_A \mathrm{d}\mu = \mu(A)$.

An **effect module** is an effect algebra E with scalar multiplication $\lambda \cdot x$ ($\lambda \in [0,1]$, $x \in E$)

An **effect module** is an effect algebra E with scalar multiplication $\lambda \cdot x$ ($\lambda \in [0,1]$, $x \in E$) such that

- 1. $1 \cdot a = a$
- 2. $\lambda \cdot (\mu \cdot a) = (\lambda \cdot \mu) \cdot a$
- 3. $\lambda \cdot (-)$ preserves \otimes and 0
- 4. $(-) \cdot a$ preserves \otimes and 0

An **effect module** is an effect algebra E with scalar multiplication $\lambda \cdot x$ ($\lambda \in [0,1]$, $x \in E$) such that

- 1. $1 \cdot a = a$
- 2. $\lambda \cdot (\mu \cdot a) = (\lambda \cdot \mu) \cdot a$
- 3. $\lambda \cdot (-)$ preserves \otimes and 0
- 4. $(-) \cdot a$ preserves \otimes and 0

Examples:

- 1. [0,1], $\mathcal{E}f(\mathcal{H})$, Meas(X,[0,1]) are
- 2. $\wp(X)$ is not

An **effect module** is an effect algebra E with scalar multiplication $\lambda \cdot x$ ($\lambda \in [0,1]$, $x \in E$) such that

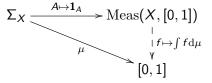
- 1. $1 \cdot a = a$
- 2. $\lambda \cdot (\mu \cdot a) = (\lambda \cdot \mu) \cdot a$
- 3. $\lambda \cdot (-)$ preserves \otimes and 0
- 4. $(-) \cdot a$ preserves \otimes and 0

Examples:

- 1. [0,1], $\mathcal{E}f(\mathcal{H})$, $\mathrm{Meas}(X,[0,1])$ are
- 2. $\wp(X)$ is not

A homomorphism of effect modules is what you expect

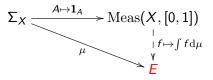
Let Σ_X be a σ -algebra on a set X.



For every homomorphism of ω -complete effect algebras μ there is a unique hom. of ω -complete effect modules $\int (-) \mathrm{d}\mu$ such that $\int \mathbf{1}_A \mathrm{d}\mu = \mu(A)$.

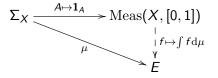
Let E be an ω -complete effect module.

Let Σ_X be a σ -algebra on a set X.



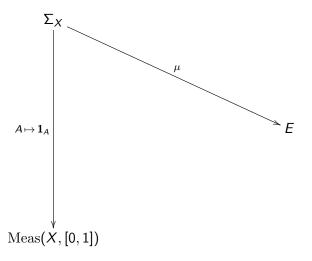
For every homomorphism of ω -complete effect algebras μ there is a unique hom. of ω -complete effect modules $\int (-) \mathrm{d}\mu$ such that $\int \mathbf{1}_A \mathrm{d}\mu = \mu(A)$.

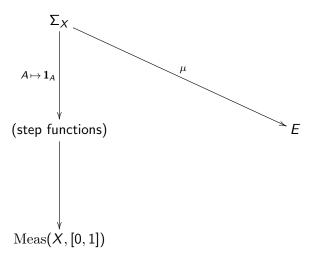
Let E be an ω -complete effect module. Let Σ_X be a σ -algebra on a set X.

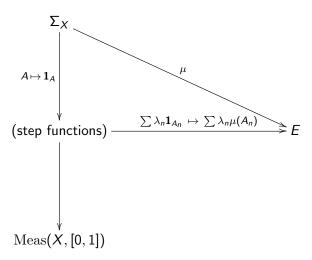


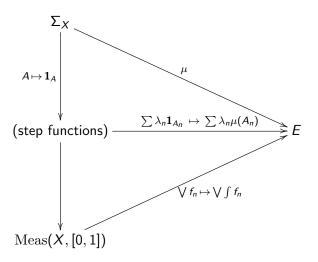
For every homomorphism of ω -complete effect algebras μ there is a unique hom. of ω -complete effect modules $\int (-) \mathrm{d} \mu$ such that $\int \mathbf{1}_A \mathrm{d} \mu = \mu(A)$.

Conclusion: Meas(X, [0, 1]) is the free ω -complete effect module over Σ_X via $A \mapsto \mathbf{1}_A$.









Let \mathcal{H} be a Hilbert space.

Let \mathcal{H} be a Hilbert space. Let A be an effect on $\mathcal{H} \longrightarrow A \in \mathcal{E}f(\mathcal{H})$.

Let \mathcal{H} be a Hilbert space. Let A be an effect on \mathcal{H} — $A \in \mathcal{E}f(\mathcal{H})$. Let $\sigma(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not invertible}\}$

Let \mathcal{H} be a Hilbert space.

Let A be an effect on \mathcal{H} — $A \in \mathcal{E}f(\mathcal{H})$.

Let $\sigma(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not invertible}\}$

Spectral theorem: there is a unique homomorphism of ω -complete effect algebras $\phi \colon \Sigma_{\sigma_A} \longrightarrow \mathcal{E}f(\mathcal{H})$ such that

- 1. $A = \int id d\phi$
- 2. $\phi(S)$ is a projection for all $S \in \Sigma_{\sigma_A}$

Let \mathcal{H} be a Hilbert space.

Let A be an effect on \mathcal{H} — $A \in \mathcal{E}f(\mathcal{H})$.

Let $\sigma(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not invertible}\}$

Spectral theorem: there is a unique homomorphism of ω -complete effect algebras $\phi \colon \Sigma_{\sigma_A} \longrightarrow \mathcal{E}f(\mathcal{H})$ such that

- 1. $A = \int id d\phi$
- 2. $\phi(S)$ is a projection for all $S \in \Sigma_{\sigma_A}$
- 3. if $\phi(G) = 0$ for an open subset of σ_A , then $G = \emptyset$

Let \mathcal{H} be a Hilbert space.

Let A be an effect on \mathcal{H} — $A \in \mathcal{E}f(\mathcal{H})$.

Let $\sigma(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not invertible}\}$

Spectral theorem: there is a unique homomorphism of ω -complete effect algebras $\phi \colon \Sigma_{\sigma_A} \longrightarrow \mathcal{E}f(\mathcal{H})$ such that

- 1. $A = \int id d\phi$
- 2. $\phi(S)$ is a projection for all $S \in \Sigma_{\sigma_A}$
- 3. if $\phi(G)=0$ for an open subset of σ_A , then $G=\varnothing$

Moreover, we have

4.
$$\int f d\phi \cdot \int g d\phi = \int f \cdot g d\phi$$

Let \mathcal{H} be a Hilbert space.

Let A be an effect on \mathcal{H} — $A \in \mathcal{E}f(\mathcal{H})$.

Let $\sigma(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not invertible}\}$

Spectral theorem: there is a unique homomorphism of ω -complete effect algebras $\phi \colon \Sigma_{\sigma_A} \longrightarrow \mathcal{E}f(\mathcal{H})$ such that

- 1. $A = \int id d\phi$
- 2. $\phi(S)$ is a projection for all $S \in \Sigma_{\sigma_A}$
- 3. if $\phi(G)=0$ for an open subset of σ_A , then $G=\varnothing$

Moreover, we have

- 4. $\int f d\phi \cdot \int g d\phi = \int f \cdot g d\phi$
- 5. B commutes with A iff B commutes with all $\phi(S)$

Let \mathcal{H} be a Hilbert space.

Let A be an effect on \mathcal{H} — $A \in \mathcal{E}f(\mathcal{H})$.

Let $\sigma(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not invertible}\}$

Spectral theorem: there is a unique homomorphism of ω -complete effect algebras $\phi \colon \Sigma_{\sigma_A} \longrightarrow \mathcal{E}f(\mathcal{H})$ such that

- 1. $A = \int id d\phi$
- 2. $\phi(S)$ is a projection for all $S \in \Sigma_{\sigma_A}$
- 3. if $\phi(G)=0$ for an open subset of σ_A , then $G=\varnothing$

Moreover, we have

- 4. $\int f d\phi \cdot \int g d\phi = \int f \cdot g d\phi$
- 5. B commutes with A iff B commutes with all $\phi(S)$

Motto: effects behave somewhat like measurable functions; the integral $\int (-)d\phi \colon \operatorname{Meas}(X,[0,1]) \to \mathcal{E}f(\mathcal{H})$ translates.

Recap and outlook

You have seen:

- 1. Lebesgue integration and effect algebras.
- 2. A universal property of the extension of measure to integral.

Agenda:

- 1. Fubini's Theorem
- 2. Carathéodory's Extension Theorem
- 3. Gleason's Theorem