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Chapter 1

Introduction

1What does this Ph.D. thesis offer? Proof, perhaps, to the manuscript committee
of passable academic work; an advertisement, as it may be, of my school’s
perspective to colleagues; a display, even, of intellectual achievement to friends
and family. But I believe such narrow and selfish goals alone barely serve to
keep a writer’s spirits energised—and are definitely detrimental to that of the
readers. That is why I have foolhardily challenged myself not just to drily list
contributions, but to write this thesis as the introduction, that I would have
liked to read when I started research for this thesis back in May 2014.

The topic is von Neumann algebras, the category they form, and how they
may be used to model aspects of quantum computation. Let us just say for now
that a von Neumann algebra is a special type of complex vector space endowed
with a multiplication operation among some other additional structure. An
important example is the complex vector space M2 of 2 × 2 complex matrices,
because it models (the predicates on) a qubit; but all N ×N -complex matrices
form a von Neumann algebra MN as well. Using von Neumann algebras (and
their little cousins, C∗-algebras) to describe quantum data types seems to be
quite a recent idea (see e.g. [17, 25, 57], and [3] for an overview) and has two
distinct features. Firstly, classical data types are neatly incorporated: C2 ≡
C ⊕ C models a bit, and the direct sum M2 ⊕M3 models the union type of a
qubit and a qutrit. Secondly, von Neumann algebras allow for infinite data types
as well such as B(`2(Z)), which represents a “quantum integer.”∗ It should be

∗Though other methods of modelling infinite dimensional quantum computing have been
proposed as well e.g. using non-standard analysis [20], pre-sheaves [48], the geometry of inter-
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said that this last feature is both a boon and a bane: it brings with it all the
inherent intricacies of dealing with infinite dimensions; and it is no wonder that
most authors choose to restrict themselves to finite dimensions, especially since
this seems to be enough to describe quantum algorithms, see e.g. [52].

II In this thesis, however, we do face infinite dimensions, because the two main
results demand it:

1. For the first result, that von Neumann algebras form a model of Selinger
and Valiron’s quantum lambda calculus, as Cho and I explained in [9] and
for which I’ll provide the foundation here, we need to interpret function
types, some of which are essentially infinite dimensional.

2. The second result, an axiomatisation of the map a 7→ √pa√p : A → A
representing measurement of an element p ∈ [0, 1]A of a von Neumann
algebra A was tailored by B.E. Westerbaan (my twin brother) and myself
to work for both finite and infinite dimensional A .

These results are part of a line of research that tries to find patterns in the cat-
egory of von Neumann algebras, that may also be cut from other categories
modelling computation—ideally in order to arrive at categorical axioms for
(probabilistic) computation in general. When I joined the fray the notion of
effectus [26] had already been established by Jacobs, and the two results above
offer potential additional axioms. The work in this area has largely been a col-
laborative effort, primarily between Jacobs, Cho, my twin brother, and myself,
and many of their insights have ended up in this thesis.

Of this I’d say no more than that my work appears conversely, and propor-
tionally, in their writings too, except that the close cooperation with my brother
begs further explanation. Our efforts on certain topics have been like interleav-
ing of the pages of two phone books: separating them would be nigh impossible,
especially the work on the axiomatisation of a 7→ √pa√p and Paschke dilations.
So that’s why we decided to write our theses as two volumes of the same work;
preliminaries on von Neumann algebras, and the axiomatisation of a 7→ √pa√p
appear in this thesis, while the work on dilations, and effectus theory appear in
my brother’s thesis, [74].

III The two results mentioned above only make up about a third of this thesis; the
rest of it is devoted to the introduction to the theory of von Neumann algebras
needed to understand these results. My aim is that anyone with, say, a bachelor’s
degree in mathematics (c.q. basic knowledge of linear algebra, analysis [60],

action [23], and quantitive semantics [53].



topology [76] and set theory [14]) should at least be able to follow the lines
of reasoning with only minimal recourse to external sources. But I hope that
they will gain some deeper understanding of the material as well. To this end,
and because I wanted to gain some of this insight for myself too, I’ve not just
mixed and matched results from the literature, but I tailored a thorough treatise
of everything that’s needed, including proofs. Whenever possible, I’ve taken
shortcuts (e.g. avoiding for example the theory of Banach algebras and locally
convex spaces entirely) to prevent the mental tax the added concepts (and
pages) would have brought. For the same reasons I’ve refrained from putting
everything in its proper abstract (and categorical [46]) context trusting that it’ll
shine through of its own accord. I’ve however not been able to restrain myself in
making perhaps frivolous variations on the existing theory whenever not strictly
necessary, taking for example Kadison’s characterisation [42] of von Neumann
algebras as my definition, and developing the elementary theory for it; in my
defence I’ll just say this adds to the original element that is expected of a thesis.

IVAdvertisements Due to space–time constraints this thesis is based only on a
selection [6,8,9,71,72] of the works I produced under supervision of Jacobs, and
while [7, 38, 73] are incorporated in by brother’s thesis, this means [36, 37] are
unfortunately left out. If you like this thesis, then you might also want to take
a look at these [17, 24, 44, 45, 58, 59] recent works on von Neumann algebras,
and C∗-algebras. If you’re curious about effectus theory and related matters,
please have a look at [4–7, 26–40]. But if you’d like more pictures instead, I’d
suggest [11].

VWriting style I’ve replaced page numbers by paragraph numbers such as V for
this paragraph. The numbers after 134 refer to paragraphs in my twin brother’s
thesis [74]. Definitions are set like that (i.e. in blue), and can be found in the
index. Proofs of certain facts that are easily obtained on the back of an envelope,
and would clutter this manuscript, have been left out. Instead these facts have
been phrased as exercises as a challenge to the reader.

VIAcknowledgements The work in this thesis specifically has benefited greatly
from discussions with John van de Wetering, Robert Furber, Kenta Cho, and Bas
Westerbaan, but I’ve also had the pleasure of discussing a variety of other top-
ics with Aleks Kissinger, Andrew Polonsky, Bert Lindenhovius, Frank Roumen,
Hans Maassen, Henk Barendregt, Joshua Moerman, Martti Karvonen, Robbert
Krebbers, Robin Adams, Robin Kaarsgaard, Sam Staton, Sander Uijlen, Sebas-
tiaan Joosten, and many others. I’m especially honoured to have been received
in Edinburgh by Chris Heunen and in Oberwolfach by Jianchao Wu. I’m very
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grateful to Arnoud van Rooij, Bas Westerbaan and John van de Wetering for
proofreading large parts of this manuscript, without whose efforts even more
shameful errors would have remained. I should of course not forget to mention
the contribution of friends (both close and distant), family, and colleagues—too
numerous to name—of keeping me sane these past years.

This is the second dissertation topic I’ve worked on; my first attempt under
different supervision was unfortunately cut short after 11/2 years. When Bart
Jacobs graciously offered me a second chance, I initially had my reservations,
but accepted on account of the challenging topic. Little did I know that behind
the ambition and suit one finds a man of singular moral fibre, embodying what
was said about von Neumann himself: “[he] had to understand and accept much
that most of us do not want to accept and do not even wish to understand.”†

VII Funding was received from the European Research Council under grant agree-
ment № 320571.

†An excerpt from Eugene P. Wigner’s writings, see page 130 of [75].



Chapter 2

C∗-algebras

2We redevelop the essentials of the theory of (unital) C∗-algebras in this chapter.
Since we are ultimately interested in von Neumann algebras (a special type
of C∗-algebras) we will evade delicate topics such as tensor products (of C∗-
algebras), quotients, approximate identities, and C∗-algebras without a unit.
The zenith of this chapter is Gelfand’s representation theorem (see 27XXVII),
the fact that every commutative (unital) C∗-algebra is isomorphic to the C∗-
algebra C(X) of continuous functions on some compact Hausdorff space X —
it yields a duality between the category CH of compact Hausdorff spaces (and
continuous maps) and the category cC∗miu of commutative C∗-algebras (and
unital ∗-homomorphisms, the appropriate structure preserving maps), see 29.

As the road to Gelfand’s representation theorem is a bit winding — involving
intricate relations between technical concepts — we have put emphasis on the
invertible and positive elements so that the important theorems about them
may serve as landmarks along the way:

1. first we show that the norm on a C∗-algebra is determined by the invertible
elements (via the spectral radius), see 16 II;

2. then we construct a square root of a positive element in 23VII;

3. and finally we show that an element of a commutative C∗-algebra is not
invertible iff it is mapped to 0 by some multiplicative state, see 27XV.

At every step along the way the positive and invertible elements (and the norm,
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multiplicative states, multiplication and other structure on a C∗-algebra) are
bound more tightly together until Gelfand’s representation theorem emerges.

To make this chapter more accessible we have removed much material from
the ordinary development of C∗-algebras such as the more general theory of
Banach algebras (and its pathology). This forces us to take a slightly different
path than is usual in the literature (see e.g. 16VIII).

After Gelfand’s representation theorem we deal with two smaller topics: that
a C∗-algebra may be represented as a concrete C∗-algebra of bounded operators
on a Hilbert space (see 30VI), and that the N ×N -matrices with entries drawn
from a C∗-algebra A form a C∗-algebra MN (A ) (see 33 I). We end with an
overture to von Neumann algebras—the topic of the next chapter.

2.1 Definition and Examples

3 Definition A C∗-algebra is a complex vector space A endowed with

1. a binary operation, called multiplication (and denoted as such), which is
associative, and linear in both coordinates;

2. an element 1, called unit, such that 1 · a = a = a · 1 for all a ∈ A ;

3. a unary operation ( · )∗, called involution such that (a∗)∗ = a, (ab)∗ =
b∗a∗, (λa)∗ = λ̄a∗, and (a+ b)∗ = a∗ + b∗ for all a, b ∈ A and λ ∈ C;

4. a complete norm ‖ · ‖ such that ‖ab‖ 6 ‖a‖‖b‖ for all a, b ∈ A , and

‖a∗a‖ = ‖a‖2

holds; this equality is called the C∗-identity.

The C∗-algebra A is called commutative if ab = ba for all a, b ∈ A .

II Warning In the literature it is usually not required that a C∗-algebra possess a
unit; but when it does it is called a unital C∗-algebra.

III Example The vector space C of complex numbers forms a commutative C∗-
algebra in which multiplication and 1 have their usual meaning. Involution is
given by conjugation (z∗ = z̄), and norm by modulus (‖z‖ = |z|).

IV Example A C∗-subalgebra of a C∗-algebra A is a subset B of A , which is a
linear subspace of A , contains the unit, 1, is closed under multiplication and
involution, and is closed with respect to the norm of A ; such a C∗-subalgebra
of A is itself a C∗-algebra when endowed with the operations and norm of A .



VExample One can form products (in the categorical sense, see 10VII) of C∗-
algebras as follows. Let Ai be a C∗-algebra for every element i of some index
set I. The direct sum of the family (Ai)i is the C∗-algebra denoted by

⊕
i∈I Ai

on the set {
a ∈

∏
i∈I Ai : supi∈I ‖a(i)‖ <∞

}
whose operations are defined coordinatewise, and whose norm is a supremum
norm given by ‖a‖ = supi ‖a(i)‖. If each Ai is commutative, then

⊕
i∈I Ai is

commutative.
In particular, taking Ai ≡ C, we see that the vector space `∞(X) of bounded

complex-valued functions on a set X forms a commutative C∗-algebra with
pointwise operations and supremum norm.

VIExample The bounded continuous functions on a topological space X form a
commutative C∗-subalgebra BC(X) of `∞(X) (see above). In particular, since
a continuous function on a compact Hausdorff space is automatically bounded,
we see that the continuous functions on a compact Hausdorff space X form a
commutative C∗-algebra C(X) with pointwise operations and sup-norm. We’ll
see that every commutative C∗-algebra is isomorphic to a C(X) in 27XXVII.

VIIExample An example of a non-commutative C∗-algebra is the vector space Mn

of n × n-matrices (n > 1) over C with the usual (matrix) multiplication, the
identity matrix as unit, and conjugate transpose as involution (so (A∗)ij = Aji).
The norm ‖A‖ of a matrix A in Mn is less obvious, being the operator norm
(cf. 4 II) of the associated linear map v 7→ Av, Cn → Cn, that is, ‖A‖ is the least

number r > 0 with ‖Av‖2 6 r‖v‖2 for all v ∈ Cn (where ‖w‖2 = (
∑
i |wi|

2
)1/2

denotes the 2-norm of w ∈ Cn).
It is not entirely obvious that ‖A∗A‖ = ‖A‖2 holds and that Mn is com-

plete. We will prove these facts in the more general setting of bounded op-
erators between Hilbert spaces, see 5 I. Suffice it to say, Cn is a Hilbert space
with 〈v, w〉 =

∑
i viwi as inner product, each matrix gives a (bounded) linear

map v 7→ Av,Cn → Cn, and the conjugate transpose A∗ is adjoint to A in the
sense that 〈v,Aw〉 = 〈A∗v, w〉 for all v, w ∈ Cn.

VIIIRemark Combining V and VII we see that
⊕

kMnk is a finite-dimensional
C∗-algebra for any tuple n1, . . . , nK of natural numbers. In fact, any finite-
dimensional C∗-algebra is of this form as we’ll see in 84 II.∗

∗Although clearly related to the Wedderburn–Artin theorem, see e.g. [51], this description
of finite-dimensional C∗-algebras does not seem to be an immediate consequence of it.
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2.1.1 Operators

4 Example Let us now turn to perhaps the most important and difficult exam-
ple: we’ll show that the vector space B(H ) of bounded operators on a Hilbert
space H forms a C∗-algebra when endowed with the operator norm. Multipli-
cation is given by composition, involution by taking the adjoint (see VIII), and
unit by the identity operator. A concrete C∗-algebra or a C∗-algebra of bounded
operators refers to a C∗-subalgebra of B(H ). We will eventually see that every
C∗-algebra is isomorphic to a C∗-algebra of bounded operators in 30XIV.

II Definition Let X and Y be normed vector spaces. We say that r ∈ [0,∞)
is a bound for a linear map (=operator) T : X → Y when ‖Tx‖ 6 r‖x‖ for
all x ∈ X , and we say that T is bounded when there is such a bound. In
that case T has a least bound, which is called the operator norm of T , and
is denoted by ‖T‖. The vector space of bounded operators from X to Y is
denoted by B(X ,Y ), and the vector space of bounded operators from X to
itself is denoted by B(X ).

III Exercise Let X , Y and Z be normed complex vector spaces.

1. Show that the operator norm on B(X ,Y ) is, indeed, a norm.

2. Let T : X → Y and S : Y → Z be bounded operators. Show that ST is
bounded by ‖S‖‖T‖, so that ‖ST‖ 6 ‖S‖‖T‖.

3. Show that the identity operator id : X →X is bounded by 1.

IV Exercise Let T : X → Y be a bounded operator between normed vector spaces,
and let r ∈ [0,∞). Show that

r‖T‖ = supx∈(X )r ‖Tx‖,

where (X )r = {x ∈X : ‖x‖ 6 r}. (The set (X )1 is called the unit ball of X .)

V Lemma The operator norm on B(X ,Y ) is complete when Y is a complete
normed vector space.

VI Proof Let (Tn)n be a Cauchy sequence in B(X ,Y ). We must show that (Tn)n
converges to some bounded operator T : X → Y . Let x ∈X be given. Since

‖Tnx− Tmx ‖ = ‖ (Tn − Tm)x ‖ 6 ‖Tn − Tm‖ ‖x‖



and ‖Tn − Tm‖ → 0 as n,m → ∞ (because (Tk)k is Cauchy), we see that
‖Tnx − Tmx ‖ → 0 as n,m → ∞, and so (Tnx)n is a Cauchy sequence in Y .
Since Y is complete, (Tnx)n converges, and we may define Tx := limn Tnx,
giving a map T : X → Y , which is easily seen to be linear (by continuity of
addition and scalar multiplication).

It remains to be shown that T is bounded, and that (Tn)n converges to T
with respect to the operator norm. Let ε > 0 be given, and pick N such that
‖Tn − Tm‖ 6 1

2ε for all n,m > N . Then for every x ∈ X we can find M > N
with ‖Tx− Tmx‖ 6 1

2ε‖x‖ for all m >M , and so, for n > N , m >M ,

‖(T − Tn)x‖ 6 ‖Tx− Tmx‖ + ‖Tmx− Tnx‖ 6 ε‖x‖

giving that T − Tn is bounded and ‖T − Tn‖ 6 ε for all n > N . Whence T is
bounded too, and (Tn)n converges to T . �

VIIFrom III and V it is clear that the complex vector space of bounded opera-
tors B(X ) on a complete normed vector space X with composition as multi-
plication and the identity operator as unit satisfies all the requirements to be
C∗-algebra that do not involve the involution, ( · )∗ (that is, B(X ) is a Banach
algebra). To get an involution, we need the additional structure provided by a
Hilbert space as follows.

VIIIDefinition An inner product on a complex vector space V is a map 〈 · , · 〉 : V ×
V → C such that, for all x, y ∈ V , 〈x, · 〉 : V → V is linear; 〈x, x〉 > 0; and
〈x, y〉 = 〈y, x〉. We say that the inner product is definite when 〈x, x〉 = 0 =⇒
x = 0 for x ∈ V . A pre-Hilbert space H is a complex vector space endowed
with a definite inner product. We’ll shortly see that every such H carries a

norm given by ‖x‖ := 〈x, x〉1/2; if H is complete with respect to this norm, we
say that H is a Hilbert space.

Let H and K be pre-Hilbert spaces. We say that a operator T : H → K
is adjoint to a operator S : K →H when

〈Tx, y〉 = 〈x, Sy〉 for all x ∈H and y ∈ K .

In that case, we call T adjoinable. We’ll see (in X) that such adjoinable T is
adjoint to exactly one S, which we denote by T ∗.

IXExample We endow CN (where N is a natural number) with the inner product
given by 〈x, y〉 =

∑
i xiyi, making it a Hilbert space.

The space c00 of sequences x1, x2, . . . for which xn is non-zero for finitely
many n’s is an example of a pre-Hilbert which is not complete when endowed
with 〈x, y〉 =

∑∞
n=0 xnyn as inner product.
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For an example of an infinite-dimensional Hilbert space, we’ll have to wait
until 6 II where we’ll show that the sequences x1, x2, . . . with

∑
n |xn|

2
< ∞

form a Hilbert space `2 with 〈x, y〉 =
∑∞
n=0 xnyn as its inner product, because

at this point it is not even clear that this sum converges.

X Exercise Let x and x′ be elements of a pre-Hilbert space H with 〈y, x〉 = 〈y, x′〉
for all y ∈ H . Show that x = x′ (by taking y = x − x′). Conclude that every
operator between pre-Hilbert spaces has at most one adjoint.

XI Remark Note that we did not require that an adjoinable operator T : H → K
between pre-Hilbert spaces be bounded, and in fact, it might not be. Take for
example the operator T : c00 → c00 given by (Tx)n = nxn, which is adjoint to
itself, and not bounded. On the other hand, if either H or K is complete, then
both T and T ∗ are automatically bounded as we’ll see in 35VI.

XII Exercise Let S and T be adjoinable operators on a pre-Hilbert space.

1. Show that T ∗ is adjoint to T (and so T ∗∗ = T ).

2. Show that (T + S)∗ = T ∗ + S∗ and (λS)∗ = λS∗ for every λ ∈ C.

3. Show that ST is adjoint to T ∗S∗ (and so (ST )∗ = T ∗S∗).

We will, of course, show that every bounded operator on a Hilbert space is
adjoinable, see 5XI. But let us first show that ‖ · ‖ defined in VIII is a norm,
which boils down to the following fact about 2× 2-matrices.

XIII Lemma For a positive matrix A ≡
(
p c
c q

)
(i.e. ( u v )A ( uv ) > 0 for all u, v ∈ C),

we have p, q > 0, and |c|2 6 pq.
XIV Proof Let u, v ∈ C be given. We have

0 6 ( u v )A ( uv ) = |u|2 p + uv c + uv c + |v|2 q.

By taking u = 1 and v = 0, we see that p > 0, and similarly q > 0.
The trick to see that |c|2 6 pq is to take v = 1 and u = tc with t ∈ R:

0 6 p |c|2 t2 + 2 |c|2 t + q.

If p = 0, then −2 |c|2 t 6 q for all t ∈ R, which implies that |c|2 = 0 = pq.
Suppose that p > 0. Then taking t = −p−1 we see that

0 6 |c|2 p−1 − 2 |c|2 p−1 + q = − |c|2 p−1 + q.

Rewriting gives us |c|2 6 pq. �



XVExercise Let 〈 · , · 〉 be an inner product on a vector space V . Show that the for-
mula ‖x‖ =

√
〈x, x〉 defines a seminorm on V , that is, ‖x‖ > 0, ‖λx‖ = |λ| ‖x‖,

and—the triangle inequality—‖x+ y‖ 6 ‖x‖+ ‖y‖ for all λ ∈ C and x, y ∈ V .
Moreover, prove that ‖ · ‖ is a norm when 〈 · , · 〉 is definite; and for x, y ∈ V :

1. The Cauchy–Schwarz inequality: |〈x, y〉|2 6 〈x, x〉 〈y, y〉;

2. Pythagoras’ theorem: ‖x‖2 + ‖y‖2 = ‖x+ y‖2 when 〈x, y〉 = 0;

3. The parallelogram law: ‖x‖2 + ‖y‖2 = 1
2 ( ‖x+ y‖2 + ‖x− y‖2 );

4. The polarization identity: 〈x, y〉 = 1
4

∑3
n=0 i

n‖inx+ y‖2.

(Hint: prove the Cauchy–Schwarz inequality before the triangle inequality
by applying XIII to the matrix

( 〈x,x〉 〈x,y〉
〈y,x〉 〈y,y〉

)
. Then prove ‖x+y‖2 6 (‖x‖+‖y‖)2

using the inequalities 〈x, y〉+ 〈y, x〉 6 2 |〈x, y〉| 6 2‖x‖‖y‖.)

XVILemma For an adjoinable operator T on a pre-Hilbert space H

‖T ∗T‖ = ‖T‖2 and ‖T ∗‖ = ‖T‖.

XVIIProof If T = 0, then T ∗ = 0, and the statements are surely true.
Suppose T 6= 0 (and so T ∗ 6= 0). Since ‖Tx‖2 = 〈Tx, Tx〉 = 〈x, T ∗Tx〉 6

‖x‖ ‖T ∗Tx‖ 6 ‖x‖2‖T ∗T‖ for every x ∈ H by Cauchy–Schwarz, we have
‖T‖2 6 ‖T ∗T‖. Since ‖T ∗T‖ 6 ‖T ∗‖‖T‖ and ‖T‖ 6= 0, it follows that ‖T‖ 6
‖T ∗‖. Since by a similar reasoning ‖T ∗‖ 6 ‖T‖, we get ‖T‖ = ‖T ∗‖. But then
‖T‖2 6 ‖T ∗T‖ 6 ‖T ∗‖‖T‖ = ‖T‖2, and so ‖T‖2 = ‖T ∗T‖. �

XVIIIExercise Given a Hilbert space H show that the adjoinable operators form a
closed subspace of B(H ).

XIXExercise Let x and y be vectors from a Hilbert space H .

1. Show that |x〉〈y| : z 7→ 〈y, z〉x defines a bounded operator H →H , and,
moreover, that ‖ |x〉〈y| ‖ = ‖x‖‖y‖.

2. Show that |x〉〈y| is adjoinable, and (|x〉〈y|)∗ = |y〉〈x|.

5At this point it is clear that the vector space of adjoinable operators on a Hilbert
space forms a C∗-algebra. So to prove that B(H ) is a C∗-algebra, it remains
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to be shown that every bounded operator is adjoinable (which we’ll do in XI).
We first show that each bounded functional f : H → C has an adjoint, see IX,
for which we need the (existence and) properties of “projections” on (closed)
linear subspaces:

II Definition Let x be an element of a pre-Hilbert space H . We say that an
element y of a linear subspace C of H is a projection of x on C if

‖x− y‖ = min{ ‖x− y′‖ : y′ ∈ C }.

(In other words, y is one of the elements of C closest to x.)

III Exercise We’ll see in VII that on a closed linear subspace every vector has
a projection. For arbitrary linear subspaces this isn’t so: show that the only
vectors in `2 having a projection on the linear subspace c00 (from 4 IX) are the
vectors in c00 themselves.

IV Lemma Let H be a pre-Hilbert space, and let x, e ∈H with ‖e‖ = 1.

Then y = 〈e, x〉 e is the unique projection of x on eC.

V Proof Let y′ ∈ eC with y′ 6= y be given. To prove that y is the unique projection
of x on eC it suffices to show that ‖x − y‖ < ‖x − y′‖. Since y′ 6= y ≡ 〈e, x〉 e,
there is λ ∈ C, λ 6= 0 with y′ = (λ+ 〈e, x〉)e.

Note that 〈e, y〉 = 〈e, 〈e, x〉 e〉 = 〈e, x〉 〈e, e〉 = 〈e, x〉, and so 〈e, x− y〉 = 0.
Then y′−y ≡ λe and x−y are orthogonal too, and thus, by Pythagoras’ theorem
(see 4XV), we have ‖y′−x‖2 = ‖y′−y‖2 +‖y−x‖2 ≡ |λ|2 +‖x−y‖2 > ‖x−y‖2,
because λ 6= 0. Hence ‖y′ − x‖ > ‖y − x‖. �

VI Exercise Let y be a projection of an element x of a pre-Hilbert space H on
a linear subspace C. Show that y is a projection of x on yC. Conclude that y
is the unique projection of x on C, and that 〈y, x− y〉 = 0. Show that y + c
is the projection of x + c on C for every c ∈ C. Conclude that 〈y′, x− y〉 ≡
〈y′, (x+ y′ − y)− y′〉 = 0 for every y′ ∈ C.

VII Projection Theorem Let C be a closed linear subspace of a Hilbert space H .
Each x ∈H has a unique projection y on C, and 〈y′, y〉 = 〈y′, x〉 for y′ ∈ C.

VIII Proof We only need to show that there is a projection y of x on C, because VI
gives us that such y is unique and satisfies 〈y′, y〉 = 〈y′, x〉 for all y′ ∈ C.

Write r := inf{ ‖x − y′‖ : y′ ∈ C }, and pick a sequence y1, y2, . . . ∈ C such
that ‖x− yn‖ → r. We will show that y1, y2, . . . is Cauchy. Let ε > 0 be given,
and pick N such that ‖yn−x‖2 6 r2 + 1

4ε for all n > N . Let n,m > N be given.
Then since 1

2 (yn+ym) is in C, we have ‖yn+ym−2x‖ ≡ 2‖ 1
2 (yn+ym)−x‖ > 2r,



and so by the parallelogram law (see 4XV),

‖yn − ym‖2 ≡ ‖(yn − x)− (ym − x)‖2

= 2‖yn − x‖2 + 2‖ym − x‖2 − ‖yn + ym − 2x‖2

6 4r2 + ε− 4r2 6 ε.

Hence y1, y2, . . . is Cauchy, and converges to some y ∈ C, because H is complete
and C is closed. It follows easily that ‖x− y‖ = r, and thus y is the projection
of x on C. �

IXRiesz’ Representation Theorem Let H be a Hilbert space. For every bounded
linear map f : H → C there is a unique vector x ∈H with 〈x, · 〉 = f .

XProof If f = 0, then x = 0 does the job. Suppose that f 6= 0. There is
an x′ ∈ H with f(x′) 6= 0. Note that ker(f) is closed, because f is bounded.
So by VII, we know that x′ has a projection y on ker(f), and 〈x′, z〉 = 〈y, z〉
for all z ∈ ker(f). Then for x′′ := f(x′ − y)−1(x′ − y), we have f(x′′) = 1
and 〈x′′, y′〉 = 0 for all y′ ∈ ker(f). Given z ∈H , we have f( z − f(z)x′′ ) = 0,
so z − f(z)x′′ ∈ ker(f), and thus 0 = 〈x′′, z − f(z)x′′〉 ≡ 〈x′′, z〉 − f(z)‖x′′‖2.
Hence writing x := x′′‖x′′‖−2 we have f(z) = 〈x, z〉 for all z ∈H .

Finally, uniqueness of x follows from 4X. �

XIExercise Prove that every bounded operator T on a Hilbert space H is ad-
joinable, as follows. Let x ∈ H be given. Prove that 〈x, T ( · )〉 : H → C is
a bounded linear map. Let Sx be the unique vector with 〈Sx, · 〉 = 〈x, T ( · )〉,
which exists by IX. Show that x 7→ Sx gives a bounded linear map S, which is
adjoint to T .

XIIThus the bounded operators on a Hilbert space H form a C∗-algebra B(H )
as described in 4 I. We will return to Hilbert spaces in 30XIV, where we show
that every C∗-algebra is isomorphic to a C∗-subalgebra of a B(H ).

6Here is a non-trivial example of a Hilbert space that will be used later on.

IIProposition Given a family (Hi)i∈I of Hilbert spaces, the vector space⊕
i Hi = { x ∈

∏
i Hi :

∑
i ‖xi‖2 <∞ }.

is a Hilbert space when endowed with the inner product 〈x, y〉 =
∑
i 〈xi, yi〉.

IIIProof To begin with we must show that
∑
i 〈xi, yi〉 converges for x, y ∈

⊕
i Hi.

Given ε > 0 we must find a finite subset G of I such that
∣∣∑

i∈F 〈xi, yi〉
∣∣ 6 ε
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for all finite F ⊆ I\G. Since an obvious application of the Cauchy–Schwarz
inequality gives us that for every finite subset F of I∣∣∣∑

i∈F
〈xi, yi〉

∣∣∣2 6 ∑
i∈F
‖xi‖2

∑
i∈F
‖yi‖2,

any G ⊆ I with
∑
i∈I\G ‖xi‖2 6

√
ε and

∑
i∈I\G ‖yi‖2 6

√
ε will do.

It is easily seen that 〈x, y〉 :=
∑
i 〈xi, yi〉 gives a definite inner product

on
⊕

i Hi; the remaining difficulty lies in showing that resulting norm is com-
plete. To this end, let x1, x2, . . . be a Cauchy sequence in

⊕
i∈I Hi; we must

show that it converges to some x∞ ∈
⊕

i Hi. We do the obvious thing: since
for every i ∈ I the sequence (x1)i, (x2)i, . . . is Cauchy in Hi we may define
(x∞)i := limn(xn)i, and thereby get an element x∞ of

∏
i Hi. Since for each fi-

nite subset F of I we have
∑
i∈F ‖(x∞)i‖2 = limn

∑
i∈F ‖(xn)i‖2 6 limn ‖xn‖2,

we have
∑
i∈I ‖(x∞)i‖2 6 limn ‖xn‖2 <∞, and so x∞ ∈

⊕
i Hi.

It remains to be shown that x1, x2, . . . converges to x∞ (not only coordi-
natewise but also) with respect to the inner product on

⊕
i Hi. Given ε > 0

pick N such that ‖xn−xm‖ 6 1
2
√

2
ε for all n,m > N . We claim that for such n

we have ‖x∞ − x‖ 6 ε. Indeed, first note that since the sum∑
i∈I
‖(x∞)i − (xn)i‖2 ≡

∑
i∈F
‖(x∞)i − (xn)i‖2 +

∑
i∈I\F

‖(x∞)i − (xn)i‖2

converges (to ‖x∞−xn‖2), we can find a finite subset F (depending on n) such
that second term in the right-hand side above is smaller than 1

2ε
2. To see that

the first term is also below 1
2ε

2, begin by noting that for every m,(∑
i∈F
‖(x∞)i−(xn)i‖2

)1/2

6
(∑
i∈F
‖(x∞)i−(xm)i‖2

)1/2

+
(∑
i∈F
‖(xm)i−(xn)i‖2

)1/2

.

Since F is finite, and (xm) converges to x∞ coordinatewise we can find an m
large enough that the first term on the right-hand side above is below 1

2
√

2
ε. If

we choose m > N we see that the second term is below 1
2
√

2
ε as well, and we

conclude that ‖x∞ − xn‖ 6 ε. �

2.2 The Basics

7 Now that we have seen the most important examples of C∗-algebras, we can
begin developing the theory. We’ll start easy with the self-adjoint elements:



IIDefinition Given an element a of a C∗-algebra A ,

1. we say that a is self-adjoint if a∗ = a, and

2. we write aR := 1
2 (a+ a∗) and aI := 1

2i (a− a
∗) for the real and imaginary

part of a, respectively.

The set of self-adjoint elements of A is denoted by AR.

IIIExercise Let a be an element of a C∗-algebra A .

1. Show that aR and aI are self-adjoint, and a = aR + iaI.

2. Show that if a ≡ b + ic for self-adjoint elements b, c of A , then b = aR
and c = aI.

3. Show that (a∗)R = aR and (a∗)I = −aI.

4. Show that a is self-adjoint iff aR = a iff aI = 0.

5. Show that a 7→ aR and a 7→ aI give R-linear maps A → A .

6. Show that aI = −(ia)R and aR = (ia)I.

7. Show that a∗a is self-adjoint, and a∗a = a2
R + a2

I + i(aRaI − aIaR).

8. Give an example of A and a with aRaI 6= aIaR.

(This inequality is a source of many technical difficulties.)

9. Show that a∗a+ aa∗ = 2(a2
R + a2

I ).

10. The product of self-adjoint elements b, c need not be self-adjoint; show
that, in fact, bc is self-adjoint iff bc = cb.

11. Show that ‖a∗‖ = ‖a‖. (Hint: ‖a‖2 = ‖a∗a‖ 6 ‖a∗‖‖a‖.)

12. Show that ‖aR‖ 6 ‖a‖ and ‖aI‖ 6 ‖a‖.

13. Show that ‖a2‖ = ‖a‖2 when a is self-adjoint.

However, show that ‖a2‖ 6= ‖a‖2 might occur when a is not self-adjoint.
(Hint:

(
0 1
0 0

)
.)
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8 Notation Recall that (in this text) every C∗-algebra A has a unit, 1. Thus,
for every scalar λ ∈ C, we have an element λ · 1 of A , which we will simply
denote by λ. This should hardly cause any confusion, for while an expression of
an element of A such as i+ 2 + 5a (where a ∈ A ) may be interpreted in several
ways, the result is always the same.

II Exercise There is a subtle point regarding the norm ‖λ‖ of a scalar λ ∈ C
inside a C∗-algebra A : we do not always have ‖λ‖ = |λ| on the nose.

1. Indeed, show that ‖1‖ = 0 6= 1 when A = {0} is the trivial C∗-algebra.

2. Show that ‖λ‖ 6 |λ| (in C).

3. Show that ‖λ‖ = |λ| when ‖λ‖ and |λ| are interpreted as elements of A .

9 Let us now generalize the notion of a positive function in C(X) to a positive
element of a C∗-algebra. There are several descriptions of positive functions
in C(X) in terms of the C∗-algebra structure (see II) on which we can base such
a generalization, and while we will eventually see that these all yield the same
notion of positive element of a C∗-algebra (see 25 I) we base our definition of
positive element (X) on the description that is perhaps not most familiar, but
does give us the richest structure at this stage.

II Exercise Let X be a compact Hausdorff space. Show that for self-adjoint
f ∈ C(X), the following are equivalent.

1. f(X) ⊆ [0,∞);

2. f ≡ g2 for some g ∈ C(X)R;

3. f ≡ g∗g for some g ∈ C(X);

4. ‖f − t‖ 6 t for some t > 1
2‖f‖.

III Exercise To see how condition 1 can be expressed in terms of the C∗-algebra
structure of C(X), prove that λ ∈ f(X) iff f − λ is not invertible.



IVDefinition A self-adjoint element a of a C∗-algebra A is called positive if

‖a − t‖ 6 t for some t > 1
2‖a‖. We write a 6 b for a, b ∈ A when b − a is

positive, and we denote the set of positive elements of A by A+.

VRemark One advantage of this definition over, say, taking the elements of the
form a∗a to be positive, is that it is immediately clear that an element b of a
C∗-subalgebra B of a C∗-algebra A is positive in B iff b is positive in A —
that is, ‘positive permanence’ comes for free (cf. 11XXIII). Another advantage is
that it’s also pretty easy to see that the sum of such positive elements is again
positive, see VII.

VIExample We’ll see in 25V, that a bounded operator T on a Hilbert space H
is positive iff 〈x, Tx〉 > 0 for all x ∈H .

VIILemma Let a, b be positive elements of a C∗-algebra. Then a+ b is positive.

VIIIProof Since t > 0, there is t > 1
2‖a‖ with ‖a − t‖ 6 t. Similarly, there

is s > 1
2‖b‖ with ‖b− s‖ 6 s. Then ‖a+ b− (t+ s)‖ 6 ‖a− t‖+ ‖b− s‖ 6 t+ s

and t+ s > 1
2 (‖a‖+ ‖b‖) > 1

2‖a+ b‖, so a+ b > 0. �

IXExercise Given an element a of a C∗-algebra A with 0 6 a 6 1 (which is called

an effect) show that the orthosupplement a⊥ := 1− a is an effect too.

XExercise Let A be a C∗-algebra.

1. Show that A+ is a cone: 0 ∈ A+, a + b ∈ A+ for all a, b ∈ A+, and
λa ∈ A+ for all a ∈ A+ and λ ∈ [0,∞). Conclude that 6 is a preorder.

2. Show that 1 is positive, and −‖a‖ 6 a 6 ‖a‖ for every self-adjoint ele-
ment a of A . (Thus 1 is an order unit of AR.)

3. The behavior of positive elements may be surprising: give an example of
positive elements a and b from a C∗-algebra such that ab is not positive.

4. Given a self-adjoint element a of A define

‖a‖o = inf{ λ ∈ [0,∞) : − λ 6 a 6 λ }.

Show that ‖−‖o is a seminorm on AR, and that ‖a‖o 6 ‖a‖ for all a ∈ AR.

Prove that 0 6 a 6 b implies that ‖a‖o 6 ‖b‖o for a, b ∈ AR.

5. There is not much more that can easily be proven about positive elements,
at this point, but don’t take my word for it: try to prove the following
facts about a self-adjoint element a of A directly.
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(a) a2 is positive;

(b) if a is the limit of positive an ∈ A , then a is positive;

(c) if a > − 1
n for all n ∈ N, then a > 0;

(d) ‖a‖ = ‖a‖o;

(e) a = 0 when 0 6 a 6 0.

We will prove these facts when we return to the positive elements in 17.

10 Let us spend some words on the morphisms between C∗-algebras.

II Definition A linear map f : A → B between C∗-algebras is called

1. multiplicative if f(ab) = f(a)f(b) for all a, b ∈ A ;

2. involution preserving if f(a∗) = f(a)∗ for all a ∈ A ;

3. unital if f(1) = 1;

4. subunital if f(1) 6 1;

5. positive if f(a) is positive for every positive a ∈ A , and

6. completely positive if
∑
i,j b
∗
i f( a∗i aj ) bj is positive for all a1, . . . , an ∈ A ,

and b1, . . . , bn ∈ B (see Remark 5.1 of [54]).

III We use the bold letters as abbreviations, so for instance, f is pu if it is positive
and unital, and a miu-map is a multiplicative, involution preserving, unital lin-
ear map between C∗-algebras (which is usually called a unital ∗-homomorphism).

We’ll denote the category of C∗-algebras and miu-maps by C∗miu, and the
subcategory of commutative C∗-algebras by cC∗miu. We’ll use similar notation
for the other classes of maps, but will, naturally, only mention C∗cpu after having
established that cp-maps are closed under composition.

The advantages of completely positive maps become apparent only later
on when we start dealing with matrices (see 34 II) and the tensor product
(see 115 II).



IVLemma (“p⇒i”) A positive map f : A → B between C∗-algebras is involution
preserving.

VProof Let a ∈ A be given. We must show that f(a∗) = f(a)∗.

But first we’ll show that if a is self adjoint, then so is f(a). Indeed, since
‖a‖ and ‖a‖ − a are positive (see 9X), we see that f(‖a‖) and f(‖a‖ − a) are
positive, and so f(a) = f(‖a‖)− f(‖a‖ − a) being positive is self adjoint.

It follows that f(a)R = f(aR) and f(a)I = f(aI) (for a ∈ A ), because
f(a) ≡ f(aR) + if(aI), and f(aR) and f(aI) are self adjoint (see 7 III).

Hence f(a∗) ≡ f(aR − iaI) = f(a)R − if(a)I ≡ f(a)∗. �

VIRemark Other important relations between these types of morphisms can only
be established later on once we have a firmer grasp on the positive elements.
We will then see that every mi-map is completely positive (in 34 IV), and that
every completely positive map is positive (in 25 II).

VIIExercise Show that the product
⊕

i∈I Ai of a family (Ai)j∈I of C∗-algebras
defined in 3V is also the categorical product of these C∗-algebras in C∗miu with
as projections the maps πj :

⊕
i∈I Ai → Aj given by πj(a) = a(j).

Show that the same description applies to cC∗miu.

Of course,
⊕

i Ai also gives the product in C∗pu, but we must postpone the
proof to 18 I when we’re able to prove that an element a of

⊕
i Ai is positive

provided that each a(i) is positive.

VIIIExercise Show that given miu-maps f, g : A → B between C∗-algebras the
collection E := {a ∈ A : f(a) = g(a)} is a C∗-subalgebra of A , and that the
inclusion e : E → A is a positive miu-map that is in fact the equaliser of f and g
in C∗miu and C∗pu. Show that the same description applies to cC∗miu and cC∗pu.

IXRemark The assumption here that f and g are miu-maps might be essential: it
is not clear whether arbitrary pu-maps f, g : A → B have an equaliser in C∗pu.

11After having visited the positive elements, let us explore our second landmark,
the invertible elements of a C∗-algebra, whose role is as important as it is
technical. This paragraph culminates in what is essentially spectral permanence
(XXIII): the fact that if an element a of a C∗-subalgebra B of a C∗-algebra A
is invertible in A , then a is already invertible in B, see XVI.

IILemma Let a be an element of a C∗-algebra A with ‖a‖ < 1. Then a⊥ ≡ 1−a
has an inverse, namely (a⊥)−1 =

∑∞
n=0 a

n. Moreover, this series converges
absolutely, that is,

∑∞
n=0 ‖an‖ <∞.
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III Proof Note that (1−‖a‖) (1 + ‖a‖+ ‖a‖2 + · · ·+ ‖a‖N ) = 1−‖a‖N+1, and so

N∑
n=0

‖a‖n =
1− ‖a‖N+1

1− ‖a‖

for every N . Thus, since ‖a‖N converges to 0 (because† ‖a‖ < 1), we get∑∞
n=0 ‖a‖n = (1− ‖a‖)−1.

IV Note that aN norm converges to 0, because ‖a‖N converges to 0. Also (but
slightly less obvious),

∑
n a

n norm converges, because
∑
n ‖a‖n converges.

V Thus, taking the norm limit on both sides of (1−a)(1+a+a2+· · · aN ) = 1−aN+1,
gives us (1−a)(

∑
n a

n) = 1. Since we can derive (
∑
n a

n)(1−a) = 1 in a similar
manner, we see that

∑
n a

n is the inverse of 1− a. �

VI Exercise Let a be an element of a C∗-algebra A .

1. Show that a− λ is invertible for every λ ∈ C with ‖a‖ < |λ|.

2. Show that a− b is invertible when b ∈ A is invertible and ‖a‖ < ‖b‖.

3. Show that U := { b ∈ A : b is invertible } is an open subset of A .

VII Lemma For a self-adjoint element a of A the series
∑
n a

n converges iff ‖a‖ < 1;
and in that case converges absolutely.

VIII Proof We have already seen in II that
∑
n a

n converges absolutely when ‖a‖ < 1.

Now, if
∑
n a

n converges, then ‖a2n‖ ≡ ‖a‖2n (being the norm of the difference
between consecutive partial sums of

∑
n a

n) converges to 0, which only happens
when ‖a‖ < 1. �

IX Remark For non-self-adjoint elements a of A , the convergence of
∑
n a

n is

a more delicate matter. Take for example the matrix A :=
(

0 2
0 0

)
for which

the series
∑
nA

n converges (to A), while ‖A‖ = 2 — the problem being that
‖A2‖1/2 differs from ‖A‖. In fact, we’ll see from 13 II (although we won’t need
it) that

∑
n a

n converges absolutely when 1 > lim supn ‖an‖
1/n, and diverges

when 1 < lim supn ‖an‖
1/n. This begs the question what happens when 1 =

lim supn ‖an‖
1/n — which I do not know.

† In case you’ve never seen the argument: the limit b := limN ‖a‖N exists, because ‖a‖ >
‖a‖2 > · · · > 0, and is zero because ‖a‖b = limN ‖a‖N+1 = b and ‖a‖ < 1.



XLemma Let A be a C∗-algebra. The assignment a 7→ a−1 gives a continuous
map (from the set { b ∈ A : b is invertible } to A .)

XIProof (Based on Proposition 3.1.6 of [43].)

First we establish continuity at 1: let a ∈ A with ‖1− a‖ 6 1
2 be given; we

claim that a is invertible, and ‖1− a−1‖ 6 2‖1− a‖.
Indeed, since ‖1−a‖ 6 1

2 < 1, a is invertible by II, and a−1 =
∑∞
n=0(1−a)n.

Then ‖1−a−1‖ = ‖
∑∞
n=1(1−a)n‖ 6

∑∞
n=1 ‖1−a‖n = ‖1−a‖ (1−‖1−a‖)−1.

Thus, as ‖1− a‖ 6 1
2 , we get (1−‖1− a‖)−1 6 2, and so ‖1− a−1‖ 6 2‖1− a‖.

XIILet a be an invertible element of A , and let b ∈ A with ‖a− b‖ 6 1
2‖a
−1‖. We

claim that b is invertible, and ‖a−1 − b−1‖ 6 2‖a− b‖ ‖a−1‖2. Since ‖a− b‖ 6
1
2‖a
−1‖ we have ‖1 − a−1b‖ 6 ‖a−1‖ ‖a − b‖ 6 1

2 . By XI, a−1b is invertible,
and ‖1 − (a−1b)−1‖ 6 2‖1 − a−1b‖ 6 2‖a − b‖ ‖a−1‖. Hence ‖a−1 − b−1‖ =
‖(1− (a−1b)−1)a−1‖ 6 ‖1− (a−1b)−1‖ ‖a−1‖ 6 2‖a− b‖ ‖a−1‖2. �

XIIILemma For a self-adjoint element a from a C∗-algebra, a− i is invertible.

XIVProof (Based on Proposition 4.1.1(ii) of [43].)
The trick is to write a−i ≡ (a+ni) − (n+1)i for sufficiently large n, because

then by VI a− i is invertible provided that n+ 1 > ‖a+ni‖. Indeed, for n such
that ‖a‖ < 2n + 1, we have ‖a + ni‖2 = ‖(a + ni)∗(a + ni)‖ = ‖a2 + n2‖ 6
‖a‖2 + n2 < 2n+ 1 + n2 = (n+ 1)2, and so ‖a+ ni‖ < n+ 1. �

XVExercise Let a be a self-adjoint element of a C∗-algebra.

1. Show that a− λ is invertible for all λ ∈ C\R.

2. Show that a2 − λ is invertible for all λ ∈ C\[0,∞).
(Hint: first prove that a2 + 1 ≡ (a+ i)(a− i) is invertible.)

Conclude that an − λ is invertible for all λ ∈ C\[0,∞) and even n ∈ N.

3. Let n ∈ N be odd. Show that an − λ is invertible for all λ ∈ C\[0,∞) if
and only if a− λ is invertible for all λ ∈ C\[0,∞).

(Hint: show that an + 1 =
∏n
k=1 a+ ζ2k+1 where ζ = e

πi
n .)

XVIProposition Let A be a C∗-subalgebra of a C∗-algebra B. Let a be a self-
adjoint element of A , which has an inverse, a−1, in B. Then a−1 ∈ A .

XVIIProof While we do not know yet that a is invertible in A , we do know that a+i/n
has an inverse (a+ i/n)−1 in A by XV for each n (using that a is self-adjoint.)
Since a+ i/n converges to a in B as n increases, we see that (a+ i/n)−1 converges
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to a−1 in B by X. Thus, as all (a+ i/n)−1 are in A , and A is closed in B, we
see that a−1 is in A . �

XVIII Exercise Show that the assumption in XVI that a is self-adjoint may be dropped.
(Hint: consider a∗a, see Proposition VIII.1.14 of [13].)

XIX Definition The spectrum, sp(a), of an element a of a C∗-algebra is the set of
complex numbers λ for which a− λ is not invertible.

XX Exercise Verify the following examples.

1. The spectrum of a continuous function f : X → R on a compact Hausdorff
space X being an element of the C∗-algebra C(X) is the image of f , that
is, sp(f) = {f(x) : x ∈ X}.

2. The spectrum of a square matrix A from the C∗-algebra Mn is the set of
eigenvalues of A.

XXI Exercise Let a be an element of a C∗-algebra A .

1. Prove that sp(a) ⊆ R when a is self-adjoint (see XV).

The reverse implication does not hold: show that sp(
(

0 2
0 0

)
) = {0}.

2. Show that sp(a2) ⊆ [0,∞) when a is self-adjoint (see XV).

3. Show that |λ| 6 ‖a‖ for all λ ∈ sp(a) using VI.

In fact, we will see in 16 II, that ‖a‖ = sup{|λ| : λ ∈ sp(a)}.

4. Show that sp(a) is closed (using VI).
Conclude that sp(a) is compact.

5. Show that sp(a+ z) = {λ+ z : λ ∈ sp(a)} for all z ∈ C.

6. Prove that sp(a−1) = {λ−1 : λ ∈ sp(a)} if a is invertible (and 0 /∈ sp(a)).

XXII On first sight, the spectrum sp(a) of an element a of a C∗-algebra A depends
not only on a, but also on the surrounding C∗-algebra A for it determines
for which λ ∈ C the operator a − λ is invertible. Thus we should perhaps
write spA (a) instead of sp(a). However, such careful bookkeeping turns out be
unnecessary by the following result.



XXIIITheorem (Spectral Permanence) Let B be a C∗-subalgebra of a C∗-algebra
A . Then spA (a) = spB(a) for every element a of B.

XXIVProof Let a be an element of B, and let λ ∈ C. We must show that a − λ
is invertible in A iff a − λ is invertible in B. Surely, if a − λ has an inverse
(a− λ)−1 in B, then (a− λ)−1 is also an inverse of a− λ in A , since B ⊆ A .
The other, non-trivial, direction follows directly from XVI. �

2.3 Positive Elements

2.3.1 Holomorphic Functions

12The next order of business is to show that the spectrum sp(a) of an element a
of a C∗-algebra contains enough points, so to speak. One incarnation of this
idea is that sp(a) is non-empty (see 16V), but we will need more, and prove
that ‖a‖ = |λ| for some λ ∈ sp(a) (provided that a is self-adjoint). Somewhat
bafflingly, the canonical and apparently easiest way to derive this fact is by
considering the power series expansion of a cleverly chosen A -valued function
(see 16 II). To this end, we’ll first quickly redevelop some complex analysis for A -
valued functions (instead of C-valued functions), which will only be needed to
prove this fact.

IISetting Fix a C∗-algebra A for the remainder of this paragraph. For brevity,
we’ll say that a function is a partially defined map f : C→ A whose domain of
definition dom(f) is an open subset of C. Such a function is called holomorphic
at a point z ∈ C if f is defined on z, and

f(x)− f(y)

x− y
converges (with respect to the norm on A ) to some element f ′(x) of A as
y ∈ dom(f)\{x} converges to x.

We say that f is holomorphic if f is holomorphic at x for all x ∈ dom(f),
and the function z 7→ f ′(z) with dom(f ′) = dom(f) is called its derivative.

IIIExercise Verify the following examples of holomorphic functions.

1. If f and g are holomorphic functions with dom(f) = dom(g), then f + g
and f · g are holomorphic, and (f + g)′ = f ′ + g′ and (f · g)′ = f ′g + g′f .

2. The function f given by f(z) = z and dom(f) = C is holomorphic, and
f ′(z) = 1 for all z ∈ C.
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3. Let a ∈ A . The constant function f given by f(z) = a for all z ∈ C is
holomorphic, and f ′(z) = 0 for all z ∈ A .

4. Any polynomial, that is, function f of the form f(z) ≡ anzn+· · ·+a1z+a0

with ai ∈ A is holomorphic with f ′(z) = nanz
n−1 + · · ·+ 2a2z + a1.

13 We now turn to perhaps the most important example of a holomorphic A -
valued function — or at the very least the very source from which (as we’ll see)
all holomorphic functions draw their interesting and pleasant properties: the
holomorphic A -valued function given by a power series

∑
n anz

n.

II Theorem Let a0, a1, a2, . . . ∈ A be given, and write R := (lim supn ‖an‖
1/n)−1.

Then for every z ∈ C,

1.
∑
n anz

n converges absolutely when |z| < R, and

2. if
∑
n anz

n converges, then |z| 6 R.

(The numberR ∈ [0,∞] is called the radius of convergence of the series
∑
n anz

n.)

III Proof Suppose that |z| < R. To show that the series
∑
n anz

n converges

absolutely, we must show that
∑
n ‖an‖ |z|

n ≡
∑
n( ‖an‖

1/n |z| )n < ∞. If z =
0, this is obvious, so we’ll assume that |z| > 0. Then, since |z| < R, we
have R−1 |z| < 1 (and R−1 <∞). Note that there is ε > 0 with (R−1+ε) |z| < 1.
The point of this ε is that lim supn ‖an‖

1/n < R−1 + ε, so that we can find N
with ‖an‖1/n 6 R−1 + ε for all n > N . Then ‖an‖1/n |z| 6 (R−1 + ε) |z| < 1 for

all n > N , and so
∑
n ‖an‖ |z|

n 6
∑N−1
n=0 ‖an‖ |z|

n
+
∑∞
n=N ( (R−1+ε) |z| )n <∞

by convergence of the geometric series (c.f. 11 II).
Suppose now instead that

∑
n anz

n converges. Then ‖an‖ |z|n converges to 0.
In particular, there is N with ‖an‖ |z|n 6 1 for all n > N . Then ‖an‖1/n |z| 6 1,

and ‖an‖1/n 6 |z|−1
for all n > N , so that R−1 ≡ lim supn ‖an‖

1/n 6 |z|−1
,

giving |z| 6 R. �

IV Proposition The A -valued function f given by a series
∑
n anz

n with radius of
convergence R := ( lim supn ‖an‖

1/n )−1 is holomorphic when defined on the disk
dom(f) = {z ∈ C : |z| < R}, and f ′(z) =

∑∞
n=1 nanz

n−1 for all z ∈ dom(f).

V Proof If R = 0, the statement is rather dull, but clearly true, so we assume
that R 6= 0, that is, lim supn ‖an‖

1/n <∞.



Note that the radius of convergence of
∑∞
n=1 nanz

n−1 ≡
∑∞
n=0(n+1)an+1z

n

is also R, because∥∥ (n+ 1) an+1

∥∥1/n
= (n+ 1)

1/n ‖an+1‖
1

n+1
(
‖an+1‖

1
n+1
)1/n

,

and R−1 = lim supn ‖an+1‖
1

n+1 , and both (n + 1)1/n and
(
‖an+1‖

1
n+1
)1/n

con-
verge to 1 as n→∞ (using here that lim supn ‖an‖

1/n <∞).
Hence

∑∞
n=1 nanz

n−1 converges absolutely for every z ∈ C with |z| < R.
Let z ∈ C with |z| < R be given. We must show that f is holomorphic at z
with f ′(z) =

∑
n nanz

n−1. For this it suffices to show that

∞∑
n=0

‖an‖
∣∣∣∣ (z + h)n − zn

h
− nzn−1

∣∣∣∣ (2.1)

converges to 0 as h ∈ C (with h 6= 0 and |z + h| < R) tends to 0.
Pick r > 0 with |z| < r < R. With the appropriate algebraic gymnastics

(involving the identity an − bn = (a − b)
∑n
k=1 a

n−kbk−1 and the inequalities
|z + h| 6 r and |z| 6 r) we get, for every n and h ∈ C with h 6= 0 and |z + h| < r,∣∣∣∣ (z + h)n − zn

h
− nzn−1

∣∣∣∣ =

∣∣∣∣ n∑
k=1

(
(z + h)n−k − zn−k

)
zk−1

∣∣∣∣ (2.2)

6 2nrn−1. (2.3)

On the one hand, we see from (2.2) that any term — and thus any partial sum
— of the series from (2.1) converges to 0 as h tends to 0. On the other hand,
we see from (2.3) that the series from (2.1) is dominated by 2

∑
n ‖an‖nrn−1

(which converges because the radius of convergence of
∑
n annz

n−1 is R > r),
so that the tails of the series in (2.1) vanish uniformly in h. All in all, the sum
of the infinite series from (2.1) converges to 0 as h tends to 0. �

VIExercise Let
∑
n anz

n be a power series over A with radius of convergence R >
0 such that

∑
n anz

n = 0 for all z from some disk around 0 with radius r < R.
Show that 0 = a0 = a1 = a2 = · · · .

(Hint: clearly a0 = 0. Show that the derivative of the power series also
vanishes on the disk around 0 with radius r.)

14All holomorphic functions are power series in the sense that any A -valued holo-
morphic function f defined on 0 is given by some power series

∑
n anz

n on the
largest disk around 0 that fits in dom(f). This fact, which follows from 15V
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and 15VII below, is all the more remarkable, because here the pointwise (“lo-
cal”) property of being holomorphic entails the uniform (“global”) property of
being equal to a power series (on some disk). The device that bridges this gap
is integration of A -valued holomorphic functions along line segments.

II Exercise We’re going to define as quickly as possible an integral
∫
f for every

continuous map f : [0, 1]→ A . Any interval I in [0, 1] is of one of the following
forms

[s, t] [s, t) (s, t] (s, t)

where 0 6 s 6 t 6 1; we’ll denote the length of an interval I — being t − s
in the four cases above — by |I|. An A -valued step function is a function
f : [0, 1]→ A of the form f ≡

∑
n an1In for some a1, . . . , aN ∈ A and intervals

I1, . . . , IN (where 1In is 1 is the indicator function of In which is 1 on In and 0
elsewhere); and the set of A -valued step functions is denoted by SA , which is
a subset of the space of all bounded functions f : [0, 1]→ A which we’ll denote
by BA .

1. Show that there is a unique linear map
∫

: SA → A with
∫
a1I = |I| a

for every interval I in [0, 1] and a ∈ A .

(Hint: the difficulty here is to show that no contradiction arises in the
sense that

∑
n an |In| =

∑
m a
′
m |I ′m| when

∑
n an1In =

∑
m a
′
m1I′n for

intervals I1, . . . , IN , I
′
1, . . . , I

′
M in [0, 1] and a1, . . . , aN , a

′
1, . . . , a

′
M ∈ A .)

2. We endow BA with the supremum norm, viz. ‖f‖ = supt∈[0,1] ‖f(t)‖ for
all f ∈ BA .

Show that every A -valued step function f may be written as f ≡
∑
n an1In

where I1, . . . , IN are disjoint and non-empty intervals in [0, 1].

Show that for such a representation ‖f‖ = supn ‖an‖, and
∑
n |In| 6 1.

Deduce that ‖
∫
f‖ 6

∑
n ‖an‖ |In| 6 ‖f‖.

Conclude that
∫

: SA → A is a bounded linear map and can therefore
be uniquely extended to a bounded linear map

∫
: SA → A on the clo-

sure SA of SA .

3. Show that every continuous function f : [0, 1]→ A is the supremum norm
limit of a sequence g1, g2, . . . of A -valued step functions (i.e. f ∈ SA ).

4. Show that
∫
af = a

∫
f when f : [0, 1]→ C is continuous and a ∈ A .



IIIDefinition The integral of a holomorphic A -valued function f along a line
segment [w,w′] ⊆ dom(f) (where w and w′ are thus complex numbers) is now
defined as ∫ w′

w

f = (w′ − w)

∫ 1

0

f(w + t(w′ − w) ) dt.

We’ll also need integration along a triangle T , which is for this purpose a triple of
complex numbers w0, w1, w2 (of which the order does matter) called the vertices
of T . The boundary of such a triangle T is ∂T := [w0, w1] ∪ [w1, w2] ∪ [w2, w0],
and given any A -valued holomorphic function f with ∂T ⊆ dom(f) we define∫

T

f =

∫ w1

w0

f +

∫ w2

w1

f +

∫ w0

w2

f.

We’ll need some more terminology relating to our triangle T . Its closure, writ-
ten cl(T ), is the convex hull of w0, w1, w2, and its interior is simply in(T ) =
cl(T )\∂T . The length of T is given by length(T ) := |w1 − w0| + |w2 − w1| +
|w0 − w2|.

The number of times the triangle T winds around a point z ∈ C\∂T in the
counterclockwise direction is called the winding numberis written wnT(z), is
either 1 or −1 when z ∈ in(T ) (depending on the order of the vertices), is 0
when z /∈ cl(T ), and undefined on ∂T . It is defined formally for z ∈ C\∂T by

2πwnT (z) = ](w0, z, w1) + ](w1, z, w2) + ](w2, z, w0),

and pops up in the value of the integral
∫
T

(z − z0)−1dz later on, see VIII.
(Here ](w0, z, w1)denotes the number of radians in (−π, π) needed to rotate

the line through z and w0 counterclockwise around z to hit w1, that is, the angle
of the corner on the right when travelling from w0 to w1 via z.)

IVGoursat’s Theorem Let f be a holomorphic function, and let T be a triangle
whose closure is entirely contained in dom(f). Then

∫
T
f = 0.

VProof (Based on [49].) If two vertices of T coincide the result is obviously true,
so we may assume that they’re all distinct, that is, in(T ) 6= ∅.

Note that if f has an antiderivative, that is, f ≡ g′ for some holomorphic
function g, then one can show that

∫
T
f = 0 (after deriving the fundamental

theorem of calculus). Although it is true that every holomorphic function with
simply connected domain has a antiderivative, this result is not yet available
(and in fact usually depends on this very theorem). Instead we will approx-
imate f by an affine function (which does have an antiderivative) using the
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derivative of f . But since such an approximation only concerns a single point,
we first need to zoom in.

VI If we split T into four similar triangles T i, T ii, T iii, T iv

�
	 	

	

we have
∫
T
f =

∑iv
n=i

∫
Tn
f . There is T ′ among T i, T ii, T iii, T iv with ‖

∫
T
f‖ 6

4‖
∫
T ′
f‖. Clearly, length(T ) = 2 length(T ′). Write T0 := T and T1 := T ′.

From this it is clear how to get a sequence of similar triangles T0, T1, T2, . . .
with ‖

∫
T
f‖ 6 4n‖

∫
Tn
f‖, and length(T ) = 2n length(Tn).

VII If we pick a point on the closure cl(Tn) of each triangle Tn we get a Cauchy
sequence that converges to some point z0 ∈ C which lies in

⋂
n cl(Tn). We can

approximate f by an affine function at z0 as follows. For z ∈ dom(f),

f(z) = f(z0) + f ′(z0) (z − z0) − r(z) (z − z0),

where r : dom(f) → C is given by r(z) = f ′(z0)− (f(z)− f(z0))(z − z0)−1 for
z 6= z0 and r(z0) = 0. We see that r(z) converges to 0 as z → z0.

Let ε > 0 be given. There is δ > 0 such that z ∈ dom(f) and ‖r(z)‖ 6 ε for
all z ∈ C with ‖z − z0‖ < δ. There is n such that the triangle Tn is contained
in the ball around z0 of radius δ. Note that

∫
Tn
f(z0) + f ′(z0)(z− z0) dz = 0 by

the discussion in V, because the integrated function is affine. Thus∫
Tn
f = −

∫
Tn
r(z) (z − z0) dz.

Note that for z ∈ Tn, we have ‖z − z0‖ 6 length(Tn), and ‖r(z)‖ 6 ε (because
‖z − z0‖ < δ), and so ‖r(z)(z − z0)‖ 6 ε length(Tn). Thus:

‖
∫
Tn
f‖ = ‖

∫
Tn
r(z) (z − z0) dz‖ 6 ε length(Tn)2.

Using the inequalities from VI, we get

‖
∫
T
f‖ 6 4n ‖

∫
Tn
f‖ 6 ε 4n length(Tn)2 ≡ ε length(T )2.

Since ε > 0 was arbitrary, we see that
∫
T
f = 0. �



VIIIExercise The assumption in Goursat’s Theorem (IV) that the holomorphic
function f is defined not only on the boundary ∂T of the triangle T but also
on the interior in(T ) is essential, for if only a single hole in dom(f) is allowed
within in(T ) the integral

∫
T
f can become non-zero—which we will demonstrate

here by computing
∫
T

(z − z0)−1dz.

1. Show that for a non-zero complex number z we have

z−1 =
zR − izI
z2
R + z2

I
.

2. Given real numbers a 6= 0 and b, show that∫ a+ib

a

z−1 dz = i

∫ t

0

a− it
a2 + t2

dt

= i

∫ b

0

a

a2 + t2
dt +

∫ b

0

t

a2 + t2
dt

= i arctan( b/a ) + log |a+ ib| − log |ia| ,

and similarly, show that for real numbers a and b 6= 0∫ ib

a+ib

z−1 dz = i arctan( a/b ) + log |ib| − log |a+ ib| .

3. Show that for complex numbers w, w′ and z0 with z0 /∈ [w,w′]∫ w′

w

(z − z0)−1 dz = i](w, z0, w
′) + log

|w′ − z0|
|w − z0|

,

where ](w, z0, w
′) denotes the number of radians in (−π, π) needed to

rotate the line through z0 and w counterclockwise around z0 to hit w′.

(Hint: using Goursat’s Theorem, IV, one may reduce the problem to inte-
gration along horizontal and vertical line segments.)

4. Given a triangle T and z0 ∈ C\∂T , show that

1

2πi

∫
T

(z − z0)−1 dz = wnT (z0).
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IX Thus integration of z 7→ (z − z0)−1 along a triangle T detects the number of
times T winds around z0. There is nothing special about a triangle: a similar
result—not needed here—holds for a broad class of curves (c.f. Thm 2.9 of [13]).

Integration along a curve can also be used to probe the value of a holomorphic
function at a point z0. On this occasion we restrict ourselves to regular N -gons.

15 Theorem (Cauchy’s Integral Formula) Let f be a holomorphic A -valued func-
tion which is defined on the interior and boundary of some regular N -gon with
center c ∈ C, circumradius r and vertices wn := c+ r cos(2π/n) + ir sin(2π/n).
Then for any complex number z0 in the interior of the N -gon we have

f(z0) =
1

2πi

N−1∑
n=0

∫ wn+1

wn

f(z)

z − z0
dz

II Proof Since
∑N−1
n=0

∫ wn+1

wn

f(z0)
z−z0 dz = 2πif(z0) by 14VIII it suffices to show that

N−1∑
n=0

∫ wn+1

wn

f(z)− f(z0)

z − z0
dz = 0. (2.4)

III Let ε > 0 be given. Since f is holomorphic at z0 we can find δ > 0 with∥∥∥∥f(z)− f(z0)

z − z0

∥∥∥∥ 6 ‖f ′(z0)‖ + 37

for all z ∈ dom(f) with |z − z0| 6 δ.
IV To use III, we must restrict our attention to a smaller polygon. Let T be a

triangle that is entirely inside the N -gon such that wnT (z0) = −1, length(T ) 6
ε, and ‖z0 − z‖ 6 δ for all z ∈ ∂T . By partitioning the area between T and
the N -gon in the obvious manner into triangles T1, . . . , TM (for which

∫
Tm

f = 0

for all m by 14 IV) we see that

N−1∑
n=0

∫ wn+1

wn

f(z)− f(z0)

z − z0
dz =

∫
T

f(z)− f(z0)

z − z0
dz. (2.5)

Hence by III we have∥∥∥∥∥
N−1∑
n=0

∫ wn+1

wn

f(z)− f(z0)

z − z0
dz

∥∥∥∥∥ 6 length(T ) · sup
z∈∂T

∥∥∥∥ f(z)− f(z0)

z − z0

∥∥∥∥
6 ‖f ′(z0)‖ε + 37ε.



Since ε > 0 was arbitrary, (2.4) follows from (2.5). �

VProposition Let f be a holomorphic A -valued function defined on the boundary
and interior of a regular K-gon with vertices w0, . . . , wK−1, wK = w0 as in I.
Then for every element z of an open disk in the interior of the K-gon with
center w,

f(z) =

∞∑
n=0

(
1

2πi

K−1∑
k=0

∫ wk+1

wk

f(u)

(u− w)n+1
du

)
(z − w)n.

VIProof By I and some easy algebra we have

2πif(z) =

K−1∑
k=0

∫ wk+1

wk

f(u)

u− z
du =

K−1∑
k=0

∫ wk+1

wk

f(u)

u− w
1

1− z−w
u−w

du

Note that |z − w| < |u− w| for all u ∈ [wk, wk+1] and k, because the open disk
with center w from which z came lies entirely in the K-gon. Hence, by 11 II,

2πif(z) =

K−1∑
k=0

∫ wk+1

wk

f(u)

u− w

∞∑
n=0

(z − w)n

(u− w)n
du

=

∞∑
n=0

K−1∑
k=0

∫ wk+1

wk

f(u)

(u− w)n+1
du (z − w)n,

where the interchange of “
∑

” and “
∫

” is allowed because the partial sum∑N
n=0 f(u) (z−w)n

(u−w)n+1 converges uniformly in u as N →∞. �

VIIProposition Let f be an A -valued holomorphic function that can be written
as a power series f(z) =

∑
n an(z − w)n where a0, a1, . . . ∈ A for all z from

some disk in dom(f) around w with radius r > 0.
Then the formula f(z) =

∑
n an(z − w)n holds also for any z from a larger

disk with radius R > r around w that still fits in dom(f).

VIIIProof Let z with |z − w| < R be given. By choosing K large enough we can fit
the boundary of a regularK-gon centered around w with vertices w0, . . . , wK−1, wK ≡
w0 inside the difference between the two disks, and we can moreover, by V,
choose the polygon in such a way that f(z′) =

∑
n bn(z′ − w)n for all z′ ∈ C

with |z′ − w| 6 |z − w| where bn =
∑K−1
k=0

∫ wk+1

wk

f(u)
(u−w)n+1 du.

Thus to show that f(z) =
∑
n an(z − w)n it suffices to show that an = bn

for all n. This in turn follows by 13VI from the fact that
∑
n an(z′ − w)n =∑

n bn(z′ − w)n for all z′ ∈ C with |z′ − w| < r. �

..14, 15



2.3.2 Spectral Radius

16 Our analysis of A -valued holomorphic functions allows us to expose the follow-
ing connection between the norm and the invertible elements in a C∗-algebra.

II Proposition For a self-adjoint element a of a C∗-algebra A , we have

‖a‖ = sup{ |λ| : λ ∈ sp(a) }.

(The quantity on the right hand-side above is called the spectral radius of a.)

III Proof Write r = sup{|λ| : λ ∈ sp(a)\{0} } where the supremum is computed
in [0,∞] so that sup∅ = 0. Since |λ| 6 ‖a‖ for all λ ∈ sp(a) (11VI) we see
that r 6 ‖a‖, and so we only need to show that ‖a‖ 6 r. Note that this is
clearly true if ‖a‖ = 0, so we may assume that ‖a‖ 6= 0.

The trick is to consider the power series expansion around 0 of the holo-
morphic function f defined on G := { z ∈ C : 1 − az is invertible } by f(z) =
z(1 − az)−1. More specifically, we are interested in the distance R of 0 to the
complement of G, viz. R = inf{|λ| : λ ∈ C\G} (where the infimum is computed
in [0,∞] so that inf ∅ =∞) because since 0 ∈ G and z /∈ G ⇐⇒ z−1 ∈ sp(a),
we have R = r−1 (using the convention 0−1 =∞).

Note that f has the power series expansion f(z) =
∑
n a

nzn+1 for all z ∈ C
with ‖z‖ < ‖a‖−1, because for such z we have

∑
n(az)n = (1 − az)−1 by 11 II,

and thus f(z) = z(1− az)−1 = z
∑
n(az)n =

∑
n a

nzn+1.
By 15VII we know that f(z) =

∑
n a

nzn+1 is valid not only for z ∈ C with
|z| < ‖a‖−1, but for all z with |z| < R. However, R cannot be strictly larger
than ‖a‖−1, because for every z ∈ C with |z| > ‖a‖−1 the series

∑
n(az)n

and thus
∑
n a

nzn+1 diverges (see 11VII) — using here that a is self-adjoint.
Hence R = ‖a‖−1, and so r = ‖a‖. �

IV Remark For an arbitrary (possibly non-self-adjoint) element a of a C∗-algebra A

the formula in II might be incorrect, eg.
∥∥ ( 0 1

0 0

)
‖ = 1 while sp(

(
0 1
0 0

)
) = {0}

cf. 11 IX. For such a the formula sup{ |λ| : λ ∈ sp(a) } = lim supn ‖an‖
1/n can

be derived (see e.g. Theorem 3.3.3 of [43]) — which we won’t need here.

V Exercise Given a self-adjoint element a of a C∗-algebra show that sp(a) 6= ∅.

VI Exercise Given a self-adjoint element a of a C∗-algebra and λ ∈ R show that
sp(a) = {λ} iff a = λ.

VII Exercise (Gelfand–Mazur’s Theorem for C∗-algebras) Prove that if every
non-zero element of a C∗-algebra A is invertible, then A = C or A = {0}.



VIIIRemark A logical next step towards Gelfand’s representation theorem is to
show that if λ ∈ sp(a) for some element a of a commutative C∗-algebra A , then
there is a miu-map f : A → C with f(a) = λ. Here we have moved ourselves
into a tight spot by evading Banach algebras, because the mentioned result is
usually obtained by finding a maximal ideal I of A (by Zorn’s Lemma) that
contains λ− a, and then forming the Banach algebra quotient A /I. One then
applies Gelfand–Mazur’s Theorem for Banach algebras, to see that A /I = C,
and thereby obtain a miu-map f : A → C with f(a − λ) = 0. The problem
here is that while A /I will turn out to be a C∗-algebra (indeed, be C) the
formation of the C∗-algebra quotient is non-trivial and depends on Gelfand’s
representation theorem (see e.g. §VIII.4 of [13]) which is the very theorem we
are working towards. The way out of this predicament is to avoid ideals and
quotients of C∗- and Banach algebras altogether, and instead work with order
ideals (and what are essentially quotients of Riesz and order unit spaces). To
this end, we develop the theory of the positive elements of a C∗-algebra farther
than is usually done for Gelfand’s representation theorem.

17We return to the positive elements in a C∗-algebra (see 9X). We’ll see that the
connection we have established between the norm and invertible elements of a
C∗-algebra via the spectral radius (16 II) affects the positive elements as well,
see V.

IIExercise Show that |λ− t | 6 t iff λ ∈ [0, 2t], where λ, t ∈ R.

IIIProposition For a self-adjoint element a from a C∗-algebra, and t ∈ [0,∞],

‖a− t‖ 6 t ⇐⇒ sp(a) ⊆ [0, 2t].

IVProof To begin, note that sp(a − t) = sp(a) − t ⊆ R by 11XXI, because a is
self-adjoint. Thus ‖a− t‖ = sup{ |λ− t| : λ ∈ sp(a) } by 16 II. Hence ‖a− t‖ 6 t
iff |λ− t| 6 t for all λ ∈ sp(a) iff sp(a) ⊆ [0, 2t] (by II). �

VExercise Show (using III and 11XXI) that for any self-adjoint element a of a
C∗-algebra A , the following are equivalent.

1. ‖a− t‖ 6 t for some t > 1
2‖a‖;

2. ‖a− t‖ 6 t for all t > 1
2‖a‖;

3. sp(a) ⊆ [0,∞);

4. a is positive.

16, 17..



We will complete this list in 25 I.

VI Exercise Let A be a C∗-algebra.

1. Show that 0 6 a 6 0 entails that a = 0 for all a ∈ A .

2. Show that A+ is closed.

3. Let a be a self-adjoint element of A . Show that −λ 6 a 6 λ iff ‖a‖ 6 λ,
for λ ∈ [0,∞). Conclude that ‖a‖ = inf{λ ∈ R : − λ 6 a 6 λ}.
(In other words AR is a complete Archimedean order unit space, see Defi-
nition 1.12 of [1]—a type of structure first studied in [41].)

Show that 0 6 a 6 b entails ‖a‖ 6 ‖b‖ for a, b ∈ AR.

4. Recall that ab need not be positive if a, b > 0. However:

Show that a2 is positive for every self-adjoint element a of A .

Show that an is positive for even n ∈ N and a ∈ AR.

Show that an is positive iff a is positive for odd n ∈ N and a ∈ AR.

Show that an is positive for every positive a from A and n ∈ N.

5. Let a be an invertible element of A . Show that a > 0 iff a−1 > 0.

6. Show that a positive element a of A is invertible iff a > 1
n for some n > 0.

(Hint: show that sp(a) ⊆ [ 1
n ,∞) when a > 1

n .)

18 Exercise With our new-found knowledge about positive elements verify that
the product

⊕
i Ai of C∗-algebras Ai from 3V is indeed the product of these

C∗-algebras Ai in the category C∗pu.

1. Show that an element a of
⊕

i∈I Ai is positive iff a(i) > 0 for all i.

2. Show that the projections πj :
⊕

i∈I Ai → Aj (defined in 10VII) are pos-
itive.

3. Show that for any C∗-algebra B and collection of pu-maps fi : B → Ai

there is a unique pu-map 〈fi〉i : B →
⊕

i Ai with πj ◦ 〈fi〉i = fj for all j.

4. Conclude that
⊕

i Ai is the (categorical) product of the Ais in C∗pu.



(We’ll return to the product of C∗-algebras a final time in 34VI.)

19Lemma For elements a and b from a C∗-algebra, we have

sp(ab)\{0} = sp(ba)\{0}.

IIProof Let λ ∈ C with λ 6= 0 be given. We must show that λ−ab is invertible iff
λ− ba is invertible. Suppose that λ− ab is invertible. Then using the equality
a(λ − ba) = (λ − ab)a one sees that (1 + b(λ − ab)−1a)(λ − ba) = λ. Since
similarly (λ− ba)(1 + b(λ− ab)−1a) = λ, we see that λ−1(1 + b(λ− ab)a) is the
inverse of λ− ba. �

IIILemma We have a∗a 6 0 =⇒ a = 0 for every element a of a C∗-algebra.

IVProof Suppose that a∗a 6 0. Then sp(a∗a) ⊆ (−∞, 0], almost by definition,
and so sp(aa∗) ⊆ (−∞, 0] by I, giving aa∗ 6 0. Thus a∗a+ aa∗ 6 0.

But on the other hand, a∗a + aa∗ = 2(a2
R + a2

I ) > 0, and so a∗a + aa∗ = 0.
Then 0 > a∗a = −aa∗ > 0 gives a∗a = 0, and a = 0. �

20Observe that the norm and order on (the self-adjoint elements of a) C∗-algebra A
completely determine one another (using the unit): on the one hand ‖a‖ =
inf{λ > 0: − λ 6 a 6 λ} by 17VI, and on the other hand a > 0 iff ‖a− s‖ 6 s
for some s > 1

2‖a‖ by definition (9 IV). This has some useful consequences.

IILemma A positive map f : A → B between C∗-algebras is bounded. More
specifically, we have ‖f(a)‖ 6 ‖f(1)‖ ‖a‖ for all self-adjoint a ∈ AR, and we
have ‖f(a)‖ 6 2‖f(1)‖ ‖a‖ for arbitrary a ∈ A .

IIIProof Given a ∈ AR we have −‖a‖ 6 a 6 ‖a‖, and −‖a‖ f(1) 6 f(a) 6 ‖a‖ f(1)
(because f is positive), and thus ‖f(a)‖ 6 f(1) ‖a‖ 6 ‖f(1)‖ ‖a‖ by 17VI.

For an arbitrary element a ≡ aR + iaI of A we have ‖f(a)‖ 6 ‖f(aR)‖ +
‖f(aI)‖ 6 2‖f(1)‖ ‖a‖. �

IVRemark It is a non-trivial theorem (known as Russo–Dye in [55]), that the factor
“2” in the statement above can be dropped, i.e. ‖f‖ = ‖f(1)‖ (c.f. Corollary 1
of [61]). Fortunately for us, we only need this improved bound for completely
positive maps for which it’s much easier to obtain (see 34XVI).

VExercise Show that ‖%‖ = %(1) for every mi-map % (using the C∗-identity).

VILemma Show that for a pu-map f : A → B between C∗-algebras, the following
are equivalent.

1. f is bipositive, that is, f(a) > 0 iff a > 0 for all a ∈ A ;

..17–20..



2. f is an isometry on AR, that is, ‖f(a)‖ = ‖a‖ for all ∈ AR;

3. f is an isometry on A+.

VII Proof It is clear that 2 implies 3.

VIII (1=⇒2) Let a ∈ AR be given. Note that −λ 6 a 6 λ iff −λ 6 f(a) 6 λ for
all λ > 0, because f is bipositive and unital. In particular, since −‖a‖ 6 a 6
‖a‖, we have −‖a‖ 6 f(a) 6 ‖a‖, and so ‖f(a)‖ 6 ‖a‖. On the other hand,
−‖f(a)‖ 6 f(a) 6 ‖f(a)‖ implies −‖f(a)‖ 6 a 6 ‖f(a)‖, and so ‖a‖ 6 ‖f(a)‖.
Thus ‖a‖ = ‖f(a)‖, and f is an isometry on AR.

IX (3=⇒1) Let a ∈ A be given. We must show that f(a) > 0 iff a > 0. Since f
is involution preserving (10 IV) a is self-adjoint iff f(a) is self-adjoint, and so
we might as well assume that a is self-adjoint to start with. Since f is an
isometry on A+, ‖a‖ − a is positive, and f is unital, we have ‖ ‖a‖ − a ‖ =
‖f(‖a‖ − a)‖ = ‖ ‖a‖ − f(a) ‖. Now, observe that 0 6 a iff ‖ ‖a‖ − a ‖ 6 ‖a‖,
and that ‖ ‖a‖ − f(a) ‖ 6 ‖a‖ iff 0 6 f(a), by 17VI, because 1

2‖a‖ 6 ‖a‖ and
1
2‖f(a)‖ 6 ‖a‖ (by II). �

X Warning Such a map f need not preserve the norm of arbitrary elements: the

map A 7→ 1
2A+ 1

2A
T : M2 →M2 is bipositive and unital, but∥∥∥∥(0 1

0 0

)∥∥∥∥ = 1 6= 1

2
=

∥∥∥∥(0 1/2
0 0

)
+

(
0 0

1/2 0

)∥∥∥∥ .
(Even if f is completely positive, 34 IV, it might still only preserve the norm of
self-adjoint elements cf. 21 IX.)

21 We just saw in 20VI that a map on a C∗-algebra A that preserves and reflects
the order determines the norm of the self-adjoint — but not all — elements of A .
This theme, to what extend a linear map (or a collection of linear maps) on a
C∗-algebra determines its structure, while tangential at the moment, will grow
ever more important until it is essential for the theory of von Neumann algebras.
That’s why we introduce the four levels of discernment that a collection of maps
on a C∗-algebra might have already here.

II Definition A collection Ω of maps on a C∗-algebra A will be called

1. order separating if an element a of A is positive iff 0 6 ω(a) for all ω ∈ Ω;

2. separating if an element a of A is zero iff ω(a) = 0 for all ω ∈ Ω;



3. faithful if an element a of A+ is zero iff ω(a) = 0 for all ω ∈ Ω; and

4. centre separating if a ∈ A+ is zero iff ω(b∗ab) = 0 for all ω ∈ Ω and b ∈ A .

(The “centre” in “centre separating” will be explained in 69 IX.)

IIIExamples We’ll see later on that the following collections are order separating.

1. The set of all pu-maps ω : A → C on a C∗-algebra (see 22VIII).

2. The set of all miu-maps ω : A → C on a commutative C∗-algebra (see 27XVIII).

3. The set of functionals on B(H ), where H is a Hilbert space, of the form
〈x, ( · )x〉 : B(H )→ C where x ∈H (see 25 III).

We’ll call these functionals vector functionals. (They are clearly bounded
and involution preserving linear maps, and once we know that each pos-
itive element of a C∗-algebra is a square, in 23VII, it’ll be obvious that
vector functionals are positive too.)

IVNone of the four levels of separation coincides. This follows from the following
examples, that we’ll just mention here, but can’t verify yet.

1. A single non-zero vector x from a Hilbert space H gives a vector functional
〈x, ( · )x〉 on B(H ) that is centre separating on its own, but is not faithful
when H has dimension > 2.

2. Given an orthonormal basis E of a Hilbert space H the collection

{ 〈e, ( · )e〉 : e ∈ E }

of vector functionals on B(H ) is faithful, but not separating when E has
more than one element.

3. Given Hilbert spaces H and K the set of vector functionals

{ 〈x⊗ y, ( · )x⊗ y 〉 : x ∈H , y ∈ K }

on B(H ⊗ K ) is separating, but not order separating when both H
and K are at least two dimensional.

..20, 21..



V Exercise One use for a separating collection Ω of involution preserving maps
on a C∗-algebra A is checking whether an element a ∈ A is self-adjoint: show
that a ∈ A is self-adjoint iff ω(a) is self-adjoint for all ω ∈ Ω.

VI An order separating collection senses the norm of a self-adjoint element:

VII Proposition For a collection Ω of pu-maps on a C∗-algebra A the following are
equivalent.

1. Ω is order separating;

2. ‖a‖ = supω∈Ω ‖ω(a)‖ for all a ∈ AR;

3. ‖a‖ = supω∈Ω ‖ω(a)‖ for all a ∈ A+.

VIII Proof Denoting the codomain of ω ∈ Ω by Bω (so that ω : A → Bω), ap-
ply 20VI to the pu-map 〈ω〉ω∈Ω : A →

⊕
ω∈Ω Bω (see 18 I). �

IX Warning The formula ‖a‖ = supω∈Ω ‖ω(a)‖ need not be correct for an arbitrary
(not necessarily self-adjoint) element a. Indeed, consider the matrix A :=

(
0 1
0 0

)
,

and the collection Ω = { 〈x, ( · )x〉 : x ∈ C2, ‖x‖ = 1 }, which will turn out to
be order separating. We have ‖A‖ = 1, while |〈x, ω(A)x〉| = |x1| |x2| never
exceeds 1/2 for x ≡ (x1, x2) ∈H with 1 = ‖x‖.

X Exercise Show that any operator norm dense subset Ω′ of an order separating
collection Ω of positive functionals on a C∗-algebra A is order separating too.

22 We’ll use 21VII to show that the pu-maps ω : A → C on a C∗-algebra A (called
states of A for short) are order separating by showing that for every self-adjoint
element a ∈ A there is a state ω of A with ω(a) = ‖a‖ or ω(a) = −‖a‖. To
obtain such a state we first find its kernel, which leads us to the following
definitions.

II Definition An order ideal of a C∗-algebra A is a linear subspace I of A with
b ∈ I =⇒ b∗ ∈ I and b ∈ I ∩A+ =⇒ [−b, b] ⊆ I. It is called proper if 1 /∈ I,
and maximal if it is maximal among all proper order ideals.

III Exercise Let A be a C∗-algebra.

1. Show that the kernel of a state is a maximal order ideal.

(Hint: the kernel of a state is already maximal as linear subspace.)

2. Let I be a proper order ideal of A . Show that there is a maximal order
ideal J of A with I ⊆ J . (Hint: Zorn’s Lemma may be useful.)



3. Let a ∈ AR. Show that there is a least order ideal (a) that contains a, and
that given b ∈ AR we have b ∈ (a) iff there are λ, µ ∈ R with λa 6 b 6 µa.

Show that (a) = Ca when 0 66 a 66 0.

Show that 1 ∈ (a) if and only if a is invertible and either 0 6 a or a 6 0.

4. Let a be a self-adjoint element of A which is not invertible. Show that
there is a maximal order ideal J of A with a ∈ J .

5. Let a be a self-adjoint element of A . Show that ‖a‖ − a or ‖a‖+ a is not
invertible (perhaps by considering the spectrum of a.)

IVLemma For every maximal order ideal I of a C∗-algebra A , there is a state
ω : A → C with ker(ω) = I.

VProof Form the quotient vector space A /I with quotient map q : A → A /I.
Note that since 1 /∈ I we have q(1) 6= 0 and so we may regard C to be a linear
subspace of A /I via λ 7→ q(λ). We will, in fact, show that C = A /I.

But let us first put an order on A /I: we say that a ∈ A /I is positive if
a ≡ q(a) for some a ∈ A+, and write a 6 b if b − a is positive for a, b ∈ A /I.
Note that the definition of “order ideal” is such that if both a and −a are
positive, then a = 0. We leave it to the reader to verify that A /I becomes a
partially ordered vector space with the order defined above. There is, however,
one detail we’d like to draw attention to, namely that a scalar λ is positive
in A /I iff λ is positive in C. Indeed, if λ > 0 in C, then λ > 0 in A , and
so λ > 0 in A /I. On the other hand, if λ > 0 in A /I, but λ 6 0 in C, then
λ 6 0 in A /I, and so λ = 0. This detail has the pleasant consequence that once
we have shown that A /I = C, we automatically get that q : A → C is positive.

VILet a ∈ AR be given. Define α := inf{λ ∈ R : q(a) 6 λ }. Note that −‖a‖ 6
α 6 ‖a‖. We will prove that q(a) = α by considering the order ideal

J := { b ∈ A : ∃λ, µ ∈ R [ λ(α− q(a)) 6 bR 6 µ(α− q(a)) ]∧
∃λ, µ ∈ R [ λ(α− q(a)) 6 bI 6 µ(α− q(a)) ] }.

We claim that 1 /∈ J . Indeed, suppose not—towards a contradiction. Then
there is µ ∈ R with 1 6 µ(α − q(a)). What can we say about µ? If µ < 0,
then 0 > 1/µ > α − q(a), so α − 1/µ 6 q(a), but q(a) 6 α + ε for every ε > 0,
and so α − 1/µ 6 q(a) 6 α − 1/2µ, which is absurd. If µ = 0, then we get
1 6 µ(α− q(a)) ≡ 0, which is absurd. If µ > 0, then 1/µ 6 α− q(a), or in other
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words, q(a) 6 α − 1/µ, giving α 6 α − 1/µ by definition of α, which is absurd.
Hence 1 /∈ J .

But then since I ⊆ J , we get I = J , by maximality of I. Thus, as α−a ∈ J ,
we have α− a ∈ I, and so q(a) = α, as desired.

VII Let a ∈ A be given. Then a = aR + iaI. By VI, there are α, β ∈ R with
q(aR) = α, and q(aI) = β. Thus q(a) = α + iβ. Hence A /I = C. Since the
quotient map q : A → A /I ≡ C is pu, and ker(q) = I, we are done. �

VIII Exercise Show using IV that given a self-adjoint element a of a C∗-algebra A
there is a state ω with |ω(a)| = ‖a‖. Conclude that the set of states of a
C∗-algebra is order separating (see 21 II).

2.3.3 The Square Root

23 The key that unlocks the remaining basic facts about the (positive) elements
of a C∗-algebra is the existence of the square root

√
a of a positive element a,

and its properties. For technical reasons, we will assume ‖a‖ 6 1, and construct
1−
√

1− a instead of
√
a.

II Lemma Let a be an element of a C∗-algebra A with 0 6 a 6 1. Then there is
a unique element b ∈ A with, 0 6 b 6 1, ab = ba, and (1− b)2 = 1− a. To be
more specific, b is the norm limit of the sequence b0 6 b1 6 · · · given by b0 = 0
and bn+1 = 1

2 (a+ b2n). Moreover, if c ∈ A commutes with a, then c commutes
with b, and if in addition a 6 1− c2 and c∗ = c, we have b 6 1− c.

III Proof When discussing bn it is convenient to write bn ≡ qn(a) where q0, q1, . . .

are the polynomials over R given by q0 = 0 and qn+1 = 1
2 (x+ q2

n). For example,
we have bn > 0, because all coefficients of qn are all positive, and a, a2, a3, . . . are
positive by 17VI. With a similar argument we can see that b0 6 b1 6 b2 6 · · · .
Indeed, the coefficients of qn+1 − qn are positive, by induction, because

qn+2 − qn+1 = 1
2 (x+ q2

n+1) − 1
2 (x+ q2

n)

= 1
2 (q2

n+1 − q2
n)

= 1
2 (qn+1 + qn)(qn+1 − qn)

= (qn + 1
2 (qn+1 − qn))(qn+1 − qn),

has positive coefficients if qn+1 − qn has positive coefficients, and q1 − q0 ≡ 1
2x

clearly has positive coefficients. Hence bn+1 − bn = qn+1(a)− qn(a) is positive.



(Note that we have carefully avoided using the fact here that the product of
positive commuting elements is positive, which is not available to us until V.)

Let us now show that b0 6 b1 6 · · · converges. Let n > N from N be
given. Since the coefficients of qn − qN are positive, and ‖a‖ 6 1, the triangle
inequality gives us ‖bn − bN‖ ≡ ‖(qn − qN )(a)‖ 6 qn(1) − qN (1), and so it
suffices to show that the ascending sequence q0(1) 6 q1(1) 6 · · · of real numbers
converges, c.q. is bounded. Indeed, we have qn(1) 6 1, by induction, because
qn+1(1) ≡ 1

2 (1 + qn(1)2) 6 1 if qn(1) 6 1, and clearly 0 ≡ q0(1) 6 1.

Let b be the limit of b0 6 b1 6 · · · . Then b being the limit of positive elements
is positive (see 17VI), and if c ∈ A commutes with a, then c commutes with
all powers of a, and therefore with all bn, and thus with b. Further, from the
recurrence relation qn+1 = 1

2 (a+q2
n) we get b = 1

2 (a+b2), and so −a = −2b+b2,
giving us (1− b)2 = 1− 2b+ b2 = 1− a.

Let us prove that b 6 1. To begin, note that ‖bn‖ 6 1 for all n, by induction,
because 0 ≡ ‖b0‖ 6 1, and if ‖bn‖ 6 1, then ‖bn+1‖ 6 1

2 (‖a‖+‖bn‖2) 6 1, since
‖a‖ 6 1. Since bn > 0, we get −1 6 bn 6 1 for all n, and so b 6 1.

IVLet us take a step back for the moment. From what we have proven so far we
see that each positive c ∈ A is of the form c ≡ d2 for some positive d ∈ A
which commutes with all e ∈ A that commute with c.

From this we can see that c1c2 > 0 for c1, c2 ∈ A+ with c1c2 = c2c1. Indeed,
writing ci ≡ d2

i with di as above, we have d1c2 = c2d1 (because c1c2 = c2c1),
and thus d1d2 = d2d1. It follows that d1d2 is self-adjoint, and c1c2 = (d1d2)2.
Hence c1c2 > 0.

We will also need the following corollary. For c, d ∈ A+ with c 6 d and
cd = dc, we have c2 6 d2. Indeed, d2 − c2 ≡ d(d − c) + c(d − c) is positive by
the previous paragraph.

VLet c ∈ AR be such that ca = ac and a 6 1− c2. We must show that b 6 1− c.
Of course, since b is the limit of b1, b2, . . . , it suffices to show that bn 6 1−c, and
we’ll do this by induction. Since 0 6 c2 6 1 − a, we have ‖c‖2 6 ‖1 − a‖ 6 1,
and so −1 6 c 6 1. Thus b0 ≡ 0 6 1 − c. Now, suppose that bn 6 1 − c for
some n. Then bn+1 = 1

2 (a+ b2n) 6 1
2 ((1− c2) + (1− c)2) = 1− c, where we have

used that b2n 6 (1− c)2, because bn 6 1− c by IV.

VIWe’ll now show that b is unique in the sense that b = b′ for any b′ ∈ A with
0 6 b′ 6 1, b′a = ab′ and (1−b′)2 = 1−a. Note that b′ 6 1, because ‖1−b′‖2 =
‖1 − a‖ 6 1, From a = 1 − (1 − b′)2, we immediately get b 6 1 − (1 − b′) = b′

by V. For the other direction, note that (1−b′)2 = (1−b)2 ≡ (1−b′+(b′−b))2 =
(1− b′)2 + 2(1− b′)(b′− b) + (b′− b)2, which gives 0 = 2(1− b′)(b′− b) + (b′− b)2.
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Now, since 1−b′ and b′−b are positive, and commute, we see that (1−b′)(b′−b)
is positive by V, and so 0 = 2(1 − b′)(b′ − b) + (b′ − b)2 > (b′ − b)2 > 0, which
entails (b′ − b)2 = 0, and so ‖(b′ − b)2‖ = ‖b′ − b‖2 = 0, yielding b = b′. �

VII Exercise Let a be a positive element of a C∗-algebra A . Show that there is a

unique positive element of A denoted by
√
a (and by a1/2) with

√
a

2
= a and

a
√
a =
√
aa. Show that if c ∈ A commutes with a, then c

√
a =
√
ac, and if in

addition c∗ = c and c2 6 a, then c 6
√
a. Using this, verify:

1. If a, b ∈ A are positive, and ab = ba, then ab > 0.

2. Let a ∈ A+. If b, c ∈ AR commute with a, then b 6 c implies ab 6 ac.

3. If a, b ∈ AR commute, and a 6 b, then a2 6 b2.

4. The requirement in the previous item that a and b commute is essential:
there are positive elements a, b of a C∗-algebra A with a 6 b, but a2 66 b2.

In other words, the square a 7→ a2 on the positive elements of a C∗-algebra
need not be monotone, (but a 7→

√
a is monotone, see 28 III).

(Hint: take a = ( 1 0
0 0 ) and b = a+ 1

2 ( 1 1
1 1 ) from M2.)

24 Definition Given a self-adjoint element a of a C∗-algebra A , we write

|a| :=
√
a2 a+ := 1

2 (|a|+ a) a− := 1
2 (|a| − a).

We call a+ the positive part of a, and a− the negative part.

II Exercise Let a be a self-adjoint element of a C∗-algebra A .

1. Show that − |a| 6 a 6 |a|, and ‖ |a| ‖ = ‖a‖.

2. Prove that a+ and a− are positive, a = a+ − a− and a+a− = a−a+ = 0.

3. One should not read too much into the notation | · | in the non-commutative
case: give an example of self-adjoint elements a and b of a C∗-algebra with
|a+ b| 66 |a|+ |b|.
(Hint: one may take a = 1

2 ( 1 1
1 1 ) and b = − ( 1 0

0 0 ).)

III The existence of positive and negative parts in a C∗-algebra has many pleasant
and subtle consequences of which we’ll now show one.



IVLemma Given an element a of a C∗-algebra A , we have a∗a > 0.

VProof Writing b := a((a∗a)−)1/2, we have b∗b = ((a∗a)−)1/2a∗a((a∗a)−)1/2 =
(a∗a)− a

∗a = −((a∗a)−)2 6 0, and so b = 0 by 19 III. Hence (a∗a)− = 0 giving
us a∗a = (a∗a)+ > 0. �

25Exercise Round up our results regarding positive elements to prove that the
following are equivalent for a self-adjoint element a of a C∗-algebra A .

1. a is positive, that is, ‖a− t‖ 6 t for some t > 1
2‖a‖;

2. ‖a− t‖ 6 t for all t > 1
2‖a‖;

3. a ≡ b2 for some self-adjoint b ∈ A ;

4. a ≡ c∗c for some c ∈ A ;

5. sp(a) ⊆ [0,∞).

IIExercise The fact that a∗a is positive for an element a of a C∗-algebra A has
some nice consequences of its own needed later on.

1. Show that b 6 c =⇒ a∗ba 6 a∗ca for all b, c ∈ AR and a ∈ A .

2. Show that every mi-map and cp-map is positive.

3. Show that a 6 b−1 iff
√
ba
√
b 6 1 iff ‖

√
a
√
b‖ 6 1 iff b 6 a−1 for positive

invertible elements a, b of A (and so a 6 b entails b−1 6 a−1).

4. Prove that (1 + a)−1a 6 (1 + b)−1b for 0 6 a 6 b from A .
(Hint: add (1 + a)−1 + (1 + b)−1 to both sides of the inequality.)

IIIProposition The vector states of B(H ) are order separating (see 21 II) for
every Hilbert space H .

IVProof By21VII tt suffices to show that ‖T‖ = supx∈(H )1
|〈x, Tx〉| for given T ∈

B(H )+. Since |〈x, Tx〉| =
〈
T 1/2x, T 1/2x

〉
= ‖T 1/2x‖2 for all x ∈ H , we have

‖T‖ = ‖T 1/2‖2 = ( supx∈(H )1

∥∥T 1/2x
∥∥ )2 = supx∈(H )1

|〈x, Tx〉|. �

VCorollary For a bounded operator T on a Hilbert space H , we have

1. T is self-adjoint iff 〈x, Tx〉 is real for all x ∈ (H )1;
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2. 0 6 T iff 0 6 〈x, Tx〉 for all x ∈ (H )1;

3. ‖T‖ = supx∈(H )1
|〈x, Tx〉| when T is self-adjoint.

VI Proof This follows from 21V and 21VII because the vector states on B(H ) are
order separating by III. �

26 The interaction between the multiplication and order on a C∗-algebra can be
subtle, but when the C∗-algebra is commutative almost all peculiarities disap-
pear. This is to be expected as any commutative C∗-algebra is isomorphic to a
C∗-algebra of continuous functions on a compact Hausdorff space (as we’ll see
in 27XXVII).

II Exercise Let A be a commutative C∗-algebra. Let a, b, c ∈ AR.

1. Show that |a| is the supremum of a and −a in AR.

2. Show that if a and b have a supremum, a∨ b, in AR, then c + a∨ b is the
supremum of a+ c and b+ c.

3. Show that AR is a Riesz space, that is, a lattice ordered vector space.
(Hint: prove that 1

2 (a+ b+ |a− b|) is the supremum of a and b in AR.)

4. Show that a miu-map f : A → B between commutative C∗-algebras pre-
serves finite suprema and infima.

III Exercise Prove the Riesz decomposition lemma: For positive elements a, b, c of
a commutative C∗-algebra A with c 6 a+b we have c ≡ a′+b′ where 0 6 a′ 6 a
and 0 6 b′ 6 b.

2.4 Representation

2.4.1 . . . by Continuous Functions

27 Now that we have have a firm grip on the positive elements of a C∗-algebra
we turn to what is perhaps the most important fact about commutative C∗-
algebras: that they are isomorphic to C∗-algebras of continuous functions on a
compact Hausdorff space, via the Gelfand representation.



IISetting A is a commutative C∗-algebra.

IIIDefinition The spectrum of A , denoted by sp(A ), is the set of all miu-maps
f : A → C. We endow sp(A ) with the topology of pointwise convergence.

The Gelfand representation of A is the miu-map γ : A → C(sp(A )) given
by γ(a)(f) = f(a).

IVExercise Verify that the map sp(A ) → C, f 7→ f(a) is indeed continuous for
every a ∈ A , and that γ is miu.

VRemark One might wonder if there is any connection between the spectrum sp(A )
of a commutative C∗-algebra, and the spectrum sp(a) of one of A ’s elements
(from 11XIX); and indeed there is as we’ll see in XVII (and 28 II).

VIOur program for this paragraph is to show that the Gelfand representation γ is a
miu-isomorphism. In fact, we will show that it gives the unit of an equivalence
between the category of commutative C∗-algebras (with miu-maps) and the
opposite of the category of compact Hausdorff spaces (with continuous maps).
The first hurdle we take is the injectivity of γ — that there are sufficiently
many points in the spectrum of a commutative C∗-algebra, so to speak —, and
involves the following special type of order ideal.

VIIDefinition A Riesz ideal of A is an order ideal I such that a ∈ I ∩ AR =⇒
|a| ∈ I. A maximal Riesz ideal is a proper Riesz ideal which is maximal among
proper Riesz ideals.

VIIILemma Let I be a Riesz ideal of A . For all a ∈ A and x ∈ I we have ax ∈ I.

IXProof Since x = xR + ixI, it suffices to show that axR ∈ I and axI ∈ I. Note
that xR, xI ∈ I, so we might as well assume that x is self-adjoint to begin
with. Similarly, using that x+ ∈ I (because x+ = 1

2 (|x| + x) and |x| ∈ I) and
x− ∈ I, we can reduce the problem to the case that x is positive. We may also
assume that a is self-adjoint. Now, since x > 0 and −‖a‖ 6 a 6 ‖a‖, we have
−‖a‖x 6 ax 6 ‖a‖x by 23VII, and so ax ∈ I, because ‖a‖x ∈ I. �

XExercise Verify the following facts about Riesz ideals.

1. The least Riesz ideal that contains a self-adjoint element a of A is

(a)m := { b ∈ A : ∃n ∈ N [ |bR| , |bI| 6 n |a| ] }.

Moreover, (a)m = A iff a is invertible, and we have (a) = (a)m when a > 0
(where (a) is the least order ideal that contains a, see 22 III). For non-
positive a, however, we may have (a) 6= (a)m.
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2. I+J is a Riesz ideal of A when I and J are Riesz ideals. (Hint: use 26 III.)
But I + J might not be an order ideal when I and J are order ideals.

3. Each proper Riesz ideal is contained in a maximal Riesz ideal.

XI Lemma A maximal Riesz ideal I of A is a maximal order ideal.

XII Proof Let J be a proper order ideal with I ⊆ J . We must show that J = I.
Let a ∈ J be given; we must show that a ∈ I. Since aR, aI ∈ J , it suffices to
show that aR, aI ∈ I, and so we might as well assume that a is self-adjoint to
begin with. Similarly, since |a| ∈ J , and it suffices to show that |a| ∈ I, because
then − |a| 6 a 6 |a| entails a ∈ I, we might as well assume that a is positive.

Note that the least ideal (a) that contains a is also a Riesz ideal by X. Hence
I + (a) is a Riesz ideal by X Since a ∈ J , we have (a) ⊆ J , and so I + (a) ⊆ J
is proper. It follows that a ∈ I + (a) = I by maximality of I. �

XIII Lemma Let I be a maximal Riesz ideal of A . Then there is a miu-map
f : A → C with ker(f) = I.

XIV Proof Since I is a maximal order ideal by XI, there is a pu-map f : A → C
with ker(f) = I by 22 IV. It remains to be shown that f is multiplicative.
Let a, b ∈ A be given; we must show that f(ab) = f(a)f(b). Surely, since f
is unital, we have f(b − f(b)) = f(b) − f(b) = 0, an so b − f(b) ∈ ker(f) ≡ I.
Now, since I is a Riesz ideal, we have a(b − f(b)) ∈ I ≡ ker(f) by VIII, and
so 0 = f( a(b− f(b)) ) = f(ab)− f(a)f(b). Hence f is multiplicative. �

XV Proposition Let a be a self-adjoint element of a C∗-algebra. Then a is not
invertible iff there is f ∈ sp(A ) with f(a) = 0.

XVI Proof Note that if a is invertible, then f(a−1) is the inverse of f(a)—and
so f(a) 6= 0—for every f ∈ sp(A ). For the other, non-trivial, direction, assume
that a is not invertible. Then by X the least Riesz ideal (a)m that contains a
is proper, and can be extended to a maximal Riesz ideal I. By XIII there is a
miu-map f : A → C with ker(f) = I. Then f ∈ sp(A ) and f(a) = 0. �

XVII Exercise Show that sp(a) = {f(a) : f ∈ sp(A )} for each self-adjoint a ∈ A .

XVIII Exercise Prove that ‖γ(a)‖ = ‖a‖ for each a ∈ A where γ is from XXVII.
(Hint: first assume that a is self-adjoint, and use XVII and 16 II. For the

general case, use the C∗-identity.)

Conclude that the Gelfand representation γ : A → C(sp(A )) is injective,
and that its range {γ(a) : a ∈ A } is a C∗-subalgebra of C(sp(A )).



XIXTo show that γ is surjective, we use the following special case of the Stone–
Weierstraß theorem.

XXTheorem Let X be a compact Hausdorff space, and let S be a C∗-subalgebra
of C(X) which ‘separates the points of X’, that is, for all x, y ∈ X with x 6= y
there is f ∈ S with f(x) 6= f(y). Then S = C(X).

XXIProof Let g ∈ C(X)+ and ε > 0. To prove that S = C(X), it suffices to show
that g ∈ S , and for this, it suffices to find f ∈ S with ‖f − g‖ 6 ε, because S
is closed. It is convenient to assume that g(x) > 0 for all x ∈ X, which we may,
without loss of generality, by replacing g by 1 + g.

XXIILet x, y ∈ X with x 6= y be given. We know there is f ∈ S with f(x) 6= f(y).
Note that we can assume that f(x) = 0 (by replacing f by f−f(x)), and that f
is self-adjoint (by replacing f by either fR or fI), and that f is positive (by

replacing f by f+ or f−), and that f(y) = g(y) > 0 (by replacing f by g(y)
f(y)f),

and that f 6 g(y) (by replacing f by f ∧ g(y)).

XXIIILet y ∈ X be given. We will show that there is f ∈ S with 0 6 f 6 g + ε
and f(y) = g(y). Indeed, since g is continuous there is an open neighborhood V
of y with g(y) 6 g(x)+ε for all x ∈ V . For each x ∈ X\V there is fx ∈ [0, f(y)]S
with fx(x) = 0 and fx(y) = g(y) by XXII. Since the open subsets Ux := { z ∈
X : fx(z) 6 ε } with x ∈ X\V form an open cover of the closed (and thus
compact) subset X\V , there are x1, . . . , xN ∈ X\U with Ux1∪· · ·∪UxN ⊇ X\V .
Define f := fx1 ∧ · · · ∧ fxN . Then f ∈ S , 0 6 f 6 g(y), f(y) = g(y), and
f(x) 6 ε for every x ∈ X\V .

We claim that f 6 g + ε. Indeed, if x ∈ X\V , then f(x) 6 ε 6 g(x) + ε.
If x ∈ V , then f(x) 6 g(y) 6 g(x) + ε (by definition of V ). Hence f 6 g + ε.

XXIVThus for each y ∈ X there is fy ∈ S with 0 6 fy 6 g + ε and fy(y) = g(y).
Since fy is continuous at y, and fy(y) = g(y), there is an open neighborhood Uy
of y with g(y) − ε 6 fy(x) for all x ∈ Uy. Since these open neighborhoods
cover X, and X is compact, there are y1, . . . , yN ∈ X with Uy1 ∪ · · ·∪UyN = X.
Define f := fy1 ∨ · · · ∨ fyN . Then f ∈ S , and g − ε 6 f 6 g + ε, giving
‖f − g‖ 6 ε. �

XXVLemma The spectrum sp(A ) of A is a compact Hausdorff space.

XXVIProof Since for each a ∈ A and f ∈ sp(A ) we have ‖f(a)‖ 6 ‖a‖ by 20V
we see that f(a) is an element of the compact set { z ∈ C : |z| 6 ‖a‖ }, and
so sp(A ) is a subset of ∏

a∈A { z ∈ C : |z| 6 ‖a‖ },
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which is a compact Hausdorff space (by Tychonoff’s theorem, under the product
topology it inherits from the space of all functions A → C). So to prove
that sp(A ) is a compact Hausdorff space, it suffices to show that sp(A ) is
closed. In other words, we must show that if f : A → C is the pointwise limit of
a net of miu-maps (fi)i, then f is a miu-map as well. But this is easily achieved
using the continuity of addition, involution and multiplication on C, because,
for instance, for a, b ∈ A , we have f(ab) = limi fi(ab) = limi fi(a)fi(b) =
(limi fi(a)) (limi fi(b)) = f(a) f(b). �

XXVII Gelfand’s Representation Theorem For a commutative C∗-algebra A , the
Gelfand representation, γ : A → C(sp(A )) defined in III is a miu-isomorphism.

XXVIII Proof We already know that γ is an injective miu-map (see IV and XVIII). So to
prove that γ is a miu-isomorphism, it remains to be shown that γ is surjective.
Since sp(A ) is a compact Hausdorff space (by XXV), and γ(A ) ≡ {γ(a) : a ∈
A } is a C∗-subalgebra of C(sp(A )) (by XVIII), it suffices to show that γ(A )
separates the points of sp(X) by XX. This is obvious, because for f, g ∈ sp(A )
with f 6= g there is a ∈ A with f(a) ≡ γ(a)(f) 6= γ(a)(g) ≡ g(a). �

28 While Gelfand’s representation theorem is a result about commutative C∗-
algebras, it tells us a lot about non-commutative C∗-algebras too, via their
commutative C∗-subalgebras.

II Exercise Let a be an element of a (not necessarily commutative) C∗-algebra A .
We are going to use Gelfand’s representation theorem to define f(a) for every
continuous map f : sp(a) → C whenever a is contained in some commutative
C∗-algebra. This idea is referred to as the continuous functional calculus.

1. Show that there is a least C∗-subalgebra C∗(a) of A that contains a.

Given b ∈ C∗(a) show that bc = cb for all c ∈ A with ac = ca.

2. We call a ∈ A normal when C∗(a) is commutative.

Show that a is normal iff aa∗ = a∗a iff aRaI = aIaR.

3. From now on assume a is normal so that C∗(a) is commutative.

Show that j : % 7→ %(a), sp(C∗(a))→ sp(a) is a continuous map.

Denoting the composition of the miu-maps

C(sp(a))
f 7→f◦j // C(sp(C∗(A)))

∼=, 27XXVII // C∗(a)
inclusion // A .

by Φ, we write f(a) := Φ(f) for all f ∈ C(sp(a)).



We have hereby defined, for example, aα when a > 0 and α ∈ (0,∞).

From the fact that Φ is miu some properties of f(a) can be derived. Show,
for example, that aαaβ = aα+β for all α, β ∈ (0,∞) when a > 0.

4. Given f ∈ C(sp(a)), show that f(a) is the unique element of C∗(a) with

ϕ(f(a)) = f(ϕ(a))

for all ϕ ∈ sp(C∗(a)).

5. (Spectral mapping thm.) Show that sp(f(a)) = f(sp(a)) for f ∈ C(sp(a)).

6. Show that sp(%(a)) ⊆ sp(a) and %(f(a)) = f(%(a)) for every f ∈ C(sp(a))
and miu-map % : A → B into a C∗-algebra B.

7. Given f ∈ C(sp(a)) and g ∈ C(f(sp(a))) show that g(f(a)) = (g ◦ f)(a).

Show that (aα)β = aαβ for α, β ∈ (0,∞) and a ∈ A+.

IIITheorem We have 0 6 a 6 b =⇒ aα 6 bα for all positive elements a and b of
a C∗-algebra A , and α ∈ (0, 1].

IVProof (Based on [56].) Note that the result is trivial if a and b commute.

It suffices to show that (a+ 1
n )α 6 (b+ 1

n )α for all n, because (a+ 1
n )α norm

converges to aα as n → ∞. In other words, it suffices to prove aα 6 bα under
the additional assumption that a and b are invertible. Note that a0 and b0 are
defined for such invertible a and b, because the function ( · )0 : [0, 1]→ C is only
discontinuous at 0. Writing E for the set of all α ∈ [0, 1] for which b 7→ bα is
monotone on positive, invertible elements of A we must prove that E = (0, 1],
and we will in fact show that E = [0, 1]. Since clearly 0, 1 ∈ E it suffices
to show that E is convex. We’ll do this by showing that E is closed, and
α, β ∈ E =⇒ 1

2α+ 1
2β ∈ E.

V(E is closed) Let b be a positive and invertible element of A . A moment’s
thought reveals it suffices to prove that α 7→ bα, [0, 1]→ A is continuous. And
indeed it is being the composition of the map α 7→ bα : [0, 1]→ C(sp(b)), which
is norm continuous, and the functional calculus f 7→ f(b) : C(sp(b)) → A ,
which being a miu-map is norm continous as well.

VI(α, β ∈ E =⇒ 1
2α + 1

2β ∈ E) Let α, β ∈ E. Let a, b ∈ A be positive

and invertible with a 6 b. We must show that aα+β/2 6 bα+β/2. Since the map
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bα+β/4( · )bα+β/4 is positive (by 25 II), it suffices to show that b−
α+β

4 a
α+β

2 b−
α+β

4 6

1, that is, ‖b−
α+β

4 a
α+β

2 b−
α+β

4 ‖ 6 1.
For this, it seems, we must take a look under the hood of the theory of

C∗-algebras: writing %(c) := supλ∈sp(c) |λ| for c ∈ A , we know that %(c) 6 ‖c‖
for any c, and %(c) = ‖c‖ for self-adjoint c by 16 II. Moreover, recall from 19 I
that sp(cd)\{0} = sp(dc)\{0}, and so %(cd) = %(dc) for all c, d ∈ A . Hence

‖ b−
α+β

4 a
α+β

2 b−
α+β

4 ‖ = %( b−
α+β

4 a
α+β

2 b−
α+β

4 )

= %( b−
α+β

4 a
α+β

2 b−
α+β

4 b−
α−β

4 b
α−β

4 )

= %( b
α−β

4 b−
α+β

4 a
α+β

2 b−
α+β

4 b−
α−β

4 )

= %( b−
β/2 a

β/2 a
α/2 b−

α/2 )

6 ‖ b−β/2 aβ/2 ‖ ‖ aα/2 b−α/2 ‖
= ‖ b−β/2 aβ b−β/2 ‖1/2 ‖ b−α/2 aα b−α/2 ‖1/2

6 ‖ b−β/2 bβ b−β/2 ‖1/2 ‖ b−α/2 bα b−α/2 ‖1/2 = 1,

and so we’re done. �

29 As a cherry on the cake, we use Gelfand’s representation theorem 27XXVII to
get an equivalence between the categories (cC∗miu)op and CH of continuous maps
between compact Hausdorff spaces.

To set the stage, we extend X 7→ C(X) to a functor CH → (cC∗miu)op by
sending a continuous function f : X → Y to the miu-map C(f) : C(Y )→ C(X)
given by C(f)(g) = g ◦ f for g ∈ C(Y ), and we extend A 7→ sp(A ) to a functor
sp: (cC∗miu)op → CH by sending a miu-map ϕ : A → B to the continuous
map sp(ϕ) : sp(B)→ sp(A ) given by sp(ϕ)(f) = f ◦ ϕ.

The Gelfand representations γA : A → C(sp(A )) form a natural isomor-
phism from C ◦sp to the identity functor on (cC∗miu)op. So to get an equivalence,
it suffices to find a natural isomorphism from the identity on CH to sp◦C, which
is provided by the following lemma.

II Lemma Let X be a compact Hausdorff space, and let τ : C(X) → C be a
miu-map. Then there is x ∈ X with τ(f) = f(x) for all f ∈ C(X).

III Proof Define Z = {x ∈ X : h(x) 6= 0 for some h ∈ C(X)+ with τ(h) = 0 }.
We’ll prove X\Z contains exactly one point, x0, and τ(f) = f(x0) for all f .

IV To see that X\Z contains no more than one point, let x, y ∈ X with x 6= y
be given; we will show that either x ∈ Z or y ∈ Z. By the usual topological



trickery, we can find f, g ∈ C(X)+ with fg = 0, f(x) = 1 and g(y) = 1.
Then 0 = τ(fg) = τ(f) τ(g), so either τ(f) = 0 (and x ∈ Z), or τ(g) = 0
(and y ∈ Z).

That X\Z is non-empty follows from the following result (by taking f = 1).

VFor f ∈ C(X)+ with f(x) > 0 =⇒ x ∈ Z for all x ∈ X we have τ(f) = 0.
Indeed, for each x ∈ X with f(x) > 0 (and so x ∈ Z) we can find h ∈ C(X)+

with τ(h) = 0 and h(x) 6= 0. Then f(x) < g(x) and τ(g) = 0 for g := ( f(x)
h(x) +1)h.

By compactness, we can find g1, . . . , gN ∈ C(X)+ with τ(gn) = 0, such that for
every x ∈ X there is n with g(x) < fn(x). Writing g := g1 ∨ · · · ∨ gN , we have
0 6 f 6 g and τ(g) = 0 (because by 26 II τ preserves finite infima). It follows
that τ(f) = 0.

VIWe now know that X\Z contains exactly one point, say x0. To see that τ(f) =
f(x0) for f ∈ C(X), write g := (f − f(x0))∗(f − f(x0)) and note that g(x) >

0 =⇒ x 6= x0 =⇒ x ∈ Z. Thus by V, we get 0 = τ(g) = |τ(f)− f(x0)|2, and
so τ(f) = f(x0). �

VIIExercise Let X be a compact Hausdorff space. Show that for every x ∈ X the
map δx : C(X)→ C, f 7→ f(x) is miu, and that the map X → sp(C(X)), x 7→
δx is a continuous bijection onto a compact Hausdorff space, and thus a home-
omorphism.

VIIIExercise As an application of the equivalence between (cC∗MIU)op and CH, we
will show that every injective miu-map between C∗-algebras is an isometry.

Show that an arrow f : X → Y in CH is mono iff injective, and epi iff
surjective (using complete regularity of Y ). Conclude that f is both epi and
mono in CH only if f is an isomorphism (c.q. homeomorphism).

Let % : A → B be an injective miu-map between C∗-algebras. Let a be
a self-adjoint element of A . Show that % can be restricted to a miu-map
σ : C∗(a)→ C∗(%(a)), which is both epi and mono in cC∗MIU. Conclude that σ
is an isomorphism, and thus ‖%(a)‖ = ‖a‖. Use the C∗-identity to extend the
equality ‖%(a)‖ = ‖a‖ to (not necessarily self-adjoint) a ∈ A .

IXExercise Let % : A → B be an injective miu-map. Show that %(A ) is closed
(using VIII). Conclude that %(A ) is a C∗-subalgebra of B isomorphic to A .

2.4.2 Representation by Bounded Operators

30Let us prove that every C∗-algebra A is isomorphic to a C∗-algebra of bounded
operators on some Hilbert space. We proceed as follows. To each p-map ω : A →
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C (see 10 II) we assign a inner product [ · , · ]ω on A , which can be “completed”
to a Hilbert space Hω. Every element a ∈ A gives a bounded operator on Hω

via the action b 7→ ab, which in turn gives a miu-map %ω : A → B(Hω). In
general %ω is not injective, but if Ω is a set of p-maps which separates the points
of A , then the composition

A
〈%ω〉ω∈Ω //⊕

ω∈Ω B(Hω) // B(
⊕

ω∈Ω Hω )

does give an injective miu-map %, which restricts to an isomorphism (29 IX)
from A to the C∗-algebra %(A ) of bounded operators on

⊕
ω∈Ω Hω, see 6 II.

The creation of %ω from ω is known as the Gelfand–Naimark–Segal (GNS)
construction and will make a reappearance in the theory of von Neumann alge-
bras (in 72V).

We take a somewhat utilitarian stance towards the GNS construction here,
but there is much more that can be said about it: in the first chapter of my
twin brother’s thesis, [74], you’ll see that the GNS construction has a certain
universal property, and that it can be generalized to apply not only to maps of
the form ω : A → C, but also to maps of the form ϕ : A → B.

II Lemma For every p-map ω : A → C on a C∗-algebra A , [a, b]ω = ω(a∗b)
defines an inner product [ · , · ]ω on A (see 4VIII).

III Proof Note that [a, a]ω ≡ ω(a∗a) > 0 for each a ∈ A , because a∗a > 0
(by 24 IV); and [a, b]ω = [b, a]ω for a, b ∈ A , because ω is involution preserving
(by 10 IV). Finally, it is clear that [a, · ]ω ≡ ω(a∗ · ) is linear for each a ∈ A . �

IV Exercise Let ω : A → C be a p-map on a C∗-algebra. Let us for a mo-
ment study the semi-norm ‖ · ‖ω on A induced by the inner product [ · , · ]ω
(so ‖a‖ω = ω(a∗a)1/2), because it plays an important role here, and all through-
out the next chapter.

1. Use Cauchy–Schwarz (4XV) to prove Kadison’s inequality: for all a, b ∈
A ,

|ω(a∗b)|2 6 ω(a∗a) ω(b∗b).

2. Show that ‖ab‖ω 6 ‖ω‖ ‖a‖ ‖b‖ω for all a, b ∈ A (using a∗a 6 ‖a‖2).

Show that we do not always have ‖ab‖ω 6 ‖ω‖‖a‖ω‖b‖.
(Hint: take a = ( 0 0

0 1 ) and b = 1
2 ( 1 1

1 1 ) from A = M2, and ω( ( c de f ) ) = c.)

Show that neither always ‖ab‖ω 6 ‖a‖ω‖b‖ω, or ‖a∗a‖ω = ‖a‖2ω.

(Hint: take a = b = 1
2 ( 1 1

1 1 ) from A = M2, and ω(( ( c de f ) ) = c.)



Give a counterexample to ‖a∗‖ω = ‖a‖ω.

VExercise Let us begin by showing how a complex vector space V with inner
product [ · , · ] can be “completed” to a Hilbert space H .

We will take for H the set of Cauchy sequences on V modulo the following
equivalence relation. Two Cauchy sequences (an)n and (bn)n in V are considered
equivalent iff limn ‖an−bn‖ = 0. We “embed” V into H via the map η : V →H
which sends a to the constant sequence a, a, a, . . . . Note, however, that η need
not be injective: show that η(a) = η(b) iff ‖a− b‖ = 0 for all a, b ∈ V .

Show that d( (an)n, (bn)n ) = limn ‖an−bn‖ defines a metric on H , that H
is complete with respect to this metric, and that if (an)n is a Cauchy sequence
in V , then (η(an))n converges to the element (an)n of H (so V is dense in H ).

Show that every uniformly continuous map f : V → X to a complete metric
space X can be uniquely extended to a uniformly continuous map g : H → X.
(We say that g extends f when f = g ◦ η.)

Show that addition, scalar multiplication, and inner product on V (being
uniformly continuous) can be uniquely extended to uniformly continuous oper-
ations on H , and turn H into a Hilbert space. (Also verify that the extended
inner product agrees with the complete metric we’ve already put on H .)

Show that every bounded linear map f : V → K to a Hilbert space K can
be uniquely extended to a bounded linear map g : H → K .

(Categorically speaking, Hilbert spaces form a reflexive subcategory of the
category of bounded linear maps between complex vector spaces with an inner
product.)

VIDefinition (Gelfand–Naimark–Segal construction)
Let ω : A → C be a p-map on a C∗-algebra A .

Let Hω denote the completion of A endowed with the inner product [ · , · ]ω
(see II) to a Hilbert space as discussed in V. Recall that we have an “embedding”
ηω : A →Hω with 〈ηω(a), ηω(b)〉 = [a, b]ω for all a, b ∈ A .

Since given a ∈ A the map b 7→ ab, A → A is bounded with respect
to ‖ · ‖ω (because ‖ab‖ω 6 ‖ω‖‖a‖‖b‖ω by IV), it can be uniquely extended to a
bounded linear map Hω →Hω (by the universal property of Hω, see V), which
we’ll denote by %ω(a). So %ω(a) is the unique bounded linear map Hω → Hω

with %ω(a)(ηω(b)) = ηω(ab) for all b ∈ A .

VIIProposition The map %ω : A → B(Hω) given by VI is a miu-map.

VIIIProof Let a1, a2 ∈ A be given. Since %ω(a1 + a2) ηω(b) = ηω((a1 + a2)b) =
ηω(a1b) + ηω(a2b) = (%ω(a1) + %ω(a2)) ηω(b) for all b ∈ A , and {ηω(b) : b ∈ A }
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is dense in Hω, we see that %ω(a1 + a2) = %ω(a1) + %ω(a2). Since similarly
%ω(λa) = λ%ω(a) for λ ∈ C and a ∈ A , we see that %ω is linear.

Since %ω(1) ηω(b) = ηω(b) for all b ∈ A , we have %ω(1)x = x for all x ∈Hω,
and so %ω is unital, %ω(1) = 1.

To see that %ω is multiplicative, note that (%ω(a1) %ω(a2)) ηω(b) = ηω(a1a2b) =
%ω(a1a2) ηω(b) for all a1, a2, b ∈ A .

Let a ∈ A be given. To show that %ω is involution preserving it suffices
to prove that %ω(a∗) is the adjoint of %ω(a). Since 〈%ω(a∗) ηω(b), ηω(c)〉 ≡
[a∗b, c]ω = ω(b∗ac) = [b, ac]ω ≡ 〈ηω(b), %ω(a) ηω(c)〉 for all b, c ∈ A , and {ηω(b) : b ∈
A } is dense in Hω, we get 〈%ω(a∗)x, y〉 = 〈x, %ω(a)y〉 for all x, y ∈ Hω, and
so %ω(a∗) = %ω(a)∗. �

IX Definition Given a collection Ω of p-maps ω : A → C on a C∗-algebra A ,
let %Ω : A → B(HΩ) be the miu-map given by %Ω(a)x =

∑
ω∈Ω %ω(a)x(ω),

where HΩ =
⊕

ω∈Ω Hω (and %ω is as in VI).

X Proposition For a collection Ω of positive maps A → C on a C∗-algebra A ,
the following are equivalent.

1. %Ω : A → B(HΩ) is injective;

2. Ω is center separating on A (see 21 II);

3. Ω′ = {ω(b∗( · )b) : b ∈ A , ω ∈ Ω } is order separating on A .

In that case, %Ω(A ) is a C∗-subalgebra of B(HΩ), and %Ω restricts to a miu-
isomorphism from A to %Ω(A ).

XI Proof It is clear that 3 entails 2.

XII (2=⇒1) Let a ∈ A with %Ω(a) = 0 be given. We must show that a = 0 (in order
to show that %Ω is injective), and for this it is enough to prove that a∗a = 0.
Let b ∈ A and ω ∈ Ω be given. Since Ω is center separating, it suffices to
show that 0 = ω(b∗a∗ab) ≡ ‖ab‖2ω. Since %Ω(a) = 0, we have %ω(a) = 0, thus
0 = %ω(a) ηω(b) = ηω(ab), and so ‖ab‖ω = 0. Hence %Ω is injective.

XIII (1=⇒3) Let a ∈ A with ω(b∗ab) > 0 for all ω ∈ Ω and b ∈ A be given. We
must show that a > 0. Since %Ω is injective, we know by 29 IX that %Ω(A )
is a C∗-subalgebra of B(HΩ), and %Ω restricts to a miu-isomorphism from A
to %Ω(A ). So in order to prove that a > 0, it suffices to show that %Ω(a) > 0, and
for this we must prove that %ω(a) > 0 for given ω ∈ Ω. Since the vector states
on Hω are order separating by 25 III, it suffices to show that 〈x, %ω(a)x〉 > 0
for given x ∈Hω. Since {ηω(b) : b ∈ A } is dense in Hω, we only need to prove



that 0 6 〈ηω(b), %ω(a)ηω(b)〉 ≡ ω(b∗ab) for given b ∈ A , but this is true by
assumption. �

XIVTheorem (Gelfand–Naimark) Every C∗-algebra A is miu-isomorphic to a C∗-
algebra of operators on a Hilbert space.

XVProof Since the states on A are separating (22VIII), and therefore center sep-
arating, the miu-map %Ω : A → B(HΩ) (defined in IX) restricts to a miu-
isomorphism from A onto the C∗-subalgebra %(A ) of B(HΩ) by X. �

2.5 Matrices over C∗-algebras

31We have seen (in 4) that the N ×N -matrices (N being a natural number) over
the complex numbers C form a C∗-algebra (denoted by MN ) by interpreting
them as bounded operators on the Hilbert space CN , and proving that the
bounded operators B(H ) on any Hilbert space H form a C∗-algebra.

In this paragraph, we’ll prove the analogous and more general result that the
N ×N -matrices over a C∗-algebra A form a C∗-algebra by interpreting them
as adjoinable module maps on the Hilbert A -module A N , see 32 I and 32XIII.

32Definition An (A -valued) inner product on a right A -moduleX (A being a C∗-
algebra) is a map 〈 · , · 〉 : X×X → A such that, for all x, y ∈ X, 〈x, · 〉 : X → A
is a module map, 〈x, x〉 > 0, and 〈x, y〉 = 〈y, x〉∗. We say that such an inner
product is definite if 〈x, x〉 = 0 =⇒ x = 0 for all x ∈ X.

A pre-Hilbert A -module X (where A is always assumed to be a C∗-algebra)
is a right A -module endowed with a definite inner product. Such X is called
a Hilbert A -module when it is complete with respect to the norm we’ll define
in IX.

Let X and Y be pre-Hilbert A -module. We say that a map T : X → Y is
adjoint to a map S : Y → X when

〈Tx, y〉 = 〈x, Sy〉 for all x ∈ X and y ∈ Y .

In that case, we call T adjointable. It is not difficult to see that T must be linear,
and a module map, and adjoint to exactly one S, which we denote by T ∗.

(Note that we did not require that T is bounded, and in fact, it need not be,
see 35 IX. However, if T is bounded, then so is T ∗, see X, and if either X or Y
is complete, then T is automatically bounded, see 35VI.)

The vector space of adjoinable bounded module maps T : X → Y is denoted
by Ba(X,Y ), and we write Ba(X) = Ba(X,X).
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II Example We endow A N (where A is a C∗-algebra and N is a natural number)
with the inner product 〈x, y〉 =

∑
n x
∗
nyn, making it a Hilbert A -module.

III Exercise Let S and T be adjoinable operators on a pre-Hilbert A -module.

1. Show that T ∗ is adjoint to T (and so T ∗∗ = T ).

2. Show that (T + S)∗ = T ∗ + S∗ and (λS)∗ = λS∗ for λ ∈ C.

3. Show that ST is adjoint to T ∗S∗ (and so (ST )∗ = T ∗S∗).

IV Exercise Although a bounded linear map between Hilbert spaces is always
adjoinable (see 5), a bounded module map between Hilbert A -modules might
have no adjoint as is revealed by the following example (based on [54], p. 447).

Prove that J := { f ∈ C[0, 1] : f(0) = 0 } is a closed right ideal of C[0, 1],
and thus a Hilbert C[0, 1]-module.

Show that the inclusion T : J → C[0, 1] is a bounded module map, which has
no adjoint by proving that there is no b ∈ J with 〈b, a〉 = Ta ≡ a for all a ∈ J
(for if T had an adjoint T ∗, then 〈T ∗1, a〉 = 〈1, Ta〉 = a for all a ∈ J).

V Remark Note that part of the problem here is the lack of the obvious analogue
to Riesz’ representation theorem (5 IX) for Hilbert A -modules. One solution
(taken in the literature) is to simply add Riesz’ representation theorem as ax-
iom giving us the self-dual Hilbert A -modules. For those who like to keep
Riesz’ representation theorem a theorem, I’d like to mention that it is also pos-
sible to assume instead that the Hilbert A -module is complete with respect to
a suitable uniformity, as in done in my twin brother’s thesis, [74], see 149V.

VI Proposition (Cauchy–Schwarz) We have 〈x, y〉 〈y, x〉 6 ‖〈y, y〉‖ 〈x, x〉 for ev-
ery inner product 〈 · , · 〉 on a right A -module X, and x, y ∈ X.

VII Remark The symmetry-breaking norm symbols “‖” cannot simply be removed
from this version of Cauchy–Schwarz, because 0 6 〈x, y〉 〈y, x〉 6 〈y, y〉 〈x, x〉
would imply that 〈y, y〉 〈x, x〉 is positive, and self-adjoint, and thus that 〈y, y〉
and 〈x, x〉 commute, which is not always the case.

VIII Proof Let ω : A → C be a state of A . Since the states on A are order separating
(22VIII), it suffices to show that ω( 〈x, y〉 〈y, x〉 ) 6 ‖〈y, y〉‖ ω(〈x, x〉). Noting



that (u, v) 7→ ω(〈u, v〉) is a complex-valued inner product on X, we compute

ω( 〈x, y〉 〈y, x〉 )2

= ω( 〈x, y 〈y, x〉〉 )2

6 ω(〈x, x〉) ω( 〈 y 〈y, x〉 , y 〈y, x〉 〉 ) by Cauchy–Schwarz, 4XV

= ω(〈x, x〉) ω( 〈x, y〉 〈y, y〉 〈y, x〉 )
6 ω(〈x, x〉) ω( 〈x, y〉 〈y, x〉 ) ‖〈y, y〉‖ since 〈y, y〉 6 ‖〈y, y〉‖.

It follows (also when ω( 〈x, y〉 〈y, x〉 ) = 0), that

ω( 〈x, y〉 〈y, x〉 ) 6 ‖〈y, y〉‖ ω(〈x, x〉),

and so we’re done. �

IXExercise Let X be a pre-Hilbert A -module. Verify that

1. ‖x‖ = ‖〈x, x〉‖1/2 defines a norm ‖ · ‖ on X, and

2. ‖xb‖ 6 ‖x‖ ‖b‖ and ‖〈x, y〉‖ 6 ‖x‖ ‖y‖ for all x, y ∈ X and b ∈ A .

XLemma For a linear map T : X → Y between pre-Hilbert A -modules, and
B > 0, the following are equivalent.

1. ‖Tx‖ 6 B ‖x‖ for all x ∈ X (that is, T is bounded by B);

2. ‖〈y, Tx〉‖ 6 B ‖y‖‖x‖ for all x ∈ X, y ∈ Y .

Moreover, if T is adjoinable, and bounded, then ‖T ∗‖ = ‖T‖.
XIProof If ‖Tx‖ 6 B‖x‖ for all x ∈ X, then T is bounded, ‖T‖ 6 B, and therefore

‖〈y, Tx〉‖ 6 ‖y‖ ‖Tx‖ 6 B‖y‖‖x‖ for all x ∈ X and y ∈ Y using VI.

On the other hand, if 2 holds, and x ∈ X is given, then we have ‖Tx‖2 =
‖〈Tx, Tx〉‖ 6 B ‖Tx‖‖x‖, entailing ‖Tx‖ 6 B‖x‖ (also when ‖Tx‖ = 0).

If T is adjoinable, and bounded, then ‖〈x, T ∗y〉‖ = ‖〈y, Tx〉‖ 6 ‖T‖‖y‖‖x‖
for all x ∈ X, y ∈ Y , so ‖T ∗‖ 6 ‖T‖, giving us that T ∗ is bounded. Since by a
similar reasoning ‖T‖ 6 ‖T ∗‖, we get ‖T‖ = ‖T ∗‖. �

XIIExercise Show that ‖T ∗T‖ = ‖T‖2 for every adjoinable bounded map T on a
pre-Hilbert A -module. (Hint: adapt the proof of 4XVI.)
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XIII Proposition The adjoinable bounded module maps on a Hilbert A -module form
a C∗-algebra Ba(X) with composition as multiplication, adjoint as involution,
and the operator norm as norm.

XIV Proof Considering 4VII and XII, the only thing that remains to be shown is
that Ba(X) is closed (with respect to the operator norm) in the set of all
bounded linear maps B(X). So let T : X → X be a bounded linear map which
is the limit of a sequence T1, T2, . . . of adjoinable bounded module maps.

To see that T has an adjoint, note that ‖T ∗n − T ∗m‖ = ‖(Tn − Tm)∗‖ =
‖Tn − Tm‖ for all n,m, and so T ∗1 , T

∗
2 , . . . is a Cauchy sequence, and converges

to some bounded operator S on X. Since for x, y ∈ X and n,

‖〈Sx, y〉 − 〈x, Ty〉‖ 6 ‖〈(S − T ∗n)x, y〉‖ + ‖〈x, (Tn − T )y〉‖
6 ‖S − T ∗n‖‖x‖‖y‖ + ‖Tn − T‖‖x‖‖y‖,

we see that 〈Sx, y〉 = 〈x, Ty〉, so S is the adjoint of T , and T is adjoinable. �

XV Exercise Let X be a Hilbert A -module. Show that the vector states of Ba(X)
are order separating (see 21 II). Conclude that for an adjoinable operator T on X

1. T is self-adjoint iff 〈x, Tx〉 is self-adjoint for all x ∈ (X)1;

2. 0 6 T iff 0 6 〈x, Tx〉 for all x ∈ (X)1;

3. ‖T‖ = supx∈(X)1
‖ 〈x, Tx〉 ‖ when T is self-adjoint.

(Hint: adapt the proofs of 25 III and 25V.)

XVI Corollary The operator T ∗T is positive in Ba(X) for every adjoinable opera-
tor T : X → Y between Hilbert A -modules.

XVII Proof 〈x, T ∗Tx〉 = 〈Tx, Tx〉 > 0 for all x ∈ X, and so T ∗T > 0 by 25V. �

33 Exercise Let us consider matrices over a C∗-algebra A .

1. Show that every N × M -matrix A (over A ) gives a bounded module
map A : A N → A M via A(a1, . . . , aN ) = A(a1, . . . , aN ), which is adjoint
to A∗ (where A∗ = (A∗ji)ij is conjugate transpose).

2. Show that A 7→ A gives a linear bijection between the vector space of N ×
M -matrices over A and the vector space of adjoinable bounded module
maps Ba(A N ,A M ).

3. Show that A ◦B = AB when A is an N ×M and B an M ×K matrix.



4. Conclude that the vector space MNA of N ×N -matrices over A is a C∗-
algebra with matrix multiplication (as multiplication), conjugate trans-
pose as involution, and the operator norm (as norm, so ‖A‖ = ‖A‖).

IIExercise Let us describe the positive N ×N matrices over a C∗-algebras A .

1. Show that an N ×N matrix A over A is positive iff 0 6
∑
i,j a

∗
iAijaj for

all a1, . . . , aN ∈ A . (Hint: use 25 III.)

2. Show that the matrix ( 〈xi, xj〉 )ij is positive for all vectors x1, . . . , xN
from a pre-Hilbert A -module X.

3. Show that the matrix (a∗i aj)ij is positive for all a1, . . . , aN ∈ A .

IIIExercise Let f : A → B be a linear map between C∗-algebras.

1. Show that applying f entry-wise to a N × N matrix A over A (yield-
ing the matrix (f(Aij))ij over B) gives a linear map, which we’ll denote
by MNf : MNA →MNB.

2. The mapMNf inherits some traits of f : show that if f is unital, thenMNf
unital; if f is multiplicative, then MNf is multiplicative; and if f is invo-
lution preserving, then so is MNf .

3. However, show that Mnf need not be positive when f is positive, and
that Mnf need not be bounded, when f is.

34Let us briefly return to the completely positive maps (defined in 10 II), to show
that a map f between C∗-algebras is completely positive precisely when MNf
is positive for all N , and to give some examples of completely positive maps.

We also prove two lemmas stating special properties of completely positive
maps (setting them apart from plain positive maps), that’ll come in very handy
later on. The first one is a variation on Cauchy–Schwarz (XIV), and the second
one concerns the points at which a cpu-map is multiplicative (XVIII).

Completely positive maps are often touted as a good models for quantum
processes (over plain positive maps) with an argument involving the tensor
product, and while we agree, we submit that the absence of analogues of XIV
and XVIII for positive maps is already enough to make complete positivity in-
dispensable.

..32–34..



II Lemma For a linear map f : A → B between C∗-algebras, and natural num-
ber N , the following are equivalent.

1. MNf : MNA →MNB is positive;

2.
∑
ij b
∗
i f(a∗i aj)bj > 0 for all a ≡ (a1, . . . , aN ) ∈ A N and b ∈ BN ;

3. the matrix ( f(a∗i aj) )ij is positive in MNB for all a ∈ A N .

III Proof Recall thatMNf is positive iff (MNf)(C) is positive for all C ∈ (MNA )+.
The trick is to note that such C can be written as C ≡ A∗A for some A ∈MNA ,
and thus as C ≡ (aT1 )∗aT1 +· · ·+(aTN )∗aTN , where an ≡ (An1, . . . , AnN ) is the n-th
row of A. Hence MNf is positive iff (MNf)( (aT )∗aT ) ≡ ( f(a∗i aj) )i,j is positive
for all tuples a ∈ A N . Since B ∈MNB is positive iff 〈b, Bb〉 > 0 for all b ∈ BN ,
we conclude: MNf is positive iff 0 6

〈
b, (MNf)( (aT )∗aT )b

〉
=
∑
ij b
∗
i f(a∗i aj)bj

for all a ∈ A N and b ∈ BN . �

IV Exercise Conclude from II that a linear map f between C∗-algebras is com-

pletely positive iff MNf is positive for all N iff for all N and a ∈ A N the matrix
( f(a∗i aj) )i,j is positive in MNB.

Deduce that the composition of cp-maps is completely positive.
Show that a mi-map f is completely positive. (Hint: MNf is a mi-map too.)

V Exercise Show that given a C∗-algebra A , the following maps are completely
positive:

1. b 7→ a∗ba : A → A for every a ∈ A ;

2. T 7→ S∗TS : Ba(X) → Ba(Y ) for every adjoinable operator S : Y → X
between Hilbert A -modules;

3. T 7→ 〈x, Tx〉 ,Ba(X)→ A for every element x of a Hilbert A -module X.

VI Exercise Show that the product of a family of C∗-algebras (Ai)i in the cate-
gory C∗cpsu (see 10 II) is given by

⊕
i Ai with the same projections as in 18 I.

Show that the equaliser of miu-maps f, g : A → B in C∗cpsu is the inclusion
of the C∗-subalgebra { a ∈ A : f(a) = g(a) } of A into A .

VII Lemma Let A be a commutative C∗-algebra, and let N be a natural num-
ber. The set of matrices of the form

∑
k akBk, where a1, . . . , aK ∈ A+ and

B1, . . . , BK ∈MN (C)+, is norm dense in (MNA )+.



VIIIProof Since A is isomorphic to C(X) for some compact Hausdorff space X
(by 27XXVII)), we may as well assume that A ≡ C(X).

Let A ∈ MN (C(X))+ and ε > 0 be given. We’re looking for g1, . . . , gK ∈
C(X)+ and B1, . . . , BK ∈ (MN )+ with ‖A −

∑
k gkBk‖ 6 ε. Since A(x) :=

(Aij(x))ij gives a continuous map X → MN , the sets Ux = { y ∈ X : ‖A(x) −
A(y)‖ < ε } form an open cover of X. By compactness of X this cover has a
finite subcover; there are x1, . . . , xK ∈ X with Ux1 ∪ · · · ∪ UxK = X.

Let y ∈ X be given. Since y ∈ Uxk for some k, there is, by complete
regularity of X, a function fy ∈ (C(X))+ with fy(y) > 0 and supp(fy) ⊆ Uxk .
Since the open subsets supp(fy) cover X there are (by compactness of X) finitely
many y1, . . . yL with X = supp(fy1) ∪ · · · ∪ supp(fyL), and so

∑
` fy` > 0. Let

us group together the fy`s: pick for each ` an k` with supp(fy`) ⊆ Uxk` , and
let gk :=

∑
{f` : k` = k}. Then gk ∈ (C(X))+, supp(gk) ⊆ Uk, and

∑
k gk > 0.

Upon replacing gk with (
∑
` g`)

−1gk if necessary, we see that
∑
k gk = 1.

Since supp(gk) ⊆ Uxk , we have −ε 6 A(x)−A(xk) 6 ε for all x ∈ supp(gk),
and so −gk(x)ε 6 gk(x)A(x) − gk(x)A(xk) 6 gk(x)ε for all x ∈ X, that is,
−gkε 6 gkA − gkA(xk) 6 gkε. Summing yields −ε 6 A −

∑
k gkA(xk) 6 ε,

and so ‖A−
∑
k gkA(xk)‖ 6 ε. �

IXProposition Let f : A → B be a positive map between C∗-algebras. If either A
or B is commutative, then f is completely positive.

XProof Suppose that B is commutative, and let a1, . . . , aN ∈ A , b1, . . . , bN ∈ B
be given. We must show that

∑
i,j b
∗
i f(a∗i aj)bj is positive. This follows from

the observation that ω(
∑
i,j b
∗
i f(a∗i aj)bj ) = ω(f(

∑
i,j(aiω(bi))

∗ ajω(bj) )) > 0
for every ω ∈ sp(A ).

XISuppose instead that A is commutative, and let A ∈ (MNA )+ be given for some
natural number N . We must show that (MNf)(A) is positive in MNB. By VII,
the problem reduces to the case that A ≡ aB where a ∈ A+ and B ∈ (MN )+.
Since (MNf)(aB) ≡ f(a)B is clearly positive in MNB, we are done. �

XIILemma For a positive matrix A ≡
( p a
a∗ q

)
over a C∗-algebra A we have

a∗a 6 ‖p‖q and aa∗ 6 ‖q‖p.

In particular, if p = 0 or q = 0, then a = a∗ = 0.

XIIIProof Since (x, y) 7→ 〈x,Ay〉 gives an A -valued inner product on A 2,

aa∗ = 〈 ( 1
0 ) , A ( 0

1 ) 〉 〈 ( 0
1 ) , A ( 1

0 ) 〉
6 ‖〈 ( 0

1 ) , A ( 0
1 )〉‖ 〈 ( 1

0 ) , A ( 1
0 ) 〉 = ‖q‖ p
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by Cauchy–Schwarz (see 32VI).
By a similar reasoning, we get a∗a 6 ‖p‖q. �

XIV Lemma We have f(a∗b)f(b∗a) 6 ‖f(b∗b)‖ f(a∗a) for every p-map f : A → B
between C∗-algebras and a, b ∈ A , provided that M2f is positive.

XV Proof Since writing x ≡ (a, b) ∈ A 2, the 2 × 2 matrix (xT )∗xT ≡
(
a∗a a∗b
b∗a b∗b

)
in M2A is positive, the 2 × 2 matrix T :=

( f(a∗a) f(a∗b)
f(b∗a) f(b∗b)

)
in M2B is positive.

Thus we get f(a∗b)f(b∗a) 6 ‖f(b∗b)‖ f(a∗a) by XII. �

XVI Corollary ‖f‖ = ‖f(1)‖ for every cp-map f : A → B between C∗-algebras.

XVII Proof Let a ∈ A be given. It suffices to show that ‖f(a)‖ 6 ‖f(1)‖ ‖a‖ so
that ‖f‖ 6 ‖f(1)‖, because we already know that ‖f(1)‖ 6 ‖f‖ ‖1‖ = ‖f‖.
Since ‖f(a∗a)‖ 6 ‖f(1)‖ ‖a∗a‖ by 20 II, we have ‖f(a)‖2 = ‖f(a)∗f(a)‖ =
‖f(a∗1)f(1∗a)‖ 6 ‖f(1∗1)‖ ‖f(a∗a)‖ 6 ‖f(1)‖ ‖f(1)‖‖a∗a‖ = ‖f(1)‖2‖a‖2 by XIV,
and so ‖f(a)‖ 6 ‖f(1)‖ ‖a‖. �

XVIII Lemma (Choi [10]) We have f(a)∗f(a) 6 f(a∗a) for every cpu-map f : A → B
between C∗-algebras, and a ∈ A . Moreover, if f(a∗a) = f(a)∗f(a) for some a ∈
A , then f(ba) = f(b)f(a) for all b ∈ A .

XIX Proof By XIV we have f(a)∗f(a) = f(a∗1)f(1∗a) 6 ‖f(1∗1)‖f(a∗a) = f(a∗a),
where we used that f is unital, viz. f(1) = 1.

Let a, b ∈ A be given, and assume that f(a∗a) = f(a)∗f(a). Instead
of f(ba) = f(b)f(a) we’ll prove that f(a∗b) = f(a)∗f(b) (but this is nothing
more than a reformulation). Since M2f is cp, we have, writing A ≡

(
a b
0 0

)
,(

f(a)∗f(a) f(a)∗f(b)
f(b)∗f(a) f(b)∗f(b)

)
= (M2f)(A)∗ (M2f)(A)

6 (M2f)(A∗A) =

(
f(a∗a) f(a∗b)
f(b∗a) f(b∗b)

)
.

Hence (using that f(a∗a) = f(a)∗f(a)) the following matrix is positive.(
0 f(a∗b)− f(a)∗f(b)

f(b∗a)− f(b)∗f(a) f(b∗b)− f(b)∗f(b)

)
But then by XII we have f(a∗b)− f(a)∗f(b) = 0. �

2.6 Towards von Neumann Algebras

35 Let us work towards the subject of the next chapter, von Neumann algebras, by



pointing out two special properties of B(H ) on which the definition of a von
Neumann algebra is based, namely that

1. any norm-bounded directed subset of self-adjoint operators on H has a
supremum (in B(H )R), and

2. all vector functionals 〈x, ( · )x〉 : B(H )→ C preserve these suprema.

We’ll end the chapter by showing in 39 IX that every functional on B(H ) that
preserves the aforementioned suprema is a (possibly infinite) sum of vector func-
tionals.

2.6.1 Directed Suprema

IITheorem (Uniform Boundedness) A set F of bounded linear maps from a
complete normed vector space X to a normed vector space Y is bounded in the
sense that supT∈F ‖T‖ <∞ provided that supT∈F ‖Tx‖ <∞ for all x ∈X .

IIIProof Based on [66].

IVLet r > 0 and T ∈ F be given. Writing Br(x) = { y ∈ X : ‖x − y‖ 6 r }
for the ball around x ∈ X with radius r, note that r‖T‖ = supξ∈Br(0) ‖Tξ‖
almost by definition of the operator norm. We will need the less obvious fact
that r‖T‖ 6 supξ∈Br(x) ‖Tξ‖ for every x ∈X .

To see why this is true, note that for ξ ∈ Br(0) either ‖Tξ‖ 6 ‖T (x + ξ)‖
or ‖Tξ‖ 6 ‖T (x− ξ)‖, because we would otherwise have 2‖Tξ‖ = ‖T (x+ ξ)−
T (x−ξ)‖ 6 ‖T (x+ξ)‖+‖T (x−ξ)‖ < 2‖Tξ‖. Hence r‖T‖ = supξ∈Br(0) ‖Tξ‖ 6
supξ∈Br(x) ‖Tξ‖.

VSuppose towards a contradiction that supT∈F ‖T‖ = ∞, and pick T1, T2, . . .
with ‖Tn‖ > n3n. Using IV, choose x1, x2, . . . in X with ‖xn − xn−1‖ 6 3−n

and ‖Tnxn‖ > 2
33−n‖Tn‖, so that (xn)n is a Cauchy sequence, and therefore

converges to some x ∈X . Note that ‖x−xn‖ 6 1
23−n (because

∑∞
k=0 3−k = 3

2 ),
and so ‖Tnx‖ > ‖Tnxn‖ − ‖Tn(xn − x)‖ > 2

33−n‖Tn‖ − 1
23−n‖Tn‖ > 1

6n, which
contradicts the assumption that supT∈F ‖Tx‖ <∞. �

VITheorem Let T : X → Y be an adjoinable map between pre-Hilbert A -
modules. If either X or Y is complete, then T and T ∗ are bounded.

VIIProof We may assume without loss of generality that X is complete (by swap-
ping T for T ∗ and X with Y if necessary).
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Note that for every y ∈ Y , the linear map 〈y, T · 〉 ≡ 〈T ∗y, · 〉 : Y → A is
bounded, because ‖〈T ∗y, x〉‖ 6 ‖T ∗y‖‖x‖ for all x ∈ X (see 32VI).

Since on the other hand, ‖〈y, Tx〉‖ 6 ‖y‖ ‖Tx‖ 6 ‖Tx‖ for all x ∈ X
and y ∈ Y with ‖y‖ 6 1, we have sup‖y‖61 ‖ 〈y, Tx〉 ‖ 6 ‖Tx‖ <∞ for all x ∈ X,
and thus B := sup‖y‖61 ‖ 〈y, T · 〉 ‖ <∞ by II.

It follows that ‖ 〈y, Tx〉 ‖ 6 B‖y‖‖x‖ for all y ∈ Y and x ∈ X, and thus T
and T ∗ are bounded, by 32X. �

VIII Remark As a special case of the preceding theorem we get the fact, known as the
Hellinger–Toeplitz theorem, that every symmetric operator on a Hilbert space
is bounded.

IX Example The condition that either X or Y be complete may not be dropped: the
linear map T : c00 → c00 given by Tα = (nαn)n for α ∈ c00 is self-adjoint, but
not bounded, because T maps (1, 1

2 , . . . ,
1
n , 0, 0, . . . ) having 2-norm below π√

6
to

(1, 1, . . . , 1, 0, 0, . . . ), which has 2-norm equal to
√
n.

36 Definition A Hilbert A -module X is self-dual when every bounded module
map r : X → A is of the form r ≡ 〈y, ( · )〉 for some y ∈ X.

II Example By Riesz’ representation theorem (5 IX) every Hilbert space is self-
dual.

III Exercise Show that given a C∗-algebra A the Hilbert A -module A N of N -
tuples is self dual.

IV Definition Let us say that a (bounded) form on Hilbert A -modules X and Y
is a map [ · , · ] : X × Y → A such that [x, · ] : Y → A and [ · , y]∗ : X → A are
(bounded) module maps for all x ∈ X and y ∈ Y .

V Proposition For every bounded form [ · , · ] : X×Y → A on self-dual Hilbert A -
modules X and Y there is a unique adjoinable bounded module map T : X → Y .
with [x, y] ≡ 〈Tx, y〉 for all x ∈ X and y ∈ Y .

VI Proof Let x ∈ X be given. Since [x, · ] : Y → A is a a bounded module map,
and Y is self-dual, there is a unique Tx ∈ Y with [x, y] = 〈Tx, y〉 for all y ∈ Y ,
giving a map T : X → Y . For a similar reason we get a map S : Y → X with
〈Sy, x〉 = [x, y]∗ for all x ∈ X and y ∈ Y . Since S and T are clearly adjoint,
they are bounded module maps by 35VI. �

37 Another consequence of 35 II is this:

II Proposition Given a net (yα)α in a Hilbert space H for which 〈yα, x〉 is Cauchy



and bounded for every x ∈H , there is a unique y ∈H with 〈y, x〉 = limα 〈yα, x〉
for all y ∈H .

IIIProof To obtain x, we want to apply Riesz’ representation theorem (5 IX) to the
linear map f : H → C defined by f(x) = limα 〈yα, x〉, but must first show that f
is bounded. For this it suffices to show that supα ‖〈yα, ( · )〉‖ < ∞, and this
follows by 35 II from the assumption that supα |〈yα, x〉| <∞ for every x ∈H .

By Riesz’ representation theorem (5 IX), there is a unique x ∈ H with
〈y, x〉 = f(x) ≡ limα 〈yα, x〉 for all x ∈H , and so we’re done. �

IVRemark The condition in II that the net ( 〈yα, x〉 )α be bounded for every x may
not be omitted (even though ( 〈yα, x〉 )α being Cauchy is eventually bounded).

To see this, consider a linear map f : H → C on a Hilbert space H which is
not bounded. We claim that there is a net (yα)α in H with f(x) = limα 〈yα, x〉
for all x ∈ H , and so there can be no y ∈ H with 〈y, x〉 = limα 〈yα, x〉 for
all x ∈H , because that would imply that f is bounded.

To create this net, note that f is bounded on the span 〈F 〉 of every finite
subset F ≡ {x1, . . . , xn} of vectors from H , and so by Riesz’ representation
theorem 5 IX applied to f restricted to closed subspace 〈F 〉 of H there is a
unique yF ∈ 〈F 〉 such that f(x) = 〈yF , x〉 for all x ∈ 〈F 〉.

These yF ’s form a net in H (when we order the finite subsets F of H
by inclusion), which approximates f in the sense that f(x) = limF 〈yF , x〉 for
every x ∈H , (because f(x) = 〈yF , x〉 for every F with {x} ⊆ F ).

VDefinition Let H be a Hilbert space.

1. The weak operator topology (WOT) on B(H ) is the least topology with
respect to which T 7→ 〈x, Tx〉 , B(H )→ C is continuous for every x ∈H .

So a net (Tα)α converges to T in B(H ) with respect to the weak operator
topology iff 〈x, Tαx〉 → 〈x, Tx〉 as α→∞ for all x ∈H .

2. The strong operator topology (SOT) on B(H ) is the least topology with
respect to which T 7→ ‖Tx‖ ≡ 〈x, T ∗Tx〉1/2 is continuous for every x ∈H .

So a net (Tα)α converges to T in B(H ) with respect to the strong operator
topology iff ‖Tαx− Tx‖ → 0 as α→∞ for all x ∈H .

VIRemark Although we’ll only make use of the weak operator topology we have
nonetheless included the definition of the strong operator topology here for
comparison with the ultrastrong topology that appears in the next chapter.
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VII Lemma Let (Tα)α be a net of bounded operators on a Hilbert space H such
that ( 〈x, Tαx〉 ) is Cauchy and bounded for every x ∈H .

Then (Tα)α WOT-converges to some bounded operator T in B(H ).

VIII Proof Let x, y ∈H be given. Since by a simple computation

〈y, Tαx〉 = 1
4

∑3
k=0 i

k
〈
iky + x, Tα(iky + x)

〉
,

( 〈y, Tαx〉 )α is bounded for every y ∈ H , and so by II there is Tx ∈ H with
〈y, Tx〉 = limα 〈y, Tαx〉 for all y ∈ H , giving us a linear map T : H → H . It
is clear that (Tα)α WOT-converges to T , provided that T is bounded.

So to complete the proof, we must show that T is bounded, and we’ll do this
by showing that T has an adjoint (see 35VI). Note that 〈x, T ∗αx〉 = 〈x, Tαx〉 is
Cauchy and bounded (with α running), so by a similar reasoning as before (but
with T ∗α instead of Tα) we get a map S : H →H with 〈x, Sy〉 = limα 〈x, T ∗αy〉
for all x, y ∈H , which will be adjoint to T , which is therefore bounded. �

IX Proposition Let H be a Hilbert space, and D an upwards directed subset
of B(H )R with supT∈D 〈x, Tx〉 <∞ for all x ∈H . Then

1. (T )T∈D converges in the weak operator topology to some T ′ in (B(H ))R,

2. T ′ is the supremum of D in (B(H ))R, and

3. 〈x, T ′x〉 = supT∈D 〈x, Tx〉 for all x ∈H .

X Proof Let x ∈ H . Since 〈x, ( · )x〉 : B(H ) → C is positive we see that
(〈x, Tx〉)T∈D is an increasing net in R, bounded from above (by assumption),
and therefore converges to supT∈D 〈x, Tx〉. In particular, (T )T∈D is WOT-
Cauchy, and “WOT-bounded”, and thus (by VII) WOT-converges to some self-
adjoint T ′ from B(H ).

Since ( 〈x, Tx〉 )T∈D converges both to 〈x, T ′x〉, and to supT∈D 〈x, Tx〉, we
conclude that 〈x, T ′x〉 = supT∈D 〈x, Tx〉 for every x ∈ H . In particular,
〈x, Tx〉 6 〈x, T ′x〉 for all x ∈H and T ∈ D , and thus T 6 T ′ for all T ∈ D .

Let S be a self-adjoint bounded operator on H with T 6 S for all T ∈ D .
To prove that T ′ is the supremum of D , we must show that T ′ 6 S. Let x ∈H
be given. Since 〈x, Tx〉 6 〈x, Sx〉 for each T ∈ D (because T 6 S), we have
〈x, T ′x〉 ≡ supT∈D 〈x, Tx〉 6 〈x, Sx〉, and therefore T ′ 6 S by 25V. �

XI Definition Let H be a Hilbert space. The supremum of a (norm) bounded
directed subset D in (B(H ))R (which exists by IX) is denoted by

∨
D .



2.6.2 Normal Functionals

38Definition Given a Hilbert space H a p-map ω : B(H )→ C is called normal
when ω(

∨
D) =

∨
T∈D ω(T ) for every bounded directed subset D of B(H )R.

IIExample All vector functionals 〈x, ( · )x〉 are normal by 37 IX.

IIIExercise To show that a positive linear functional is normal, it suffices to show
that it preserves directed suprema of effects: show that given a Hilbert space H
a positive map ω : B(H ) → C is normal provided that ω(

∨
D) =

∨
T∈D ω(T )

for every directed subset D of [0, 1]B(H ).

IVLemma Every sequence x1, x2, . . . in a Hilbert space H with
∑
n ‖xn‖2 < ∞

gives a np-map ω : B(H )→ C defined by ω(T ) =
∑
n 〈xn, Txn〉.

VProof Given T ∈ B(H ) we have |〈xn, Txn〉| 6 ‖xn‖2‖T‖ by Cauchy–Schwarz
(4XV), so

∑
n |〈xn, Txn〉| 6 ‖T‖

∑
n ‖xn‖2, which means that

∑
n 〈xn, Txn〉

converges, and so we may define ω as above.
It is easy to see that ω is linear and positive, so we’ll only show that ω

is normal. We must prove that ω(
∨

D) =
∨
T∈D ω(T ) for every bounded di-

rected subset of (B(H ))R. By III we may assume without loss of generality
that D ⊆ [0, 1]B(H ). This has the benefit that 〈xn, Txn〉 is positive for all n
and T ∈ D , so that their sum (over n) is given by a supremum over partial

sums, viz.
∑
n 〈xn, Txn〉 =

∨
N

∑N
n=1 〈xn, Txn〉. Completing the proof is now

simply a matter of interchanging suprema,∨
T∈D ω(T ) =

∨
T∈D

∨
N

∑N
n=1 〈xn, Txn〉

=
∨
N

∨
T∈D

∑N
n=1 〈xn, Txn〉

=
∨
N

∑N
n=1 〈xn, (

∨
D)xn〉 = ω(

∨
D),

where we used that
∑N
n=1 〈xn, ( · )xn〉 is normal. �

VIExercise The following observations regarding a net (xα)α in a Hilbert space H
will be useful later on.

1. Show that
∑
α ‖xα‖2 < ∞ if and only if

∑
α 〈xα, ( · )xα〉 converges with

respect to the operator norm to some bounded functional on B(H ).

2. Given some x ∈H , show that xα converges to x if and only if 〈xα, ( · )xα〉
operator-norm converges to 〈x, ( · )x〉.
(For the “if” part it may be convenient to first prove that 〈xα, x〉 → 〈x, x〉
by considering the bounded operator |x〉〈x| on B(H ).)
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39 The final project of this chapter is to show that each normal positive func-
tional ω on a B(H ) is of the form ω ≡

∑∞
n=0 〈xn, ( · )xn〉 for some x1, x2, . . .

with
∑
n ‖xn‖2 <∞. For this we’ll need some more nuggets from the theory of

Hilbert spaces.

II Definition A subset E of a Hilbert space is called orthonormal if 〈e, e′〉 = 0 for
all e, e′ ∈ E with e 6= e′, and 〈e, e〉 = 1 for all e ∈ E . We say that E is maximal
when E is maximal among all orthonormal subsets of H ordered by inclusion,
and in that case we call E an orthonormal basis for H for reasons that will be
become clear in IV below.

III Remark Clearly, by Zorn’s lemma, each Hilbert space has an orthonormal basis.

IV Proposition Given an orthonormal subset E of a Hilbert space H , and x ∈H ,

1. (Bessel’s inequality)
∑
e∈E |〈e, x〉|

2 6 ‖x‖2;

2.
∑
e∈E 〈e, x〉 e converges in H ,

3.
∑
e∈E 〈e, x〉 e = x if E is maximal, and

4. (Parseval’s identity)
∑
e∈E |〈e, x〉|

2
= ‖x‖2 if E is maximal.

V Proof 1 Since for finite subset F of E we have 0 6 ‖x −
∑
e∈F 〈e, x〉 e‖2 =

‖x‖2−2
∑
e∈F 〈e, x〉 〈x, e〉+

∑
e,e′∈F 〈x, e′〉 〈e′, e〉 〈e, x〉 = ‖x‖2−

∑
e∈F |〈e, x〉|

2
,

and so
∑
e∈F |〈e, x〉|

2 6 ‖x‖2, we get
∑
e∈E |〈e, x〉|

2 6 ‖x‖2.

2 From the observation that ‖
∑
e∈F 〈e, x〉 e‖2 =

∑
e∈F |〈e, x〉|

2
for any fi-

nite F ⊆ E , and the fact that
∑
e∈E |〈e, x〉|

2
converges (by the previous point),

one deduces that (
∑
e∈F 〈e, x〉 e)F is Cauchy, and so

∑
e∈E 〈e, x〉 e converges.

3 Writing y :=
∑
e∈E 〈e, x〉 e we must show that x = y. If it were not so,

if x 6= y, then e′ := ‖x − y‖−1(x − y) satisfies 〈e′, e′〉 = 1 and 〈e′, e〉 = 0 for
all e ∈ E , and so may be added to E to yield an orthonormal basis E ∪ {e′}
extending E contradicting E s maximality.

4 Finally, ‖x‖2 = 〈x, x〉 =
∑
e,e′∈E 〈x, e′〉 〈e′, e〉 〈e, x〉 =

∑
e∈E |〈e, x〉|

2
. �

VI Exercise Let E be an orthonormal basis of a Hilbert space H .

1. Show that
∑
e∈E |e〉〈e| converges to 1 in the weak operator topology.



2. Show that
∑
e∈E |e〉〈e| = 1 also in the sense that the directed set of partial

sums
∑
e∈F |e〉〈e|, where F is a finite subset of E , has 1 as its supremum.

3. Conclude that ω(1) =
∑
e∈E ω(|e〉〈e|) for every np-map ω : B(H )→ C.

VIILemma Given a Hilbert space H with orthonormal basis E , we have

ω(A) =
∑
e,e′∈E

〈e,Ae′〉 ω( |e〉〈e′| ).

for every normal p-map ω : B(H )→ C and A ∈ B(H ).

VIIIProof Let F be a finite subset of E , and write P =
∑
e∈F |e〉〈e|. Since

PAP =
∑
e,e′∈F 〈e,Ae′〉 |e〉〈e′| it suffices to show that ω(A − PAP ) vanishes

as F increases. Note that P ∗P = P and (P⊥)∗P⊥ = P⊥. Further, since
‖P‖ 6 1, and A− PAP = P⊥A+ PAP⊥, we have, by Kadison’s inequality,

|ω(A− PAP )| 6
∣∣ω(P⊥A)

∣∣ +
∣∣ω(PAP⊥)

∣∣
6 ω(P⊥)

1/2 ω(A∗A)
1/2 + ω(PAA∗P )

1/2 ω(P⊥)
1/2

6 2‖A‖ω(1)
1/2 ω(P⊥)

1/2.

But since
∑
e∈E ω(|e〉〈e|) = ω(1) by VI we see that ω(P⊥)→ 0 as F →∞. �

IXTheorem Let H be a Hilbert space. Every normal p-map ω : B(H ) → C is
of the form ω =

∑
n 〈xn, ( · )xn〉 where x1, x2, . . . ∈H with

∑
n ‖xn‖2 = ‖ω‖.

XProof By 36V there is a unique % ∈ B(H ) with ω(|y〉〈x|) = 〈x, %y〉 for all x, y ∈
H , because (x, y) 7→ ω(|y〉〈x|), H ×H → C is a bounded form in the sense
of 36 IV. Note that % is positive by 25V because 〈x, %x〉 = ω(|x〉〈x|) > 0 for
all x ∈ H . Now, let E be an orthonormal basis for H . Since ω is normal, VI
gives us ω(1) =

∑
e∈E ω(|e〉〈e|) =

∑
e∈E 〈e, %e〉 =

∑
e∈E ‖

√
%e‖2, so that ω′ :=∑

e∈E

〈√
%e, ( · )√%e

〉
defines a normal positive functional on B(H ) by 38VI.

Thus, we are done if can show that ω′ = ω, (because
√
%e is non-zero for at

most countably many e ∈ E ). To this end, note that ω(|x〉〈x|) =
〈√

%x,
√
%x
〉

=∑
e∈E

〈√
%x, e

〉 〈
e,
√
%x
〉

=
∑
e∈E

〈√
%e, |x〉〈x|√%e

〉
= ω′(|x〉〈x|) for each x ∈

H , and so ω(|x〉〈y|) = ω′(|x〉〈y|) for all x, y ∈H by polarization, and thus ω =
ω′ by VII. �

40In this chapter we’ve studied the algebraic structure of the space B(H ) of
bounded operators on a Hilbert space H abstractly via the notion of the C∗-
algebra. We’ve seen not only that every C∗-algebra is miu-isomorphic to a
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C∗-subalgebra of such a B(H ) (in 30XIV), but also that any commutative C∗-
algebra is miu-isomorphic to the space C(X) of continuous functions on some
compact Hausdorff space (in 27XXVII). But there’s more to B(H ) than just
being a C∗-algebra: it has the two additional properties of having suprema of
bounded directed subsets (see 37 IX), and having a faithful collection of normal
functionals (viz. the vector functionals, 25 III). This leads us to the study of von
Neumann algebras—the topic of the next chapter.



Chapter 3

Von Neumann Algebras

41We have arrived at the main subject of this thesis, the special class of C∗-
algebras called von Neumann algebras (see definition 42 below) that are char-
acterised by the existence of certain directed suprema and an abundance of
functionals that preserve these suprema. While all C∗-algebras and the cpsu-
maps between them may perhaps serve as models for quantum data types and
processes, respectively, we focus for the purposes of this thesis our attention on
the subcategory W∗

cpsu of von Neumann algebras and the cpsu-maps between
them that preserve these suprema (called normal maps, see 44XV), because

1. W∗
cpsu is a model of the quantum lambda calculus (in a way that C∗cpsu is

not, see 125X), and

2. we were able to axiomatise the sequential product (b 7→
√
ab
√
a) in W∗

cpsu

(but not in C∗cpsu) see 106 I.

Both these are reserved for the next chapter; in this chapter we’ll (re)develop
the theory we needed to prove them.

The archetypal von Neumann algebra is the C∗-algebra B(H ) of bounded
operators on a Hilbert space H . In fact, the original [50,70] and common [12,43]
definition of a von Neumann algebra is a C∗-subalgebra A of a B(H ) that is
closed in a “suitable topology” such as the strong or weak operator topology
(see 37V). Most authors make the distinction between such rings of operators
(called von Neumann algebras) and the C∗-algebras miu-isomorphic to them
(called W ∗-algebras), but we won’t bother and call them all von Neumann
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algebras. Partly because it seems difficult to explain to someone picturing a
quantum data type the meaning of the weak operator topology and the Hilbert
space H , we’ll use Kadison’s characterisation [42] of von Neumann algebras
as C∗-algebras with a certain dcpo-structure (c.f. 37 IX) and sufficiently many
Scott-continuous functionals (c.f. 38 I) as our definition instead, see 42.

But we also use Kadison’s definition just to see to what extent the repre-
sentation of von Neumann algebras as rings of operators (see 48VIII) can be
avoided when erecting the basic theory. Instead we’ll put the directed suprema
and normal positive functionals on centre stage. All the while our treatment
doesn’t stray too far from the beaten path, and borrows many arguments from
the standard texts [43, 62]; but most of them had to be tweaked in places, and
some demanded a complete overhaul.

The material on von Neumann algebras is less tightly knit as the theory of
C∗-algebras, and so after the basics we deal with four topics more or less in
linear order (instead of intertwined.)

The great abundance of projections (elements p with p∗p = p) in von Neu-
mann algebras—a definite advantage over C∗-algebras—is the first topic. We’ll
see for example that the existence of norm bounded directed suprema in a von
Neumann algebra A allows us to show that there is a least projection dae above
any effect a from A given by dae =

∨
n a

1/2n (see 56 I); and also that any element
of a von Neumann algebra can be written as a norm limit of linear combina-
tions of projections (in 65 IV). Many a result about von Neumann algebras can
be proven by an appeal to projections.

The second topic concerns two topologies that are instrumental for the more
delicate results and constructions: the ultraweak topology induced by the normal
positive functionals ω : A → C, and the ultrastrong topology induced by the
associated seminorms ‖ · ‖ω (see 42). We’ll show among other things that a
von Neumann algebra is complete with respect to the ultrastrong topology and
bounded complete with respect to the ultraweak topology (see 77 I).

This completeness allows us to define, for example, for any pair a, b of
elements from a von Neumann algebra A with a∗a 6 b∗b an element a/b
with a = (a/b) b (see 81 I)—this is the third topic. Taking b =

√
a∗a we ob-

tain the famous polar decomposition a = (a/
√
a∗a)

√
a∗a (see 82 I, which is

usually proven for a bounded operator on a Hilbert space first).
The fourth, and final topic, is ultraweakly continuous functionals on a von

Neumann algebra: we’ll show in 90 II that any centre separating collection (21 II)
of normal positive functionals Ω on a von Neumann algebra completely deter-
mines the normal positive functionals, which will be important for the definition
of the tensor product of von Neumann algebras in the next chapter, see 108 II.



3.1 The Basics

3.1.1 Definition and Counterexamples

42Definition A C∗-algebra A is a von Neumann algebra when

1. every bounded directed subset D of self-adjoint elements of A (so D ⊆
AR) has a supremum

∨
D in AR, and

2. if a is a positive element of A with ω(a) = 0 for every normal (see below)
positive linear map ω : A → C, then a = 0.∗

IIA positive linear map ω : A → C is called normal if ω(
∨
D) =

∨
d∈D ω(d)

for every bounded directed subset of self-adjoint elements of D which has a
supremum

∨
D in AR.

IIIThe ultraweak topology on A is the least topology on A that makes all normal
positive linear maps ω : A → C continuous. The ultrastrong topology on A
is the least topology on A that makes a 7→ ω(a∗a) continuous for every np-
map ω : A → C.

IVRemark We work with the ultraweak and ultrastrong topology in tandem,
because neither is ideal, and they tend to be complementary: for example,
a 7→ a∗ is ultraweakly continuous but not ultrastrongly (see 43 II, point 4),
while a 7→ |a| is ultrastrongly continuous (see 74 III) but not ultraweakly (43 II,
point 6). This doesn’t prevent the ultraweak topology from being weaker than
the ultrastrong topology: a net that converges ultrastrongly converges ultra-
weakly as well, see 43 I. To see this, and when dealing with the ultrastrong
topology in general, it is useful to note that every np-functional ω on a von
Neumann algebra A gives rise to an inner product [a, b]ω = ω(a∗b) and semi-

norm ‖a‖ω = [a, a]
1/2
ω = ω(a∗a)1/2 (as in 30 II and 30 IV).

VExamples

1. C and {0} are clearly von Neumann algebras.

∗In other words, the collection of normal positive functionals should be faithful (see 21 II).
Interestingly, it’s already enough for the normal positive functionals to be centre separating,
but since we have encountered no example of a von Neumann algebra where it wasn’t already
clear that the normal positive functionals are faithful instead of just centre separating we did
not use this weaker albeit more complex condition.
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2. The C∗-algebra B(H ) of bounded operators on a Hilbert space H is
a von Neumann algebra: B(H ) has bounded directed suprema of self-
adjoint elements by 37 IX, and the vector states (and thus all normal func-
tionals) are order separating (and thus faithful) by 25 III.

3. The direct sum
⊕

i Ai (see 3V) of a family (Ai)i of von Neumann algebras
is itself a von Neumann algebra.

(While we’re not quite ready to define morphisms between von Neumann
algebras, we can already spoil that the direct sum gives the categorical
product of von Neumann algebras once we do, see 47 IV.)

4. A C∗-subalgebra B of a von Neumann algebra A is called a von Neumann
subalgebra (and is itself a von Neumann algebra) if for every bounded
directed subset D of self-adjoint elements from B we have

∨
D ∈ B

(where the supremum is taken in AR).

5. We’ll see in 65 III that given a subset S of a von Neumann algebra A the
set S� = { a ∈ A : ∀s ∈ S [ as = sa ] } called the commutant of S is a
von Neumann subalgebra of A when S is closed under involution.

6. We’ll see in 49 IV that the N×N -matrices over a von Neumann algebra A
form a von Neumann algebra.

7. We’ll see in 51 IX that the bounded measurable functions on a finite com-
plete measure space X (modulo the negligible ones) form a commutative
von Neumann algebra L∞(X).

43 Exercise Let A be a von Neumann algebra.

1. Show that |ω(a)| 6 ‖a‖ω‖ω‖1/2 for every np-map ω : A → C and a ∈ A .

2. Show that when a net (aα)α in A converges ultrastrongly to a ∈ A it
does so ultraweakly, too.

3. Show that an ultraweakly closed subset C of A is also ultrastrongly closed.

II Exercise We give some counterexamples in B(`2) to plausible propositions to
sharpen your understanding of the ultrastrong and ultraweak topologies, and
so that you may better appreciate the strange manoeuvres we’ll need to pull off
later on.



1. First some notation: given n,m ∈ N, we denote by |n〉〈m| the bounded
operator on `2 given by (|n〉〈m|)(f)(n) = f(m) and (|n〉〈m|)(f)(k) = 0
for k 6= n and f ∈ `2.

Verify the following computation rules, where k, `,m, n ∈ N.

(|n〉〈m|)∗ = |m〉〈n| , |n〉〈m| |`〉〈k| =

{
|n〉〈k| if m = `

0 otherwise

2. Show that
∨
N

∑N
n=0 |n〉〈n| = 1.

Conclude that ( |n〉〈n| )n converges ultrastrongly (and ultraweakly) to 0.

Thus ultrastrong (and ultraweak) convergence does not imply norm con-
vergence, which isn’t unexpected. But we also see that if a sequence (bn)n
converges ultrastrongly (or ultraweakly) to some b, then (‖bn‖)n doesn’t
even have to converge to ‖b‖.
(Note that (|n〉〈n|)n resembles a ‘moving bump’.)

3. Note that when a net (aα)α converges ultrastrongly to a, then ( a∗αaα )α
is norm-bounded and converges ultraweakly to a∗a.

The converse does not hold: show that (already in C) ein does not converge
ultraweakly (nor ultrastrongly) as n → ∞, while 1 ≡ e−inein is norm-
bounded and converges ultraweakly to 1 as n→∞.

4. Show that ( |0〉〈n| )n converges ultrastrongly (and ultraweakly) to 0.

Deduce that ( |n〉〈0| )n converges ultraweakly to 0, but doesn’t converge
ultrastrongly at all.

Conclude that a 7→ a∗ is not ultrastrongly continuous on B(`2).

(This has the annoying side-effect that it is not immediately clear that the
ultrastrong closure of a C∗-subalgebra of a von Neumann algebra is a von
Neumann subalgebra; we’ll deal with this by showing that the ultrastrong
closure coincides with the ultraweak closure in 73VIII.)

5. Show that the unit ball ( B(`2) )1 of B(`2) is not ultrastrongly compact
by proving that ( |0〉〈n| )n has no ultrastrongly convergent subnet.

(But we’ll see in 77 III that the unit ball of a von Neumann algebra is
ultraweakly compact.)
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6. Show that |n〉〈0| + |0〉〈n| converges ultraweakly to 0 as n → ∞, while
(|n〉〈0|+ |0〉〈n|)2 ≡ |0〉〈0|+ |n〉〈n| converges ultraweakly to |0〉〈0|.
Conclude that a 7→ a2 is not ultraweakly continuous on B(`2).

Conclude that a, b 7→ ab is not jointly ultraweakly continuous on B(`2).

Prove that | |n〉〈0|+ |0〉〈n| | = |0〉〈0|+ |n〉〈n|.
Conclude that a 7→ |a| is not ultraweakly continuous on (B(`2))R.

(We’ll see in 74 I that a 7→ |a| is ultrastrongly continuous on self-adjoint
elements.)

7. Let us consider the two extensions of | · | to arbitrary elements, namely a 7→√
a∗a =: |a|s and a 7→

√
aa∗ =: |a|r (for support and range, c.f. 59VII).

Prove that |0〉〈0|+ |0〉〈n| converges ultrastrongly to |0〉〈0| as n→∞.

Show that | |0〉〈0|+ |0〉〈n| |s = |0〉〈0| + |0〉〈n| + |n〉〈0| + |n〉〈n| converges
ultraweakly to | |0〉〈0| |s ≡ |0〉〈0| as n→∞, but not ultrastrongly.

Show that | |0〉〈0|+ |0〉〈n| |r =
√

2 |0〉〈0|.
Conclude that | · |s and | · |r are not ultrastrongly continuous on B(`2).

8. Show that 1 + |n〉〈0| + |0〉〈n| is positive, and converges ultraweakly to 1
as n→∞, while the squares 1+ |n〉〈n|+ |0〉〈0|+2 |n〉〈0|+2 |0〉〈n| converge
ultraweakly to 1 + |0〉〈0| (as n→∞).

Hence a 7→ a2 and a 7→
√
a are not ultraweakly continuous on B(`2)+.

9. For the next counterexample, we need a growing moving bump, which still
converges ultraweakly. Sequences won’t work here:

Show that n |n〉〈n| does not converge ultraweakly as n→∞.

Show that n |f(n)〉〈f(n)| does not converge ultraweakly as n → ∞ for
every strictly monotone (increasing) map f : N→ N.

So we’ll resort to a net. Let D be the directed set which consists of
pairs (n, f), where n ∈ N\{0} and f : N → N is monotone, ordered by
(n, f) 6 (m, g) iff n 6 m and f 6 g.

Show that the net (n |f(n)〉〈f(n)| )n,f∈D converges ultrastrongly to 0.

So a net which converges ultrastrongly need not be bounded! (The cure
for this pathology is Kaplansky’s density theorem, see 74 IV.)

Show that 1
n |f(n)〉〈0| converges ultrastrongly to 0 as D 3 (n, f)→∞.



Show that the product |f(n)〉〈0| = (n |f(n)〉〈f(n)| ) ( 1
n |f(n)〉〈0| ) does

not converge ultrastrongly as D 3 (n, f)→∞.

Conclude that multiplication a, b 7→ ab is not jointly ultrastrongly contin-
uous on B(`2), even when b is restricted to a bounded set.

(Nevertheless we’ll see that multiplication is ultrastrongly continuous when a
is restricted to a bounded set in 45VI.)

10. Show that an,f = 1
n (|f(n)〉〈0|+ |0〉〈f(n)|) + n |f(n)〉〈f(n)| converges ul-

trastrongly to 0 as D 3 (n, f)→∞, while a2
n,f does not.

Hence a 7→ a2 is not ultrastrongly continuous on B(`2)R.

11. Let us show that B(`2) is not ultraweakly complete.

Show that there is an unbounded linear map f : `2 → C (perhaps using
the fact that every vector space has a basis by the axiom of choice), and
that for each finite dimensional linear subspace S of `2 there is a unique
vector xS ∈ S with f(x) = 〈xS , y〉 for all y ∈ S (using 5 IX).

Consider the net ( |e〉〈xS | )S where S ranges over the finite dimensional
subspaces of `2 ordered by inclusion, and e is some fixed vector in `2

with ‖e‖ = 1.

Let ω : B(`2)→ C be an np-map, so ω ≡
∑
n 〈yn, ( · )yn〉 for y1, y2, . . . ∈ `2

with
∑
n ‖yn‖2 <∞, see 39 IX.

Show that ω( |e〉〈xS | − |e〉〈xT | ) = 〈xS − xT ,
∑
n yn 〈yn, e〉 〉 = 0 when

S and T are finite dimensional linear subspaces of `2 which contain the
vector

∑
n yn 〈yn, e〉.

Conclude that ( |e〉〈xS | )S is ultraweakly Cauchy.

Show that if ( |e〉〈xS | )S converges ultraweakly to some A in B(`2), then
we have 〈e,Ay〉 = f(y) for all y ∈ `2.

Conclude that ( |e〉〈xS | )S does not converge ultraweakly, and that B(`2)
is not ultraweakly complete.

(Nevertheless, we’ll see that every von Neumann algebra is ultrastrongly
complete, and that every norm-bounded ultraweakly Cauchy net in a von
Neumann converges, in 77 I.)
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3.1.2 Elementary Theory

44 The basic facts concerning von Neumann algebras cccchdgnvuvucvlvnujgbferfth-
ndivnkgbkjveven

relationship between multiplication and the order structure. For exam-
ple, while it is clear that translation and scaling on a von Neumann algebra
are ultraweakly (and ultrastrongly) continuous, the fact that multiplication is
ultraweakly (and ultrastrongly) continuous in each coordinate is less obvious
(see 45 IV). Quite surprisingly, this problem reduces to the ultraweak continuity
of b 7→ a∗ba by the following identity.

II Exercise Show that for elements a, b, c of a C∗-algebra,

a∗ c b = 1
4

∑3
k=0 ik (ika+ b)∗ c (ika+ b).

(Note that this identity is a variation on the polarization identity for inner
products, see 4XV.)

III Lemma Let (xα)α∈D be a net of effects of a von Neumann algebra A , which
converges ultraweakly to 0. Let (bα)α∈D be a net of elements with ‖bα‖ 6 1 for
all α. Then (xαbα)α converges ultraweakly to 0.

IV Proof Let ω : A → C be an np-map. We have, for each α,

|ω(xαbα) |2 = |ω(
√
xα
√
xα bα ) |2 since xα > 0

6 ω(xα) ω( b∗αxαbα ) by Kadison’s inequality, 30 IV

6 ω(xα) ω(b∗αbα) since xα 6 1

6 ω(xα) ω(1) since b∗αbα 6 1.

Thus, since (ω(xα))α converges to 0, we see that (ω(xαbα))α converges to 0, and
so (xαbα)α converges ultraweakly to 0. �

V Exercise Let D be a bounded directed set of self-adjoint elements of a von
Neumann algebra A , and let a ∈ A .

VI Show that the net (d)d∈D converges ultraweakly to
∨
D.

VII Use III to show that (da)d converges ultraweakly to (
∨
D)a, and that (a∗d)d

converges ultraweakly to a∗(
∨
D).

VIII Proposition Let a be an element of a von Neumann algebra A . Then∨
d∈D a

∗ d a = a∗ (
∨
D) a

for every bounded directed subset D of self-adjoint elements of A .



IXProof If a is invertible, then the (by 25 II) order preserving map b 7→ a∗ba has
an order preserving inverse (namely b 7→ (a−1)∗ba−1), and therefore preserves
all suprema.

XThe general case reduces to the case that a is invertible in the following way.
There is (by 11VI) λ > 0 such that λ+ a is invertible. Then as d increases

a∗ d a ≡ (λ+ a)∗ d (λ+ a) − λ2d − λa∗d − λda

converges ultraweakly to a∗ (
∨
D) a, because ( (λ + a)∗ d (λ + a) )d converges

ultraweakly to (λ + a)∗ (
∨
D) (λ + a) by IX and VI, and (a∗d + da)d converges

ultraweakly to a∗(
∨
D) + (

∨
D)a by VII. Since (a∗da)d converges to

∨
d∈D a

∗da
too, we could conclude that

∨
d∈D a

∗ d a = a∗ (
∨
D) a if we would already know

that the ultraweak topology is Hausdorff. At the moment, however, we must
content ourselves with the conclusion that ω( a∗(

∨
D)a −

∨
d∈D a

∗da ) = 0 for
every np-functional ω on A . But since a∗(

∨
D)a −

∨
d∈D a

∗da happens to be
positive, we conclude that a∗(

∨
D)a−

∨
d∈D a

∗da = 0 nonetheless. �

XIExercise Show that the set of np-functionals on a von Neumann algebra A is
not only faithful but also order separating using 30X. Deduce

1. that the ultraweak and ultrastrong topologies are Hausdorff,

2. that A+, AR and [0, 1]A are ultraweakly (and ultrastrongly) closed,

3. and that the unit ball (A )1 is ultrastrongly closed.

(We’ll see only later on, in 73VIII, that (A )1 is ultraweakly closed as well.)

XIIExercise Let D be a directed subset of self-adjoint elements of a von Neumann
algebra A , and let a ∈ A .

XIIIShow that if ad = da for all d ∈ D, then a(
∨
D) = (

∨
D)a.

XIVUse III to show that (
∨
D − d)2 converges ultraweakly to 0 as D 3 d→∞.

Conclude that (d)d∈D converges ultrastrongly to
∨
D.

XVExercise Show that for a positive linear map f : A → B between von Neumann
algebras, the following are equivalent.

1. f is ultraweakly continuous;

2. f is ultraweakly continuous on [0, 1]A ;

3. f(
∨
D) =

∨
d∈D f(d) for each bounded directed D ⊆ AR;
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4. ω ◦ f : A → C is normal for each np-map ω : B → C.

In that case we say that f is normal.
Conclude that b 7→ a∗ba, A → A is ultraweakly continuous for every ele-

ment a of a von Neumann algebra A .

45 Exercise Show that if a positive linear map f : A → B between von Neumann
algebras is ultrastrongly continuous (on [0, 1]A ), then f is normal. (Hint: use
that a bounded directed set D ⊆ AR converges ultrastrongly to

∨
D.)

The converse does not hold: give an example of a map f which is normal,
but not ultrastrongly continuous. (Hint: transpose.)

II Proposition An ncp-map f : A → B between von Neumann algebras is ultra-
strongly continuous.

III Proof To show that f is ultrastrongly continuous it suffices to show that f is
ultrastrongly continuous at 0. So let (bα)α be a net in A which converges ultra-
strongly to 0; we must show that (f(bα))α converges ultrastrongly to 0, viz. that
( f(bα)∗f(bα) )α converges ultraweakly to 0. Since f(bα)∗f(bα) 6 f(b∗αbα)‖f(1)‖
by 34XIV, it suffices to show that ( f(b∗αbα) )α converges ultraweakly to 0, but
this follows from the facts that f is ultraweakly continuous and (b∗αbα)α con-
verges ultraweakly to 0 (since (bα)α converges ultrastrongly to 0). �

IV Exercise Let A be a von Neumann algebra. Conclude (using II and 34V) that
the map a 7→ b∗ab, A → A is ultrastrongly continuous for every element b ∈ A .

Use this, and 44 II, to show that b 7→ ab, ba : A → A are ultraweakly and
ultrastrongly continuous for every element a of a von Neumann algebra A .

V We saw in 43 II that the multiplication on a von Neumann algebra is not jointly
ultraweakly continuous, even on a bounded set. Neither is a, b 7→ ab jointly
ultrastrongly continuous, even when b is restricted to a bounded set; but it is
jointly ultrastrongly continuous when a is restricted to a bounded set:

VI Proposition Let (aα)α and (bα)α be nets in a von Neumann algebra A with
the same index set that converge ultrastrongly to a, b ∈ A , respectively. Then
the net (aαbα)α converges ultrastrongly to ab provided that (aα)α is bounded.

VII Proof Let ω : A → C be an np-functional. Since

‖ab− aαbα‖ω 6 ‖(a− aα)b‖ω + ‖aα(b− bα)‖ω
6 ‖a− aα‖ω(b∗( · )b) + ‖aα‖‖b− bα‖ω

vanishes as α→∞, we see that (aαbα)α converges ultrastrongly to ab. �



46We can now prove a bit more about the ultrastrong and ultraweak topologies.

IIExercise Show that a net (bα)α in a von Neumann algebra A converges ultra-
strongly to an element b of A if and only if both b∗αbα −→ b∗b and bα −→ b
ultraweakly as α→∞.

IIIExercise Show that for a positive linear map ω : A → C on a von Neumann
algebra A the following are equivalent

1. ω is normal;

2. ω is ultraweakly continuous;

3. ω is ultrastrongly continuous.

(Hint: combine 44XV and 45 II.)

47Enter the eponymous hero(s) of this thesis.

IIDefinition We denote the category of normal cpsu-maps by W∗
cpsu, and its

subcategory of nmiu-maps by W∗
miu. (We omit the “N” for the sake of brevity.)

IIIThough arguably W∗
miu is a good candidate for being called the category of

von Neumann algebra, the title of this thesis refers to W∗
cpsu. Indeed, it’s the

ncpsu-maps between von Neumann algebras that stand to model the arbitrary
quantum processes, and it’s the category of these quantum processes we want to
mine for abstract structure. This is mostly a task for the next chapter, though.
For now we’ll just establish that W∗

cpsu has all products, IV, certain equalisers,
V, and that (W∗

cpsu)op is an effectus, see VI.

IVExercise Show that given a family (Ai)i of von Neumann algebras the direct sum⊕
i Ai from 3V is a von Neumann algebra and the projections πj :

⊕
i Ai → Aj

are normal. Moreover, show that this makes
⊕

i Ai into the product of the Ai

in the categories W∗
miu and W∗

cpsu (see 10VII and 34VI).

VExercise Show that given nmiu-maps f, g : A → B between von Neumann al-
gebras the set E := { a ∈ A : f(a) = g(a) } is a von Neumann subalgebra of A ,
and the inclusion e : E → A is the equaliser of f and g in the categories W∗

miu

and W∗
cpsu (see 10VIII and 34VI).

VILet us briefly indicate what makes (W∗
cpsu)op an effectus; for a precise formula-

tion and proof of this fact we refer to [2,7] (or 180V, 180VII, and 180X ahead).
Note that the sum f + g of two ncpsu-maps f, g : A → B between von Neu-
mann algebras is again an ncpsu-map iff f(1)+g(1) 6 1. The partial addition on
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ncpsu-maps thereby defined has, aside from some fairly obvious properties (sum-
marized by the fact that the category W∗

cpsu is PCM-enriched), the following
special trait: given ncpsu-maps f : A → D and g : B → D with f(1)+g(1) 6 1
we may form an ncpsu-map [f, g] : A ×B → D by [f, g](a, b) = f(a) + g(b),
and, moreover, every ncpsu-map A ×B → D is of this form. This observation,
which gives the product of W∗

cpsu a coproduct-like quality without forcing it to
be a biproduct (which it’s not), makes (W∗

cpsu)op a FinPAC (see 180VII).

For (W∗
cpsu)op to be an effectus, we need a second ingredient: the complex

number C. Since the ncpsu-maps p : C→ A are all of the form λ 7→ λa for some
effect a ∈ [0, 1]A , the ncpsu-maps p : C→ A (called predicates in this context)
are not only endowed with a partial addition, but even form an effect algebra.
This, combined with the observation that an ncpsu-map f : A → B is constant
zero iff f(1) = 0, makes (W∗

cpsu)op an effectus in partial form (see 180VII).

As you can see, there’s nothing deep underlying (W∗
cpsu)op being an effectus.

In that respect effectus theory resembles topology: just as a topology provides
a basis for notions such as compactness, connectedness, meagreness, and homo-
topy, so does an effectus provide a framework to study aspects of computation
such as side effects (223 II) and purity (173VII).

48 Let us quickly prove that every von Neumann algebra is isomorphic to a von
Neumann algebra of operators on a Hilbert space (see VIII).

II Exercise Let Ω be a collection of np-functionals on a von Neumann algebra B
that is faithful (see 21 II). Show that a positive linear map f : A → B is normal
iff ω ◦ f is normal for all ω ∈ Ω.

III Proposition Given an np-map ω : A → C on a von Neumann algebra A , the
map %ω : A → B(Hω) from 30VI is normal.

IV Proof Since by definition of Hω the vectors of the form ηω(a) where a ∈ A are
dense in Hω, the vector functionals 〈ηω(a), ( · )ηω(a)〉 form a faithful collection
of np-functionals on B(Hω). Thus by II it suffices to show given a ∈ A that
〈ηω(a), %ω( · )ηω(a)〉 ≡ ω(a∗( · )a) is normal, which it is, by 44VIII. �

V Exercise Show that the map %Ω from 30 IX is normal for every collection Ω of
np-maps A → C on a von Neumann algebra A .

VI Lemma Let f : A → B be an injective nmiu-map between von Neumann
algebras. Then the image f(A ) is a von Neumann subalgebra of B, and f
restricts to a nmiu-isomorphism from A to f(A ).

VII Proof We already know by 29 IX that f(A ) is a C∗-subalgebra of A , and that f



restricts to a miu-isomorphism f ′ : A → f(A ). The only thing left to show
is that f(A ) is a von Neumann subalgebra of B, because a miu-isomorphism
between von Neumann algebras (being an order isomorphism) will automatically
be a nmiu-isomorphism. Let D be a bounded directed subset of f(A ). Note
that S := (f ′)−1(D) is a bounded directed subset of A , and so

∨
D ≡

∨
f(S ) =

f(
∨
S), because f is normal. Thus

∨
f(D) ∈ f(A ), and so f(A ) is a von

Neumann subalgebra of B. �

VIIITheorem (normal Gelfand–Naimark) Every von Neumann algebra A is nmiu-
isomorphic to von Neumann algebra of operators on a Hilbert space.

IXProof Recall that an element a ∈ A is zero iff ω(a) = 0 for all np-maps
ω : A → C. It follows that the collection Ω of all np-maps A → C obeys
the condition of 30X, and so the miu-map %Ω : A → B(HΩ) (from 30 IX) is
injective. Since %Ω is also normal by V, we see by VI that %Ω restricts to a
nmiu-isomorphism from A to the von Neumann subalgebra %Ω(A ) of B(HΩ).
�

3.1.3 Examples

Matrices over von Neumann algebras

49We’ll show that the C∗-algebra of N×N -matrices MN (A ) over a von Neumann
algebra A is itself a von Neumann algebra, and to this end, we prove something
a bit more more general.

IITheorem Given a von Neumann algebra A , the C∗-algebra Ba(X) (32XIII) of
bounded adjointable module maps on a self-dual (36 I) Hilbert A -module X is a
von Neumann algebra, and 〈x, ( · )x〉 : Ba(X)→ A is normal for every x ∈ X.

IIIProof We’ll first show that a bounded directed subset D of Ba(X)R has a
supremum (in Ba(X)R). To obtain a candidate for this supremum, we first
define a bounded form [ · , · ] : X ×X → A in the sense of 36 IV and apply 36V.
To this end note that given x ∈ X the subset { 〈x, Tx〉 : T ∈ D } of AR is
bounded and directed, and so (since A is a von Neumann algebra) has a supre-
mum. Since the the net ( 〈x, Tx〉 )T∈D converges ultraweakly to this supremum

by 44VI, we see that 〈y, Tz〉 = 1
4

∑3
k=0 i

k
〈
y + ikz, T (y + ikz)

〉
converges ul-

traweakly to some element [y, z] of A as T → ∞ for all y, z ∈ X, giving
us a form [ · , · ] on X. Since ‖〈y, Tz〉‖ 6 supT ′∈D ‖T ′‖‖y‖‖z‖ for all T ∈ D
by 32X, and thus ‖[y, z]‖ 6 supT ′∈D ‖T ′‖‖y‖‖z‖ for all y, z ∈ X, we see that
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the form [ · , · ] is bounded. Since X is self dual, there is by 36V S ∈ Ba(X)
with [y, z] = 〈y, Sz〉 for all y, z ∈ X; we’ll show that S is the supremum of D .

To begin, given T ∈ D we have 〈x, Tx〉 6
∨
T ′∈D 〈x, T ′x〉 = [x, x] = 〈x, Sx〉

for all x ∈ X, and so T 6 S by 32XV, that is, S is an upper bound for D .
Given another upper bound S′ ∈ Ba(X)R of D (so T 6 S′ for all T ∈ D) we
have 〈x, Tx〉 6 〈x, S′x〉 and so 〈x, Sx〉 = [x, x] =

∨
T∈D 〈x, Tx〉 6 〈x, S′x〉

for all x ∈ X implying that S 6 S′. Hence S is the supremum of D in
Ba(X)R. Note that since 〈x, Sx〉 =

∨
T∈D 〈x, Tx〉 we immediately see that

〈x, ( · )x〉 : Ba(X)→ A preserves bounded directed suprema for every x ∈ X.
It remains to be shown that there are sufficiently many np-functionals on

Ba(X) in the sense that T ∈ (Ba(X))+ is zero when ω(T ) = 0 for every np-
functional ω : Ba(X) → C. This is indeed the case for such an operator T ,
because ξ(〈x, ( · )x〉) is an np-functional on Ba(X) for every x ∈ X and an
np-functional ξ : A → C, implying that ξ(〈x, Tx〉) = 0, and 〈x, Tx〉 = 0, and
so T = 0. �

IV Exercise Let A be a von Neumann algebra, and let N be a natural number.

1. Show that the C∗-algebra MN (A ) of N ×N -matrices over A (see 33 I) is
a von Neumann algebra.

2. Show that the map A 7→
∑
ij a
∗
iAijaj : MNA → A is normal and com-

pletely positive, and that the map A 7→
∑
ij a
∗
iAijbj : MNA → A is ul-

trastrongly and ultraweakly continuous for all a1, . . . , aN , b1, . . . , bN ∈ A .

In particular, A 7→ Aij : MNA → A is ultraweakly and ultrastrongly
continuous for all i, j.

Show that a net (Aα)α in MNA converges ultraweakly (ultrastrongly) to
B ∈MNA iff (Aα)ij converges ultraweakly (ultrastrongly) to Bij as α→
∞ for all i, j.

3. Given an ncp-map f : A → B between von Neumann algebras, show that
the cp-map MNf : MNA →MNB from 33 III is normal.

Commutative von Neumann algebras

50 Another important source of examples of von Neumann algebras is measure
theory: we’ll show that the bounded measurable functions on a finite complete



measure space X form a commutative von Neumann algebra L∞(X) when func-
tions that are equal almost everywhere are identified (see 51 IX). In fact, we’ll
see in 70 III that every commutative von Neumann algebra is nmiu-isomorphic
to a direct sum of L∞(X)s. This is not only interesting in its own right, but will
also be used in the next chapter to show that the only von Neumann algebras
that can be endowed with a ‘duplicator’ are of the form `∞(X) for some set X
(see 127 III).

We should probably mention that L∞(X) can be defined for any measure
space X, and is precisely a von Neumann algebra when X is localisable see [63].
This has the advantage that any commutative von Neumann algebra is nmiu-
isomorphic to a single L∞(X) for some localisable measure space X, but since
it has no other advantages relevant to this text we restrict ourselves to complete
finite measure spaces.

We’ll assume the reader is reasonably familiar with the basics of measure
theory, and we’ll only show a selection of results that we deemed important. For
the other details, we refer to volumes 1 and 2 of [16]. Nevertheless, we’ll recall
some basic definitions to fix terminology, which is sometimes simpler than in [16]
(because we’re dealing with finite complete measure spaces), and sometimes
modified to the complex-valued case (c.f. 133C of [16]). A motivated reader will
have no problem adapting the results from [16] to our setting.

51Let X be a finite and complete measure space. We’ll denote the σ-algebra of
measurable subsets of X by ΣX , and the measure by µX : ΣX → [0,∞) (or µ
when no confusion is expected). That X is finite means that µ(X) <∞ (which
doesn’t mean that the set X is finite), and that X is complete means that every
subset A of a negligible subset B of X is itself negligible. (Recall that N ⊆ X is
negligible when N ∈ ΣX and µ(N) = 0.) A function f : X → C is measurable
when the inverse image f−1(U) of any open subset U of C is measurable (which
happens precisely when both x 7→ f(x)R, x 7→ f(x)I : X → R are measurable
in the sense of 121C of [16]). An important example of a measurable function
on X is the indicator function 1A of a measurable subset A of X (which is equal
to 1 on A and 0 elsewhere.)

IIThe bounded measurable functions f : X → C form a C∗-subalgebra of CX that
we’ll denote by L∞(X). The space L∞(X) is not only closed with respect to
the (supremum) norm on CX , but also with respect to coordinatewise limits
of sequences (c.f. 121F of [16]). As a result, the coordinatewise (countable)
supremum

∨
n fn of a bounded ascending sequence f1 6 f2 6 · · · in L∞(X)R is

again in L∞(X), and is fact the supremum of (fn)n in L∞(X). However L∞(X)
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might still not be a von Neumann algebra because not every bounded directed
subset of L∞(X)R might have a supremum as we’ll show presently; this is why
we’ll move from L∞(X) to L∞(X) in a moment.

III For a counterexample to L∞(X) being always a von Neumann algebra we
take X to be the unit interval [0, 1] with the Lebesgue measure. Let A be
a non-measurable subset of [0, 1] (see 134B of [16]). The indicator functions 1F
where F is a finite subset of A form a bounded directed subset D of L∞([0, 1])R
that—so we claim—has no supremum. Indeed, note that since f ∈ L∞([0, 1])R
is an upper bound for D iff 1A 6 f , the least upper bound h for D would be
the least bounded measurable function above 1A. Surely, h 6= 1A for such h
(because otherwise A would be measurable), so h(x) > 1A(x) for some x ∈ [0, 1].
But then h− (h(x)−1A(x))1{x} < h is an upper bound for D too contradicting
the minimality of h. Whence L∞([0, 1]) is not a von Neumann algebra.

IV To deal with L∞(X) we need to know a bit more about L∞(X), namely that
the measure on X can be extended to a an integral

∫
: L∞(X)→ C (see 122M

of [16])† with the following properties.

1.
∫

(1A) = µ(A) for every measurable subset A of X.

2.
∫

: L∞(X)→ C is a positive linear map (see 122O of [16]).

3.
∫ ∨

n fn =
∨
n

∫
fn for every bounded sequence f1 6 f2 6 · · · in L∞(X)R.

(This is a special case of Levi’s theorem, see 123A of [16].)

Unsurprisingly, the integral interacts poorly with the uncountable directed suprema
that do exist in L∞(X): for example, the set D := { f ∈ [0, 1]L∞(X) :

∫
f = 0 }

is directed, bounded, and has supremum 1, but
∨
f∈D

∫
f = 0 < 1 =

∫ ∨
D.

What is surprising is that the lifting of
∫

to L∞(X) will be normal.

V But let us first define L∞(X). We say that f, g ∈ L∞(X) are equal almost
everywhere and write f ≈ g when f(x) = g(x) for almost all x ∈ X (that is,
{x ∈ X : f(x) 6= g(x) } is negligible). It is easily seen that ≈ is an equivalence
relation; we denote the equivalence class of an function f ∈ L∞(X) by f◦, and
the set of equivalence classes by L∞(X) := { f◦ : f ∈ L∞(X) }, which becomes
a commutative C∗-algebra when endowed with the same operations as L∞(X),

†Note that every element of L∞(X) being bounded is integrable by 122P of [16].



but with a slightly modified norm given by, for f ≡ f◦ ∈ L∞(X),

‖f‖ = min{ ‖g‖ : g ∈ L∞(X) and g◦ = f }
= min{ λ > 0: |f(x)| 6 λ for almost all x ∈ X }.

This is called the essential supremum norm. To see that L∞(X) is complete
one can use the fact that L∞(X) is complete in a slightly more general sense
than discussed before: when a bounded sequence f1, f2, . . . in L∞(X) converges
coordinatewise for almost all x ∈ X to some bounded function f : X → C, this
function f is itself measurable (and so f ∈ L∞(X), c.f. 121F of [16]).

Another consequence of this is that a bounded ascending sequence f◦1 6
f◦2 6 · · · in L∞(X) (so f1, f2, . . . ∈ L∞(X), and f1(x) 6 f2(x) 6 · · · for almost
all x ∈ X) has a supremum

∨
n f
◦
n in L∞(X). Indeed, we’ll have

∨
n f
◦
n = g◦ for

any bounded map g : X → C with g(x) =
∨
n fn(x) for almost all x ∈ X.

VINow, let us return to the integral. Since
∫
f =

∫
g for all f, g ∈ L∞(X) with

f ≈ g we get a map
∫

: L∞(X) → C given by
∫
f◦ =

∫
f . Clearly,

∫
is

positive and linear, and by (a slightly less special case of) Levi’s theorem (123A
of [16]) we see that

∫ ∨
n fn =

∨
n

∫
fn for any bounded ascending sequence

f1 6 f2 6 · · · in L∞(X)R. Note that
∫

: L∞(X) → C is also faithful, because
if
∫
f◦ =

∫
f = 0 for some f ∈ L∞(X), then f(x) = 0 for almost all x ∈ X, and

so f◦ = 0. Now, the fact that L∞(X) is a von Neumann algebra follows from
the following general and rather surprising observation.

VIIProposition Let A be a C∗-algebra, and let τ : A → C be a faithful positive
map. If every bounded ascending sequence a1 6 a2 6 · · · of self-adjoint elements
from A has a supremum

∨
n an (in AR) and τ(

∨
n an) =

∨
n τ(an), then A is a

von Neumann algebra, and τ is normal.

VIIIProof Our first task is to show that a bounded directed subset D of self-adjoint
elements of A has a supremum

∨
D in AR. Since

∨
d∈D τ(d) is a supremum

in R we can find a1 6 a2 6 · · · in D with
∨
n τ(an) =

∨
d∈D τ(d). We’ll show

that
∨
n an is the supremum of D. Surely, any upper bound of D being also

an upper bound for a1 6 a2 6 · · · is above
∨
n an, so the only thing that we

need to show is that
∨
n an is an upper bound of D. So let b ∈ D be given.

The trick is to pick a sequence b1 6 b2 6 · · · in D with b 6 b1 and an 6 bn
for all n (which exists on account of D’s directedness). Then

∨
n an 6

∨
n bn,

and
∨
d∈D τ(d) =

∨
n τ(an) = τ(

∨
n an ) 6 τ(

∨
n bn ) =

∨
n τ(bn) 6

∨
d∈D τ(d),

so τ(
∨
n an ) = τ(

∨
n bn ), which implies that

∨
n an =

∨
n bn as τ is faithful.

Since then b 6 b1 6
∨
n bn =

∨
n an we see that

∨
n an is an upper bound (and

thus the supremum) of D. Moreover, since
∨
d∈D τ(d) 6 τ(

∨
D) = τ(

∨
n an) =
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∨
n τ(an) 6

∨
d∈D τ(d), we see that

∨
d∈D τ(d) = τ(

∨
D), and so τ is normal.

Since τ is faithful and normal, A is a von Neumann algebra. �

IX Corollary Given a finite complete measure space X the C∗-algebra L∞(X) is a
commutative von Neumann algebra, and the assignment f 7→

∫
f gives a faithful

normal positive map
∫

: L∞(X)→ C.

52 We’ll show that any commutative von Neumann algebra A that admits a faithful
np-functional ω : A → C is nmiu-isomorphic to L∞(X) for some finite complete
measure space X. It makes sense to regard this result as a von Neumann algebra
analogue of Gelfand’s theorem for commutative C∗-algebras, (see 27XXVII—
that any commutative C∗-algebra is miu-isomorphic to C(Y ) for some compact
Hausdorff space Y .) But one should not take the comparison too far too lightly:
while Gelfand’s theorem readily yields a clean equivalence between commutative
C∗-algebras and compact Hausdorff spaces (see 29), the fact that L∞(X1) ∼=
L∞(X2) for finite complete measure spaces X1 and X2 does not even imply
that X1 and X2 have the same cardinality.‡ Obtaining an equivalence between
commutative von Neumann algebras and measure spaces is nonetheless possible
after a suitable non-trivial modification to the category of measure spaces (as
is shown by Robert Furber in as of yet unpublished work.)

We obtain our finite complete measure space X from the commutative von
Neumann algebra A by taking for X the compact Hausdorff space sp(A ) of
all miu-functionals on A , and declaring that a subset A of X ≡ sp(A ) is
measurable when A is clopen up to a meagre subset (defined below, II). It takes
some effort to show that this yields a σ-algebra in sp(A ), and that the faithful
np-functional ω : A → C gives a finite complete measure on sp(A ), but once
this is achieved it’s easily seen that A ∼= C(sp(A )) ∼= L∞(sp(A )).

II Definition Let X be a topological space.

1. A subset A of X is called meagre when A ⊆
⋃
nBn for some closed subsets

B1 ⊆ B2 ⊆ · · · of X with empty interior (so B◦n = ∅ for all n.)

2. Given A,B ⊆ X we write A ≈ B when A ∪B \A ∩B is meagre.

‡Indeed, one may take X1 to be a measure space consisting of a single non-negligible point ∗
(so X1 = {∗} and µ(X1) 6= 0), while letting X2 be a measure space on an uncountable set
formed by taking for the measurable subsets of X2 the countable subsets and their comple-
ments, by making the countable subsets negligible, and by giving all cocountable subsets the
same non-zero measure. Then all measurable functions on X1 and on X2 are constant al-
most everywhere, (because in X1 and X2 there are no two non-negligible disjoint measurable
subsets,) so that L∞(X1) ∼= C ∼= L∞(X2).



3. We say that A ⊆ B is almost clopen when A ≈ C for some clopen C ⊆ X.

IIIExercise Given a topological space X, verify the following facts.

1. A countable union
⋃
nAn of meagre subsets A1, A2, . . . ⊆ X is meagre.

2. A subset of a meagre set is meagre.

3. U ≈ U for every open subset U of X.

(Hint: show that U\U is closed with empty interior.)

4.
⋃
nAn ≈

⋃
nBn for all A1, A2, . . . , B1, B2, . . . ⊆ X with An ≈ Bn.

5. A\B ≈ A′\B′ for all A,A′, B,B′ ⊆ X with A ≈ A′ and B ≈ B′.

6. If A,B ⊆ X are almost clopen, then A ∪B and A\B are almost clopen.

53The fact that the almost clopen subsets of the spectrum sp(A ) of a commutative
von Neumann algebra A are closed under countable unions (and thus form a
σ-algebra) relies on a special topological property of sp(A ) that is described
in III below.

IIExercise Let A be a commutative von Neumann algebra. Using the fact
that the Gelfand representation γA : A → C(sp(A )) from 27 III is a miu-
isomorphism by 27XXVII and thus an order isomorphism, show that C(sp(A ))
is a commutative von Neumann algebra that is nmiu-isomorphic to A via γA .

IIIProposition The spectrum sp(A ) of a commutative von Neumann algebra A

is extremally disconnected: the closure U of an open subset U of sp(A ) is open.

IVProof (Based on §6.1 of [69].)
Let U be an open subset of sp(A ), and let 1U be the indicator function

of U . The set D = { f ∈ C(sp(A )) : f 6 1U } is directed and bounded and so
has a supremum

∨
D in C(sp(A )) since C(sp(A )) is a von Neumann algebra

by II. Note that 0 6
∨
D 6 1. We’ll prove that

∨
D = 1U , because this entails

that 1U is continuous, so that U is both open and closed.
Let x ∈ U be given. By Urysohn’s lemma (see 15.6 of [76], using here

that sp(A ) being a compact Hausdorff space, 27XXV, is normal by 17.10 of [76])
there is f ∈ [0, 1]C(sp(A )) with f(x) = 1 and f(y) = 0 for all y ∈ sp(X)\U . It
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follows that f ∈ D, and f 6
∨
D 6 1, so that 1 = f(x) 6 (

∨
D)(x) 6 1,

and (
∨
D)(x) = 1. By continuity of

∨
D, we get (

∨
D)(x) = 1 for all x ∈ U .

Let y ∈ sp(A )\U be given. Again by Urysohn’s lemma there is f ∈
[0, 1]C(sp(A )) with f(y) = 0 and f(x) = 1 for all x ∈ U . Since g 6 1U 6 f
for every g ∈ D, we get

∨
D 6 f , and so 0 6 (

∨
D)(y) 6 f(y) = 0, which

implies that (
∨
D)(y) = 0. Hence (

∨
D)(y) = 0 for all y ∈ sp(A )\U .

All in all we have
∨
D = 1U , and so U is open. �

V Corollary The almost clopen subsets of an extremally disconnected topological
space X form a σ-algebra.

VI Proof In light of 52 III it remains only to be shown that the union
⋃
nAn

of almost clopen subsets A1, A2, . . . is almost clopen. Let C1, C2, . . . ⊆ X be
clopen with An ≈ Cn for each n. Then

⋃
nAn ≈

⋃
n Cn, and C :=

⋃
n Cn is

open (but not necessarily closed). Since C ≈ C (by 52 III), and C is clopen (as
X is extremally disconnected) we get

⋃
nAn ≈ C, so

⋃
nAn is almost clopen.�

54 The final ingredient we need to prove the main result, XI, of this section is
the observation that an almost clopen subset of a compact Hausdorff space
is equivalent to precisely one clopen, which follows from the following famous
theorem.

II Baire category theorem A meagre subset of a compact Hausdorff space has
empty interior.

III Proof Let A be a meagre subset of a compact Hausdorff space X. So there are
closed B1 ⊆ B2 ⊆ . . . with A ⊆

⋃
nBn and B◦n = ∅ for all n. Then Un := X\Bn

is an open dense subset of X for each n. Since A◦ ⊆ (
⋃
nBn)◦ = X\(

⋂
n Un )

it suffices to show that
⋂
n Un is dense in X. That is, given a non-empty open

subset V of X we must show that V ∩
⋂
n Un 6= ∅.

Write V1 := V . Since U1 is open and dense, and V1 is open and not empty,
we have U1 ∩ V1 6= ∅. Since X is regular (see e.g. [76]) we can find an open
and non-empty subset V2 of X with V 2 ⊆ U1 ∩ V1. Continuing this process we
obtain non-empty open subsets V ≡ V1 ⊇ V2 ⊇ · · · of X with V n+1 ⊆ Un ∩ Vn
for all n, and so V 1 ⊇ V1 ⊇ V 2 ⊇ V2 ⊇ · · · . Since X is compact,

⋂
n V n can

not be empty, and neither will be V ∩
⋂
n Un ⊇

⋂
n V n. �

IV Lemma For open subsets U and V of a compact Hausdorff space X,

U ≈ V ⇐⇒ U ≈ V ⇐⇒ U = V .



VProof As U ≈ U by 52 III the only thing that is not obvious is that U ≈ V =⇒
U = V . So suppose that U ≈ V . Then U\V is empty, because it is an open
subset of the meagre set U ∪V \U ∩V (which has empty interior by II.) In other
words, we have U ⊆ V , and thus U ⊆ V . Similarly, V ⊆ U , and so V = U . �

VICorollary Given an almost clopen subset A of a compact Hausdorff space X
there is precisely one clopen C with A ≈ C.

VIIProof When C ≈ A ≈ C ′ for clopen subsets C,C ′ ⊆ X, we have C ≈ C ′, and
so C = C ′ by IV. �

VIIIInterestingly, a compact Hausdorff space is extremally disconnected iff each of
its open subsets is “measurable” in the sense of being almost clopen:

IXProposition A compact Hausdorff space X is extremally disconnected iff every
open subset of X is almost clopen.

XProof If X is extremally disconnected, and U is open subset of X, then U is

clopen, and U ≈ U by 52 III giving us that U is almost clopen.
Conversely, suppose that each open subset of X is almost clopen. To show

that X is extremally disconnected we must show that U is open given an open
subset U of X. Pick a clopen C with U ≈ C. Then U ≈ U ≈ C (by 52 III), and
so U = C by IV.

XITheorem Let A be a commutative von Neumann algebra A . Recall that the
Gelfand representation γA : A → C(sp(A )) is a nmiu-isomorphism (by 53 II),
C(sp(A )) is a von Neumann algebra, and that the almost clopen subsets (see 52 II)
of sp(A ) form a σ-algebra.

Given a faithful np-functional ω : A → C there is a (unique) measure µ
on the almost clopen subsets of sp(A ) such that µ(A) = 0 iff A is mea-
gre, and µ(C) = ω(γ−1

A (1C)) for every clopen subset C of sp(A ); and this
turns sp(A ) into a finite complete measure space.

With respect to this measure space a bounded function f : sp(A ) → C is
measurable iff f is continuous almost everywhere. Moreover, f 7→ f◦ : C(sp(A ))→
L∞(sp(A )) is a nmiu-isomorphism, and

∫
f◦ = ω(γ−1

A (f)) for all f ∈ C(X).
All in all, we get the following commuting diagram.

A
γA

∼=
//

ω

$$

C(sp(A ))
f 7→f◦

∼=
// L∞(sp(A ))

∫
xxC
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XII Proof By VII we know that given an almost clopen subset A of sp(A ) there is a

unique clopen CA with A ≈ CA, and so we may define µ(A) := ω(γ−1
A (1CA)). It

is easily seen that µ is finitely additive. Further µ(A) = 0 for every meagre A ⊆
X, and so µ(A) = µ(B) when A ≈ B. Conversely, an almost clopen subset A
of A with µ(A) = 0 is meagre, because for the unique clopen C with A ≈ C,
we have ω(γ−1

A (1C)) = µ(A) = 0, so that 1C = 0 and thus C = ∅—using here
that ω is faithful.

To show that µ is a measure, it suffices to prove that
∧
n µ(An) = 0 givenA1 ⊇

A2 ⊇ · · · with
⋂
nAn = ∅. To do this, pick clopen subsets C1, C2, . . . of sp(A )

with An ≈ Cn for all n. Then
∧
n µ(An) =

∧
n µ(Cn) = ω(γ−1

A (
∧
n 1Cn))—

using here that ω is normal. So to prove that
∧
n µ(An) = 0 it suffices to show

that
∧
n 1Cn = 0, that is, given a lower bound f of the 1Cn in C(sp(A ))R

we must show that f 6 0. Note that for such f we have f(x) 6 0 for
all x ∈ X\

⋂
n Cn. Then f(x) 6 0 for all x ∈ X if we can show that X\

⋂
n Cn

is dense in X. But this indeed the case since
⋂
n Cn ≈

⋂
nAn = ∅ is meagre,

and therefore has empty interior (by II). Whence µ is a measure. Note that µ
is finite, because µ(sp(A )) = ω(1) < ∞, and complete, because a subset of a
meagre set is meagre.

Let h : sp(A )→ C be a bounded function. We’ll show that h is continuous
almost everywhere iff h is measurable. Surely, if h is continuous (everywhere),
then h is measurable (since every open subset U of sp(A ) is almost clopen,
IX). So if h is continuous almost everywhere, then h is measurable too. For
the converse, it suffices to show that % : h 7→ h◦ : C(sp(A )) → L∞(sp(A ))
is surjective. To this end, note first that % is injective, because a continuous
function on sp(A ) that is zero almost everywhere, is non-zero on a meagre set,
and by II zero on a dense subset, and so is zero everywhere. Since the image of
the injective miu-map % is norm closed in order to show that % is surjective it
suffices to show that image of % is norm dense in L∞(X). This is indeed the case
since the elements of L∞(sp(A )) of the form

∑
n λn1◦An where λ1, . . . , λN ∈ C

and A1, . . . , AN are measurable (i.e. almost clopen) subsets of sp(A ) are easily
seen to be norm dense in L∞(sp(A )) (c.f. 243I of [16]), and are in the range
of %, because given an almost clopen A ⊆ sp(A ) and a clopen C with A ≈ C
we have 1◦A = 1◦C and 1C ∈ C(sp(A )). Hence % is surjective.

It remains to be show that
∫
f◦ = ω(γ−1

A (f)) for all f ∈ C(sp(A )), that is,∫
= ω ◦ γ−1

A ◦ %−1. By the previous discussion the linear span of the elements
of L∞(sp(A )) of the form 1◦C , where C is (not just measurable but) clopen,
is norm dense in L∞(sp(A )). Since

∫
1C = µ(C) = ω(γ−1

A (%−1(1◦C)) for all



clopen C, and both
∫

and ω ◦ γ−1
A ◦ %−1 are linear and bounded, we conclude

that
∫

= ω ◦ γ−1
A ◦ %−1, and so we are done. �

XIIITo deduce from this that all commutative von Neumann algebras (and not just
the ones admitting a faithful np-functional) are nmiu-isomorphic to direct sums
of the form

⊕
i L
∞(Xi) where the Xi are finite complete measure spaces we

first need some basic facts concerning the projections of a commutative von
Neumann algebra.

3.2 Projections

55One pertinent feature of von Neumann algebras is an abundance of projections:
above each effect a there is a least projection dae we call the ceiling of a (56 I);
for every np-map ω : A → B between von Neumann algebras there is a least
projection p with ω(p⊥) = 0 called the carrier of ω (see 63 I); the directed
supremum of projections is again a projection; the partial order of projections
is complete (see 56XIII); and each element of a von Neumann algebra is the
norm limit of linear combinations of projections (see 65 IV). We’ll prove all this
and more in this section.

IIDefinition An element p of a C∗-algebra is a projection when p∗p = p.

IIIExamples

1. The only projections in C are 0 and 1.

2. Given a measurable subset A of a finite complete measure space X the
indicator function 1A is a projection in L∞(X), and every projection
in L∞(X) is of this form.

3. Given a closed linear subspace C of a Hilbert space H the inclusion
E : C → H is a bounded linear map, and PC := EE∗ : H → H is a
projection in B(H ), and every projection in B(H ) is of this form.

IVExercise Show that in a C∗-algebra:

1. 0 and 1 are projections.

2. A projection p is an effect, that is, p∗ = p and 0 6 p 6 1.

3. The orthocomplement p⊥ ≡ 1− p of a projection p is a projection.
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4. An effect a is a projection iff aa⊥ = 0.

V Lemma Let a be an element of a C∗-algebra A with ‖a‖ 6 1, and let p and q

be projections on A . Then a∗pa 6 q⊥ iff paq = 0 iff aqa∗ 6 p⊥.

VI Proof Suppose that a∗pa 6 q⊥. Then we have qa∗paq 6 qq⊥q = 0 (see 25 II) and
so paq = 0, because ‖paq‖2 = ‖(paq)∗paq‖ = 0 by the C∗-identity. Applying
( · )∗, we get qa∗p = 0, and so both qa∗ = qa∗p⊥ and aq = p⊥aq, giving us
aqa∗ = p⊥aqa∗p⊥ 6 p⊥, where we used that aqa∗ 6 aa∗ 6 ‖aa∗‖ = ‖a‖2 6 1.
By a similar reasoning, we get aqa∗ 6 p⊥ =⇒ paq = 0 =⇒ a∗pa 6 q⊥. �

VII Exercise Let a be an effect of a C∗-algebra A , and p be a projection from A .

VIII Show that a 6 p iff p
√
a =

√
a iff

√
ap =

√
a iff p⊥

√
a = 0 iff

√
ap⊥ = 0 iff

a2 6 p iff pa = a iff ap = a iff p⊥a = 0 iff ap⊥ = 0 iff
√
a 6 p.

IX Show that p 6 a iff p
√
a = p iff

√
ap = p iff p

√
a
⊥

= 0 iff
√
a
⊥
p = 0 iff p 6 a2

iff ap = p iff pa = p iff pa⊥ = 0 iff a⊥p = 0 iff p 6
√
a.

X Lemma An effect a of a C∗-algebra A is a projection iff the only effect below a

and a⊥ is 0.

XI Proof On the one hand, if a is a projection, and b is an effect with b 6 a

and b 6 a⊥, then a⊥b = 0 and ab = 0 by VIII, and so b = ab+ a⊥b = 0. On the
other hand, if 0 is the only effect below both a and a⊥, then aa⊥ ≡

√
aa⊥
√
a

being an effect below a, and below a⊥, is zero, and so a is projection, by IV. �

XII Definition We say that projections p and q from a C∗-algebra A are orthogonal
when pq = 0, and we say that a subset of projections from A is orthogonal (and
its elements are pairwise orthogonal) when all p and q from E are either equal
or orthogonal.

XIII Exercise Let A be a C∗-algebra.

1. Show that projections p and q from A are orthogonal iff pq = 0 iff qp = 0
iff pqp = 0 iff p+ q 6 1 iff p 6 q⊥ iff p+ q is a projection.

2. Show that a finite set of projections p1, . . . , pn from A is orthogonal
iff
∑
i pi 6 1 iff

∑
i pi is a projection.

Show that, in that case,
∑
i pi is the least projection above p1, . . . , pn.

XIV Exercise Let p and q be projections from a C∗-algebra with p 6 q.
Show that q − p is a projection (either directly, or using XIII).



3.2.1 Ceiling and Floor

56Proposition Above every effect b of a von Neumann algebra A , there is a

smallest projection, dbe, we call the ceiling of b, given by dbe =
∨∞
n=0 b

1/2n .
Moreover, if a ∈ A commutes with b, then a commutes with dbe.

IIProof Let p denote the supremum of 0 6 b 6 b1/2 6 b1/4 6 · · · 6 1.

IIITo begin, note that if a ∈ A commutes with b, then a commutes with p. Indeed,

for such a we have a
√
b =
√
ba by 23VII, and so ab1/2n = b1/2na for each n by

induction. Thus ap = pa by 44XIII.

IVLet us prove that p is a projection, i.e. p2 = p. Since p 6 1, we already have
p2 ≡ √pp√p 6 p by 25 II, and so we only need to show that p 6 p2. We have:

p2 =
∨
m

√
p b1/2m √p by 44VIII

=
∨
m b

1/2m+1
p b1/2m+1

by III and 23VII

=
∨
m

∨
n b

1/2m+1
b1/2n b1/2m+1

by 44VIII

Thus p2 > b1/2k for each k (taking n = m = k + 1,) and so p2 > p.

VIt remains to be shown that p is the least projection above b. Let q be a

projection in A with b 6 q; we must show that q 6 p. We have b1/2 6 q
by 55VIII, and so b1/2n 6 q for each n by induction. Hence p 6 q. �

VIProposition Below every effect b of a von Neumann algebra A , there is greatest

projection, bbc, we call the floor of b, given by bbc =
∧∞
n=0 b

2n .
Moreover, if a ∈ A commutes with b, then b commutes with bbc.

VIIProof Let p denote the infimum of 1 > b > b2 > b4 > · · · > 0.

VIIIIf a ∈ A commutes with b, then a commutes with p. Indeed, such a commutes

with b2 (because ab2 = bab = b2a,) and so a commutes with b2
n

for each n by
induction. Thus a commutes with p ≡

∧
n b

2n (by a variation on 44XIII.)

IXTo see that p is a projection, c.q. p2 = p, we only need to show that p 6 p2,
because we get p2 ≡ √p p√p 6 p from p 6 1 (using 25 II.) Now, since

p2 =
∧
m

√
p b2

m√
p by a variation on 44VIII

=
∧
m b2

m−1

p b2
m−1

by VIII and 23VII

=
∧
m

∧
n b2

m−1

b2
n

b2
m−1

by 44VIII,

and p 6 b2
m−1

b2
n

b2
m−1

for all n,m, we get p 6 p2.
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X It remains to be shown that p is the greatest projection below b. Let q be a
projection in A with q 6 b. We must show that q 6 p. Since q 6 b, we have q 6
b2 (by 55 IX), and so q 6 b2

n

for each n by induction. Thus q 6 p ≡
∧
n b

2n . �

XI Exercise Show that given an effect a and a projection p in a von Neumann
algebra A we have

1. pa = a iff ap = a iff dae 6 p, and

2. pa = p iff ap = p iff p 6 bac.

Conclude that dae is the least projection p with a = ap (or, equivalently, a = pa),
and that bac is the greatest projection p with p = ap (or, equivalently, p = pa.)

In particular, a = a dae = dae a and bac = a bac = bac a.

XII Example Given a finite complete measure space X we have

df◦e = 1◦{x∈X : f(x)>0} and bf◦c = 1◦{x∈X : f(x)=0}

for every f ∈ L∞(X) with 0 6 f◦ 6 1.

XIII Exercise Let a, b be effects of a von Neumann algebra A , and let λ ∈ [0, 1].

1. Show that dae⊥ =
⌊
a⊥
⌋

and bac⊥ =
⌈
a⊥
⌉
.

2. Show that dλae = dae when λ 6= 0.

Use this to prove that
⌈
λa+ λ⊥b

⌉
is the supremum of dae and dbe in the

poset of projections of A when λ 6= 0 and λ 6= 1.

3. Show that bac =
⌊
a2
⌋

and dae =
⌈
a2
⌉
.

XIV Lemma The supremum of a directed set D of projections from a von Neumann
algebra A is a projection.

XV Proof Writing p =
∨
D, we must show that p2 = p. Note that dp = d for

all d ∈ D (by 55 IX because d 6 p.) Now, on the one hand, (d)d∈D converges
ultraweakly to p. On the other hand, (dp)d∈D converges ultraweakly to p2

by 44VII. Hence p = p2 by uniqueness of ultraweak limits.

XVI Exercise Deduce from this result that every set A of projections from A has a
supremum

⋃
A and an infimum

⋂
A in the poset of projections from A .

(Hint: use XIII, and the fact that p 7→ p⊥ is an order anti-isomorphism on the
poset of projections on A .)



XVIIExercise Let A be a von Neumann algebra.

1. Show that d
∨
De =

⋃
d∈D dde for every directed set D of effects from A .

2. Show that b
∧
Dc =

⋂
d∈D bdc for every filtered set D of effects from A .

3. Show that d · e does not preserve filtered infima, and b · c does not preserve
directed suprema. (Hint: 1, 1

2 ,
1
3 , . . . .)

Conclude that d · e and b · c are neither ultraweakly, ultrastrongly nor norm
continuous as maps from [0, 1]A to [0, 1]A .

XVIIIExercise Show that for a family (pi)i∈I of pairwise orthogonal projections
(with I potentially uncountable) the series

∑
i pi converges ultrastrongly to

⋃
i pi.

(Hint: use the fact that
∑
i∈F pi =

⋃
i∈F pi for finite subsets F of I by 55XIII.)

57Lemma Let a, b be effects of a von Neumann algebra A . Then b
√
ab
√
ac is the

greatest projection below a and b, that is, b
√
ab
√
ac = bac ∩ bbc.

IIProof Surely, b
√
ab
√
ac 6

√
ab
√
a 6 a. Let us prove that b

√
ab
√
ac 6 b. To

this end, recall that (by 55 IX) a projection e is below an effect c iff ec = e iff
e
√
c = e. In particular, since b

√
ab
√
ac 6

√
ab
√
a and b

√
ab
√
ac 6 a, we get⌊√

ab
√
a
⌋

=
⌊√

ab
√
a
⌋√

ab
√
a
⌊√

ab
√
a
⌋

=
⌊√

ab
√
a
⌋
b
⌊√

ab
√
a
⌋
,

and so b
√
ab
√
ac b⊥ b

√
ab
√
ac = 0, which implies that b

√
ab
√
ac 6 b by 55V.

IIINow, let e be a projection below a and b, that is, e
√
a = e and eb = e. We must

show that e 6 b
√
ab
√
ac, or equivalently, e 6

√
ab
√
a, or put yet differently,

e
√
ab
√
a = e. But this is obvious: e = e

√
a = eb

√
a = e

√
ab
√
a. �

58Having seen that b
√
ab
√
ac = bac∩ bbc in 57 one might wonder whether there is

a similar expression for d
√
ab
√
ae, but this doesn’t seem to exist. However, for

projections p and q we have dpqpe = p ∩ (p⊥ ∪ q) as we’ll show below.

IILemma Let p be a projection, and let a be an effect of a von Neumann algebra
with a 6 p. We have p− dae = bp− ac.

IIIProof We must show that p − dae is the greatest projection below p − a. To
begin, p− dae 6 p− a, because a 6 dae. Further, since a 6 p, we have dae 6 p,
and so p− dae is a projection (by 55XIV).

Let q be a projection below p − a. We must show that q 6 p − dae. The
trick is to note that a 6 p − q. Since p − q is a projection (by 55XIV because
q 6 p− a 6 p), we have dae 6 p− q, and so q 6 p− dae. �
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IV Proposition We have dpqpe = p ∩ (p⊥ ∪ q) for all projections p and q from a
von Neumann algebra.

V Proof Observe that ( p ∩ (p⊥ ∪ q) )⊥ = p⊥ ∪ (p ∩ q⊥). Since p⊥ and p ∩ q⊥ are

disjoint, we have p⊥ ∪ (p∩ q⊥) = p⊥ + p∩ q⊥, and so p∩ (p⊥ ∪ q) = p− p∩ q⊥.
By point V, it suffices to show that dpqpe = p− p ∩ q⊥, that is, p− dpqpe =

p ∩ q⊥. Since p − dpqpe = bp− pqpc by II and
⌊
pq⊥p

⌋
= p ∩ q⊥ by 57 we are

done. �

3.2.2 Range and Support

59 Notation Let A be a von Neumann algebra. Because it will be very convenient
we extend the definition of dbe to all positive b from A — contrary to what the
notation suggests, b 6 dbe — by defining dbe =

⌈
‖b‖−1b

⌉
when b 66 1.

Now, given an arbitrary element b of A , we’ll call db) := db∗be the support
(projection) of b, and (be := dbb∗e the range (projection) of b.

II Remark Some explanation is in order here. We did not just introduce the range
and support notation for its own sake, but will use it extensively in §3.4 thanks
to calculation rules such as ab = 0 ⇐⇒ da) (be = 0 (see 60VIII). The notation
was chosen such that (be b = b = b db) (see VI). Good examples are

d |x〉〈y| ) = |y〉〈y| and ( |x〉〈y| e = |x〉〈x|

for unit vectors x and y from a Hilbert space H .

III Exercise Let a and b be positive elements of a von Neumann algebra A .

1. Given a projection p in A show that pa = a iff ap = a iff dae 6 p.
(In particular, dae is the least projection p of A with ap = a.)

2. Show that dae a = a dae, and if fact, if b ∈ A commutes with a then b
commutes with dae.

3. Show that a = 0 iff dae = 0.

4. Show that dae = dλae for every λ > 0.

Show that da+ be = dae ∪ dbe.

5. Show that
⌈
a2
⌉

= dae.



IVExercise Let a be a self-adjoint element of a von Neumann algebra.

1. Show that da+e da−e = 0. (Hint: recall from 24 II that a+a− = 0.)

2. Show that da+e a = a da+e = a+ and da−e a = a da−e = −a−.

VExercise Show that d
∨
De =

⋃
d∈D dde for every bounded directed set of positive

elements of a von Neumann algebra A .

VIExercise Let a and b be elements of a von Neumann algebra.

1. Show that da) ≡ da∗ae is the least projection p of A with ap = a.

2. Show that (ae ≡ daa∗e is the least projection p of A with pa = a.

3. Show that da∗) = (ae and (a∗e = da).

4. Show that dab) 6 db) and (abe 6 (ae.

VIIExercise Let T be a bounded operator on a Hilbert space H .

1. Show that (T e is the projection onto the closure Ran(T ) of the range of T .

2. Show that dT ) is the projection onto the support of T , i.e. the orthocom-
plement Ker(T )⊥ of the kernel of T .

3. Show that bT c is the projection on {x ∈ H : Tx = x } when T is an
effect.

60Lemma Given a positive element a of a von Neumann algebra A and an np-
functional ω : A → C we have ω(a) = 0 iff ω(dae) = 0.

IIProof Note that if a = 0, the stated result is clearly correct, and the other case,
when ‖a‖ 6= 0, the problem reduces to the case that 0 6 a 6 1 by replacing a
by a
‖a‖ . So let us just assume that a ∈ [0, 1]A to begin with. For similar reasons,

we may assume that ω(1) 6 1.
Now, since 0 6 a 6 dae we have 0 6 ω(a) 6 ω(dae), so ω(dae) = 0 =⇒

ω(a) = 0 is obvious. It remains to be shown that ω(dae) = 0 given ω(a) = 0.
Since dae =

∨
n a

1/2n (by 56 I) and ω is normal, we have ω(dae) =
∨
n ω(a1/2n),
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and so it suffices to show that ω(a1/2n) = 0 for each n. As a result of Kadison’s
inequality (see 30 IV) we have ω(

√
a)2 6 ω(a) = 0, and so ω(

√
a) = 0. Since

then ω(
√√

a) = 0 by the same token, and so on, we get ω(a1/2n) = 0 for all n
by induction. �

III Proposition For positive elements a and b of a von Neumann algebra A ,

dae 6 dbe ⇐⇒ ∀ω [ ω(b) = 0 =⇒ ω(a) = 0 ],

where ω ranges over all np-functionals A → C.

IV Proof When dae 6 dbe and ω is an np-functional on A with ω(b) = 0, then 0 6
ω(dae) 6 ω(dbe) = 0 (by I), and so ω(dae) = 0, so that ω(a) = 0 (again by I).

For the other direction, assume that ω(b) = 0 =⇒ ω(a) = 0 for ev-
ery np-functional ω on A ; we must show that dae 6 dbe, or in other words,
dbe⊥ dae dbe⊥ = 0. Let ω : A → C be an arbitrary np-functional; it suffices to
show that ω( dbe⊥ dae dbe⊥ ) = 0. Since dbe⊥bdbe⊥ = 0 we have ω(dbe⊥bdbe⊥) =
0 and so ω(dbe⊥adbe⊥) = 0 (by assumption, because ω(dbe⊥( · )dbe⊥) is an np-
functional on A as well), which implies that ω(dbe⊥ dae dbe⊥) = 0 by I. �

V Proposition Let f : A → B be an np-map between von Neumann algebras.
Then df(a)e = df(dae)e for every a ∈ A+.

VI Proof By III it suffices to show that ω(f(a)) = 0 iff ω(f(dae)) = 0 for every
np-functional ω : B → C, and this is indeed the case by I. �

VII Exercise Let a and b be elements of a von Neumann algebra A .

1. Deduce from V that da∗bae = da∗ dbe ae when b > 0.

2. Conclude that dab) = dda) b) and (abe = (a (bee (see 59 I).

VIII Exercise Let a and b be elements of a von Neumann algebra A .

1. Show that cb = 0 iff dc) (be = 0 iff dc) 6 (be⊥ for c ∈ A .

(Hint: if cb = 0, then db∗c∗cbe ≡ db∗ dc∗ce be = 0 by VII.)

2. Show that c1b = c2b =⇒ c1 = c2 for all c1, c2 ∈ A with dci) 6 (be.

3. Show that b∗c1b = b∗c2b =⇒ c1 = c2 for all c1, c2 ∈ (beA (be



IXExercise Let f : A → B be an np-map between von Neumann algebras.

1. Show that df(p ∪ q)e = df(p)e ∪ df(q)e for all projections p and q in A .

(Hint: recall from 56XIII that p ∪ q =
⌈

1
2p+ 1

2q
⌉
.)

2. Deduce from this and V that df(
⋃
A)e =

⋃
a∈A df(a)e for every set of

projections A from A .

3. Show that there is a greatest projection e in A with f(e) = 0.

61Given the rule df(dae)e = df(a)e for an np-map f and self-adjoint a one might
surmise that the equation df(da))e = df(a)) holds for arbitrary a; but one would
be mistaken to do so. We can, however, recover an inequality by assuming that f
is completely positive, see II. One of its corollaries is that ncpsu-isomorphisms
are in fact nmiu-isomorphisms (see 99 IX).

IIProposition Given an ncp-map f : A → B between von Neumann algebras we
have, for all a ∈ A ,

df( da) )e 6 df(a) ) and df( (ae )e 6 ( f(a)e .

IIIProof Since f(a)∗f(a) 6 ‖f(1)‖2 f(a∗a) by 34XIV, we get df(a) ) ≡ df(a)∗f(a)e 6
d ‖f(1)‖2f(a∗a) e 6 df(a∗a)e = df(da∗ae)e ≡ df(da))e.

One obtains df( (ae )e 6 ( f(a)e along similar lines. �

62Proposition Let f : A → B be a ncpsu-map between von Neumann algebras.
Then bf(a)c = bf(bac)c for every effect a from A .

IIProof Since bac 6 a, we have bf(bac)c 6 bf(a)c. Thus we only need to show
that bf(a)c 6 bf(bac)c, or equivalently, bf(a)c 6 f(bac). We have

bf(a)c 56XIII
===

⌊
f(a)2

⌋ 4XV
6

⌊
f(a2)

⌋
6 bf(a)c ,

and so bf(a)c =
⌊
f(a2)

⌋
. By induction, and similar reasoning, we get bf(a)c =⌊

f(a2n)
⌋
6 f(a2n) for every n, and so bf(a)c 6

∧
n f(a2n) = f(

∧
n a

2n) =

f(bac), where we used that f is normal, and bac =
∧
n a

2n (see 56VI). �
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3.2.3 Carrier and Commutant

63 Definition The carrier of an np-map f : A → B between von Neumann algebras

(written dfe) is the least projection p with f(p⊥) = 0 (which exists by 60 IX.)

II Exercise Let f, g : A → B be np-maps between von Neumann algebras.

1. Show that dλfe = dfe for all λ > 0.

2. Show that df + ge = dfe ∪ dge.

3. Show that dfe = 1 iff f is faithful.

4. Assuming f is multiplicative show that dfe = 1 iff f is injective.

(There is more to be said about the carrier of a nmiu-map, see 69 IV.)

III Exercise

1. Given an element a of a von Neumann algebra A show that

da∗( · )ae = daa∗e ≡ (ae

where a∗( · )a is interpreted as an np-map A → A .

2. Given a bounded operator T : H → K between Hilbert spaces show
that dT ∗( · )T e is the projection onto Ran(T ) when T ∗( · )T is interpreted
as a map B(K )→ B(H ).

3. Show that d〈x, ( · )x〉e = |x〉〈x| for any unit vector x from a Hilbert
space H when 〈x, ( · )x〉 is interpreted as a map B(H )→ C.

(But be warned: when A is a von Neumann subalgebra of B(H ) the car-
rier of the restriction 〈x, ( · )x〉 : A → C might differ from |x〉〈x| because
the former is in A , while the latter may not be, see 88 IV.)

IV Lemma Let f : A → B be a p-map between C∗-algebras, and let p be an effect

of A with f(p⊥) = 0. Then f(a) = f(pa) = f(ap) = f(pap) for all a ∈ A .



VProof Assume B = C for now. Since p⊥ 6 1, we have (p⊥)2 =
√
p⊥p⊥

√
p⊥ 6

p⊥, and so 0 6 f( (p⊥)2 ) 6 f(p⊥) = 0, giving us f( (p⊥)2 ) = 0. Since

|f(p⊥a)|2 6 f( (p⊥)2 ) f(a∗a) = 0 by Kadison’s inequality, 30 IV, we get f(p⊥a) =
0, and so f(pa) = f(a) for all a ∈ A . In particular, f(ap) = f(pa∗)∗ = f(a∗)∗ =
f(a) for all a ∈ A , and so f(pap) = f(pa) = f(a) for all a ∈ A .

Letting B be again arbitrary, and given a ∈ A , note that since the states
on B are separating (by 22VIII) it suffices to show that ω(f(a)) = ω(f(ap)) =
ω(f(pa)) = ω(f(pap)) for all states ω : B → C. But this follows from the
previous paragraph since ω ◦ f is a p-map into C. �

VICorollary Given an np-map f : A → B between von Neumann algebras we
have f(a) = f(dfe a) = f(a dfe) = f(dfe a dfe) for all a ∈ A .

64We turn to the task of showing that every element of a von Neumann algebra
is the norm limit of linear combinations of projections in 65 IV. We’ll deal with
the commutative case first (see II).

IIProposition Every element a of a commutative von Neumann algebra A is the
norm limit of linear combinations of projections.

IIIProof By 53 II it suffices to show that the linear span of projections is norm
dense in C(sp(A )). For this, in turn, it suffices by Stone–Weierstraß’ theo-
rem (see 27XX) to show that the projections in C(sp(A )) separate the points
of sp(A ) in the sense that given x, y ∈ sp(A ) with x 6= y there is a projection f
in C(sp(A )) with f(x) 6= f(y). Since sp(A ) is Hausdorff there are for such x
and y disjoint open subsets U and V of sp(A ) with x ∈ U and y ∈ V .

Then f := 1U is a projection in C(sp(A )) (continuous because U is clopen
by 53 III) with f(x) = 0 6= 1 = f(y) since x ∈ U ⊆ sp(A )\V , and so y /∈ U . �

65To reduce the general case to the commutative case we need the following tool
(that will be useful later on too for different reasons).

IIDefinition Given a subset S of a von Neumann algebra A the commutant of S
is the set, denoted by S�, of all a ∈ A with as = sa for all s ∈ S.

The commutant of A itself is denoted by Z(A ) := A � and is called the
centre of A . (Its elements, called central, are the subjects of the next section.)

IIIExercise Let S and T be subsets of a von Neumann algebra A .

1. Show that S ⊆ T� iff T ⊆ S�.

Show that S ⊆ T entails T� ⊆ S�.

Show that S ⊆ S��, and S��� = S�.
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2. Show that S� is closed under addition, (scalar) multiplication, contains
the unit of A , and is ultraweakly closed.

3. Show that the commutant S� need not be closed under involution.
(Hint: compute {

(
0 1
0 0

)
}� in M2.)

Suppose S is closed under involution.

Show S� is closed under involution as well, and conclude that in that
case S� is a von Neumann subalgebra of A .

Show that Z(A ) is a von Neumann subalgebra of A .

Show that S�� is a von Neumann subalgebra of A with S ⊆ S��.

Show that if S is commutative (i.e. S ⊆ S�), then so is S��.

4. In particular, if B is a von Neumann subalgebra of A , then B�� is a von
Neumann subalgebra of A with B ⊆ B��.

Show that ( A ∩ C )� = A , and so ( A ∩ C )�� = Z(A ).

Nevertheless, we’ll see in 88V that B�� = B when A is of the form
A = B(H ) for some Hilbert space H .

5. Given a von Neumann subalgebra B of A verify that Z(B) = B ∩B�.

IV Proposition Every self-adjoint element a of a von Neumann algebra A is the

norm limit of linear combinations of projections from {a}��.

V Proof Since a is an element of the by III commutative von Neumann subal-

gebra {a}�� of A , a is the norm limit of linear combinations of projections
from {a}�� by 64 II. �

66 The carriers of np-functionals play such an important role in the theory that we
decided to give them a name.

II Definition We call a projection p of a von Neumann algebra A ultracyclic
if p = dωe for some np-map ω : A → C.

III Remark Some explanation of this terminology is in order. A projection E in a
von Neumann subalgebra R of B(H ) is usually defined to be cyclic when E is
the projection onto R�x for some x ∈H (see Definition 5.5.8 [43]). With 88 IV
and 88VI we’ll be able to see that this amount to requiring that E be the
carrier of the vector functional 〈x, ( · )x〉 : R → C. So, loosely speaking, a cyclic



projection is the carrier of a vector functional with respect to some fixed Hilbert
space, while an ultracyclic projection is the carrier of a vector functional with
respect to some arbitrary Hilbert space.

IVExercise Let A be a von Neumann algebra. Verify the following facts.

1. If p and q are ultracyclic projections in A , then p ∪ q is ultracyclic.

2. If p 6 q are projections in A , and q is ultracyclic, then p is ultracyclic.

3. Every projection p in A is a directed supremum of ultracyclic projections.
In fact, p =

∨
ω dωe where ω ranges over the np-functionals on A with

ω(p⊥) = 0. (Hint: first consider p = 1.)

4. Every projection p in A is the sum of ultracyclic projections: there are
np-functionals (ωi)i on A with p =

∑
i dωie.

3.2.4 Central Support and Central Carrier

67Definition An element a of a von Neumann algebra A is called central when ab =
ba for all b ∈ A (that is, when a ∈ Z(A ), see 65 III).

IIExamples

1. In a commutative von Neumann algebra every element is central.

2. An element a of a direct sum
⊕

i Ai of von Neumann algebras is central
iff ai is central for each i.

3. In B(H ), where H is a Hilbert space, only the scalars are central.

Indeed, given a positive central elementA of B(H ), we have
〈
x,A‖y‖2x

〉
=

〈x,A |x〉〈y| y〉 = 〈x, |x〉〈y|Ay〉 = 〈x, ‖
√
Ay‖2x〉 for all x, y ∈ H , and

so A‖y‖2 = ‖
√
Ay‖2 for all y ∈H . Hence A is (zero or) a scalar.

IIIRemark A von Neumann algebra in which only the scalars are central — of
which the B(H ) are but the simplest examples — is called a factor. The
classification of these factors is an important part of the theory of von Neumann
algebras that we did not need in this thesis.
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IV Exercise Note that if a von Neumann algebra A can be written as a direct
sum A ∼= B1⊕B2, then (1, 0) ∈ B1⊕B2 gives a central projection in A . The
converse also holds:

1. Given a central projection c in A , show that cA ≡ { ca : a ∈ A } is a von
Neumann subalgebra of A for all but the fact that 1 need not be in cA .

Show cA is a von Neumann algebra with c as unit, and that a 7→ (ca, c⊥a)
gives a nmiu-isomorphism A → cA ⊕ c⊥A .

2. Given a family of central projections (ci)i in A with
∑
i ci = 1 show that

a 7→ (cia)i gives a nmiu-isomorphism A →
⊕

i ciA .

68 Proposition Given a projection e of a von Neumann algebra A

ddeee :=
⋃
a∈A

da∗eae

is the least central projection above e.

II Proof Let us first show that ddeee is central. Given b ∈ A we have dddeee b) =
db∗ ddeee be =

⋃
a∈A db∗ da∗eae be =

⋃
a∈A d(ab)∗eabe 6 ddeee by 60 IX, which im-

plies that ddeee b ddeee = ddeee b. Since similarly (or consequently) ddeee b ddeee = b ddeee
we get b ddeee = ddeee b ddeee = ddeee b, and so ddeee is central.

Clearly e 6 ddeee. It remains to be shown that ddeee 6 c given a central
projection c with e 6 c. For this it suffices to show that dea) ≡ da∗eae 6 c
given a ∈ A . Now, since e 6 c we have ec = e and so eac = eca = ea which
implies that dea) 6 c. Thus ddeee 6 c. �

III Definition Let a be an element of a von Neumann algebra A . Since given a
central projection c of A we have ddda)ee 6 c iff da) 6 c iff ac = a iff ca = a iff
dd(aeee 6 c, we see that ddaee := ddda)ee = dd(aeee is the smallest central projection p
with pa = a, which we’ll call the central support of a.

IV Exercise Let A be a von Neumann algebra.

1. Show that ddaee = dda∗ee = dda∗aee = ddaa∗ee for all a ∈ A .

2. Show that dd
∨
Dee =

⋃
d∈D dddee for any bounded directed subset of A .

Show that dd
⋃
Eee =

⋃
e∈E ddeee for any collection of projections from A .

Show that dda+ bee = dddae ∪ dbeee = ddaee ∪ ddbee for all a, b ∈ A .



3. Given a ∈ A and a central projection c of A show that ddaee c = ddacee.

Conclude that ddaee ddbee = dda ddbeeee = ddddaee bee = ddaee ∩ ddbee for all a, b ∈ A .

69Definition Let f : A → B be an np-map between von Neumann algebras. Show

that given a central effect c of A we have f(c⊥) = 0 iff dfe 6 c iff dddfeee 6
c, and so ddfee := dddfeee is the least central effect (and central projection) p
with f(p⊥) = 0, which we’ll call the central carrier of f .

IIProposition Every two-sided ideal D of a von Neumann algebra A that is
closed under bounded directed suprema of self-adjoint elements — for example
when A is ultrastrongly closed — is of the form cA for some unique central
projection c of A . Moreover, c is the greatest projection in D .

IIIProof We’ll obtain c as the supremum over all effects in D , and to this end we’ll

show first that D ∩ [0, 1]A is directed. Since dae ∪ dbe ≡
⌈

1
2a+ 1

2b
⌉

(see 56XIII)
is an upper bound for a, b ∈ D ∩ [0, 1]A it suffices to show that dae ∈ D for
all a ∈ D ∩ [0, 1]A , which, in turn, follows from dae =

∨
n a

1/2n , see 56 I.

Hence D ∩ [0, 1]A is directed, and so we may define c :=
∨

D ∩ [0, 1]A .
Since D is a von Neumann subalgebra of A , we’ll have c ∈ D ∩ [0, 1]A , and
so c is the greatest element of D ∩ [0, 1]A . In particular, c will be above dce
implying dce = c and making c a projection—the greatest projection in D .

Given a ∈ A we claim that a ∈ D iff ca = a. Surely, if a = ca, then a =
ca ∈ D , because D is a two-sided ideal of A . Concerning the other direction,
note that given a ∈ D the equality ac = a holds when a is an effect by 55VIII
(because a 6 c), and thus when a is self-adjoint too (by scaling), and hence for
arbitrary a ∈ D by writing a ≡ aR + iaI where aR and aI are self-adjoint.

Note that this claim entails that D ⊆ cA . Since D is an ideal we also
have cA ⊆ D , and so D = cA . The claim also entails that c is central. Indeed,
given a ∈ A we have ac ∈ D (because D is an ideal) and so c(ac) = ac by the
claim. Since similarly (ca)c = ca, we get ac = ca.

The only thing that remains to be shown is that c is unique. To this end
let c and c′ be central projections with cA = D = c′A . As c′ ∈ D = cA , there
is a ∈ A with c′ = ca. Then c′ = c′(c′)∗ = caa∗c∗ 6 cc∗‖aa∗‖ = c‖a‖2, and
so c′ 6 c. Since similarly c 6 c′, we get c = c′. �

IVCorollary Given a nmiu-map f : A → B between von Neumann algebras we

have dfe = ddfee and ker(f) = ddfee⊥A .
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V Lemma We have ddωee = d%ωe for every np-functional ω : A → C on a von
Neumann algebra A , where %ω is as in 30VI.

VI Proof Let e be a projection in A . Note that 0 = ‖%ω(e)(ηω(a))‖2 ≡ ω(a∗ea)

iff da∗eae 6 dωe⊥ iff da dωe a∗e 6 e⊥ for all a ∈ A . So since the ηω(a)’s
lie dense in Hω, we have %ω(e) = 0 iff %ω(e)(ηω(a)) = 0 for all a ∈ A iff⋃
a∈A da dωe a∗e 6 e⊥. Hence d%ωe =

⋃
a∈A da dωe a∗e ≡

⋃
a∈A da∗ dωe ae =

dddωeee = ddωee by 68 I. �

VII Proposition Given a collection of np-functionals Ω on a von Neumann alge-
bra A we have d%Ωe =

⋃
ω∈Ω ddωee for %Ω : A → B(HΩ) from 30VI.

VIII Proof Let e be a projection of A . Since %Ω(e)(x) =
∑
ω∈Ω %ω(xω) by 30VI for

all x ∈ HΩ ≡
⊕

ω∈Ω Hω, we have %Ω(e) = 0 iff %ω(e) = 0 for all ω ∈ Ω iff e 6
d%ωe⊥ ≡ ddωee⊥ iff e 6

⋂
ω∈Ω ddωee⊥ ≡ (

⋃
ω∈Ω ddωee)⊥. Hence d%Ωe =

⋃
ω∈Ω ddωee.

�

IX Corollary For a collection Ω of np-functionals on a von Neumann algebra, the
following are equivalent.

1. Ω is centre separating (see 21 II).

2. A central projection z of A is zero when ω(z) = 0 for all ω ∈ Ω.

3. The map %Ω : A → B(HΩ) from 30VI is injective.

X Proof We’ve seen in 30X that 1 ⇐⇒ 3, and 1⇒2 is trivial, which leaves us
with 2⇒3. So assume that ∀ω ∈ Ω [ω(z) = 0 ] =⇒ z = 0 for every central

projection z of A . Then since d%Ωe⊥ is a central projection by VII with d%Ωe⊥ =(⋃
ω∈Ω ddωee

)⊥ =
⋂
ω∈Ω ddωee

⊥ 6 ddωee⊥ 6 dωe⊥ and thus ω(d%Ωe⊥) 6 ω(dωe⊥) =

0 for all ω ∈ Ω we get d%Ωe⊥ = 0, and so %Ω is injective by 63 II. �

70 With our new-found knowledge on central elements we can complete the classi-
fication of commutative von Neumann algebras we started in 52.

II Exercise Show that every central projection c of a von Neumann algebra is of
the form c ≡

∑
i ddωiee for some family of np-functionals (ωi)i on A .

III Theorem Every commutative von Neumann algebra is nmiu-isomorphic to a
direct sum of the form

⊕
i L
∞(Xi) where Xi are finite complete measure spaces.

IV Proof By II we have 1 ≡
∑
i ddωiee for some np-functionals ωi : A → C, and

so A ∼=
⊕

i ddωieeA by 67 IV. Since A is commutative, and so ddωiee = dωie, we



see that restricting ωi gives a faithful functional on ddωieeA , which is therefore
by 54XI nmiu-isomorphic to L∞(Xi) for some finite complete measure space Xi.
From this the stated result follows. �

3.3 Completeness

71We set to work on the ultrastrong and bounded ultraweak completeness of von
Neumann algebras (see 77 I) and their precursors:

1. A linear (not necessarily positive) functional on a von Neumann algebra
is ultraweakly continuous iff it is ultrastrongly continuous (see 72XI).

2. A convex subset of a von Neumann algebra is ultraweakly closed iff it is
ultrastrongly closed (see 73VIII).

3. (Kaplansky’s density theorem) The unit ball (A )1 of a C∗-subalgebra A
of a von Neumann algebra B is ultrastrongly dense in (Ā )1 where Ā is
the ultrastrong (=ultraweak, 73VIII) closure of A (see 74 IV).

4. Any von Neumann subalgebra A of B is ultraweakly and ultrastrongly
closed in B (see 75VIII).

5. The von Neumann algebra B(H ) of bounded operators on a Hilbert
space H is ultrastrongly (76 I) and bounded ultraweakly complete (76 III).

3.3.1 Closure of a Convex Subset

72We saw in 46 III that a positive linear functional f on a von Neumann algebra
is ultrastrongly continuous iff it is ultraweakly continuous. In this section, we’ll
show that the same result holds for an arbitrary linear functional f . Note that
if f is ultraweakly continuous, then f is automatically ultrastrongly continuous
(because ultrastrong convergence implies ultraweak convergence). For the other
direction, we’ll show that if f is ultrastrongly continuous, then f can be written
as a linear combination f ≡

∑3
k=0 i

kfk of np-maps f0, . . . , f3, and must therefore
be ultraweakly continuous. We’ll need the following tool.

IIDefinition Let A be a von Neumann algebra. Given an np-map ω : A → C,
and b ∈ A , define b ∗ ω : A → C by (b ∗ ω)(a) = ω(b∗ab) for all a ∈ A .
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III Exercise Let ω : A → C be an np-map on a von Neumann algebra A .

1. Note that b ∗ ω : A → C is an np-map for all b ∈ A .

Show that |ω(a∗bc)| 6 ‖ω‖ ‖a‖ω ‖b‖ ‖c‖ω for all a, b, c ∈ A .

Deduce that ‖b∗ω−b′∗ω‖ 6 ‖ω‖ ‖b−b′‖ω (‖b‖ω+‖b′‖ω) for all b, b′ ∈ A .

2. Let b1, b2, . . . be a sequence in A which is Cauchy with respect to ‖ · ‖ω.
Show that the sequence b1 ∗ω, b2 ∗ω, . . . is Cauchy (in the operator norm
on bounded linear functionals A → C), and converges to a bounded linear
map f : A → C. Show that f is an np-map.

IV Exercise Let f : A → C be an ultrastrongly continuous linear functional on a
von Neumann algebra A . Show that there are an np-map ω : A → C and δ > 0
with |f(a)| 6 1 for all a ∈ A with ‖a‖ω 6 δ.

(Keep this in mind when reading the following lemma.)

V Lemma Let ω : A → C be an np-map, and let f : A → C be a linear map.
The following are equivalent.

1. |f(a)| 6 B for all a ∈ A with ‖a‖ω 6 δ, for some δ,B > 0;

2. |f(a)| 6 B‖a‖ω for all a ∈ A , for some B > 0;

3. f(a) = [b, a]ω for all a ∈ A , for some b ∈ Hω (where Hω is the Hilbert
space completion of A with respect to the inner-product [ · , · ]ω).

4. f ≡ f0 + if1 − f2 − if3 where f0, . . . , f3 : A → C are np-maps for which
there is B > 0 such that fk(a) 6 Bω(a) for all a ∈ A+ and k.

VI Proof We make a circle.

VII (4=⇒1) For a ∈ A and k, we have |fk(a)|2 6 fk(1) fk(a∗a) 6 fk(1)B ω(a∗a),

giving |fk(a)| 6 (fk(1)B)1/2‖a‖ω, and so |f(a)| 6 B̃‖a‖ω, where

B̃ = B1/2
∑3
k=0 fk(1)1/2.

Hence |f(a)| 6 B̃ for all a ∈ A with ‖a‖ω 6 1.

VIII (1=⇒2) Let a ∈ A , and ε > 0 be given. Then for ã := δ(ε + ‖a‖ω)−1 a,
we have ‖ã‖ω 6 δ, and so |f(ã)| ≡ δ(ε + ‖a‖ω)−1 |f(a)| 6 B, which entails
|f(a)| 6 Bδ−1(ε+ ‖a‖ω). Since ε > 0 was arbitrary, we get |f(a)| 6 Bδ−1‖a‖ω.



IX(2=⇒3) Since |f(a)| 6 B‖a‖ω for all a ∈ A , the map f can be extended to a

bounded linear map f̃ : Hω → C. Then by Riesz’ representation theorem, 5 IX,
there is b ∈Hω with f̃(x) = [b, x]ω for all x ∈Hω. In particular, f(a) = [b, a]ω
for all a ∈ A .

X(3=⇒4) We know that f(a) ≡ [b, a]ω for all a ∈ A , for some b ∈ Hω. Then,
by definition of Hω, there is a sequence b1, b2, . . . in A which converges to b
in Hω. Then the maps [bn, · ]ω : A → C approximate f = [b, · ]ω in the sense
that |f(a)− [bn, a]ω| = |[b− bn, a]ω| 6 ‖b− bn‖ω‖a‖ω 6 ‖b− bn‖ω‖ω‖1/2‖a‖ for
all a ∈ A . In particular, [b1, · ]ω, [b2, · ]ω, . . . converges to f (in the operator

norm). By “polarisation” (c.f. 44 II), we have [bn, a]ω = 1
4

∑3
k=0 i

kfk,n(a), where
fk,n := (ikbn + 1) ∗ ω is an np-map. Since (ikbn + 1)n is Cauchy with respect
to ‖ · ‖ω, we see by III that (fk,n)n converges to an np-map fk : A → C (with

respect to the operator norm). It follows that f = 1
4

∑3
k=0 i

kfk.
It remains to be shown that there is B > 0 with fk(a) 6 Bω(a) for all k

and a ∈ A+. Note that since fk,n(a) 6 ‖ikbn + 1‖ω ω(a) 6 (‖bn‖ω + 1)ω(a), for
all n, k, and a ∈ A+, the number B := limn ‖bn‖ω + 1 will do. �

XICorollary For a linear map f : A → C on a von Neumann algebra A the
following are equivalent.

1. f is ultrastrongly continuous;

2. f is ultraweakly continuous;

3. f ≡ f0 + if1 − f2 − if3 for some np-maps f0, . . . , f3 : A → C;

4. “f is bounded on some ‖ · ‖ω-ball,” that is,

sup{ |f(a)| : a ∈ A : ‖a‖ω 6 δ } < ∞

for some δ > 0 and np-map ω : A → C;

5. |f(a)| 6 ‖a‖ω for all a ∈ A , for some np-map ω : A → C.

73We’ll show that the ultrastrong and ultraweak closure of a convex set agree.
For this we need the following proto-Hahn–Banach separation theorem, which
concerns the following notion of openness.

IIDefinition A subset A of a real vector space V is called radially open if for
all a ∈ A and v ∈ V there is t ∈ (0,∞) with a+ sv ∈ A for all s ∈ [0, t).
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III Exercise Let V be a vector space.

1. Show that the radially open subsets of V form a topology.

2. Show that with respect to this topology, scalar multiplication and trans-
lations x 7→ x+ a by a fixed vector a ∈ V are continuous.

3. Show that {(0, 0)}∪B1(−1)∪B1(1)∪B2(−2)c ∪B2(2)c is a radially open
subset of R2, which is not open in the usual topology.

4. Show that addition on R2 is not jointly radially continuous.

5. Show that nevertheless {s ∈ R : sx + (1 − s)y ∈ A} is open for every
radially open A ⊆ V , and x, y ∈ V .

6. Show that A+B is radially open when A,B ⊆ V are radially open.

Show that {λa : a ∈ A, λ > 0} is radially open when A is radially open.

IV Theorem For every radially open convex subset K of a real vector space V
with 0 /∈ K there is a linear map f : V → R with f(x) > 0 for all x ∈ K.

V Proof (Based on Theorem 1.1.2 of [43].)
By Zorn’s Lemma we may assume without loss of generality that K is max-

imal among radially open convex subsets of V that do not contain 0.
We also assume that K is non-empty, because if K = ∅, the result is trivial.
We will show in a moment that H := {x ∈ V : − x, x /∈ K} is a linear

subspace and V/H is one-dimensional. From this we see that there is a linear
map f : V → R with ker(f) = H. Since f(K) is a convex subset which does
not contain 0 (because H ∩K = ∅) we either have f(K) ⊆ (0,∞) or f(K) ⊆
(−∞, 0). Thus, by replacing f by −f if necessary, we see that there is a linear
map f : V → R with f(x) > 0 for all x ∈ K.

VI (H is a linear subspace) Note that x ∈ K, λ > 0 =⇒ λx ∈ K, because
the subset {λx : x ∈ K,λ ∈ (0,∞)} ⊇ K is radially open, convex, doesn’t
contain 0, and is thus K itself. Furthermore, x, y ∈ K =⇒ x+ y ∈ K, because
x+ y = 2( 1

2x+ 1
2y), and K is convex.

Let K be the set of all x ∈ V with x+ y ∈ K for all y ∈ K. Then it is not
difficult to check that K is a cone: 0 ∈ K, and x ∈ K,λ > 0 =⇒ λx ∈ K, and
x, y ∈ K =⇒ x+ y ∈ K.

We claim that x ∈ K iff −x /∈ K. Indeed, if x ∈ K, then −x /∈ K, because
otherwise −x ∈ K and so 0 = x + (−x) ∈ K, which is absurd. For the other



direction, suppose that −x /∈ K. Then x + y ∈ K for all y ∈ K, because
{λx+ y : y ∈ K,λ > 0} ⊇ K is radially open, convex, doesn’t contain 0, and is
thus K.

It follows that H = K ∩ −K. Since K is a cone, −K is a cone, and thus H
is a cone. But then −H = H is a cone too, and thus H is a linear subspace.

VII(V/H is one-dimensional) Note that H 6= V , because K ∩ H = ∅ and K is
(assumed to be) non-empty. So to show that V/H is one-dimensional, it suffices
to show that any x, y ∈ V are linearly dependent in V/H. We may assume
that x ∈ K and y ∈ −K. It suffices to find s ∈ [0, 1] with 0 = sx + s⊥y.
The trick is to consider the sets S0 = {s ∈ [0, 1] : sx + s⊥y ∈ −K} and S1 =
{s ∈ [0, 1] : sx + s⊥y ∈ K}, which are open (because K and −K are radially
open), non-empty (because 0 ∈ S0 and 1 ∈ S1), and therefore cannot cover [0, 1]
(because [0, 1] is connected). So there must be s ∈ (0, 1) such that sx+ s⊥y is
neither in K nor in −K, and thus sx+s⊥y ∈ H (by definition of H). Whence x
and y are linearly dependent in V/H (since s 6= 0). �

VIIIExercise We will use IV to prove that an ultrastrongly closed convex subset K
of a von Neumann algebra A is ultraweakly closed as well.

Let us first simplify the problem a bit. If K is empty, the result is trivial,
so we may as well assume that K 6= ∅. Note that we must show that no
net in K converges ultraweakly to any element a0 ∈ A outside K, but by
considering K−a0 instead of K, we see that it suffices to show that no net in K
converges ultraweakly to 0 under the assumption that 0 /∈ K. To this end we’ll
find an ultraweakly continuous linear map g : A → C and δ > 0 with g(k)R > δ
for all k ∈ K—if a net (kα)α in K were to converge ultraweakly to 0, then g(kα)R
would converge to 0 as well, which is impossible.

1. Show that there is an np-map ω : A → C and ε > 0 with ‖k‖ω > ε for
all k ∈ K. (Hint: use that K is ultrastrongly closed).

2. Show that B := {b ∈ A : ‖b‖ω < ε} is convex, radially open, B ∩K = ∅.

Show that B −K is convex, radially open, and 0 /∈ B −K.

3. Use IV to show that there is an R-linear map f : A → R with f(b) < f(k)
for all b ∈ B and k ∈ K. Show that f can be extended to a C-linear map
g : A → C by g(a) = f(a)− if(ia) for all a ∈ A .

4. Show that |f(b)| 6 f(k) and |g(b)| 6 2f(k) for all b ∈ B and k ∈ K.
(Hint: b ∈ B =⇒ −b ∈ B.)

Conclude that g is ultraweakly continuous (using 72XI and K 6= ∅).
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5. It remains to be shown that there is δ > 0 with f(k) ≡ g(k)R > δ for
all k ∈ K. Show that in fact there is b0 ∈ B with f(b0) > 0, and that
f(k) > f(b0) > 0 for all k ∈ K.

3.3.2 Kaplansky’s Density Theorem

74 Proposition Let A be a von Neumann algebra, and let f : R→ R be a contin-
uous map with f(t) = O(t), that is, there are n ∈ N and b ∈ [0,∞) such that
|f(t)| 6 b |t| for all t ∈ R with |t| > n.

Then the map a 7→ f(a), AR → AR, see 28 II, is ultrastrongly continuous.

II Proof (An adaptation of Lemma 44.2 from [12].)
Let S denote the set of all continuous g : R→ R such that a 7→ g(a), AR →

AR is ultrastrongly continuous. We must show that f ∈ S.
Let us first make some general observations. The identity map t 7→ t is

in S, any constant function is in S, and S is closed under addition, and scalar
multiplication. In particular, any affine transformation (t 7→ at + b) is in S.
Moreover, we have g ◦ h ∈ S when g, h ∈ S, and also gh ∈ S provided that g is
bounded. Finally, S is closed with respect to uniform convergence.

Now, as f(t) = f(t) 1
1+t2 + f(t) t2

1+t2 one can see from the remarks above
that it suffices to show that t 7→ f(t) 1

1+t2 is in S — here we use that t 7→
f(t) t

1+t2 is bounded. In other words, we may assume without loss of generality,
that f vanishes at infinity, i.e. limt→∞ f(t) = 0.

Suppose for the moment that there is e ∈ S, e 6= 0, which vanishes at infinity.
Let a, b ∈ R. Then ea,b : R → R, t 7→ e(at + b) — an affine transformation
followed by e — is also in S, vanishes at infinity, and can be extended to a
continuous real-valued function on the one-point compactification R∪{∞} of R
(by defining ea,b(∞) = 0). It is easy to see that the C∗-subalgebra of C(R∪{∞})
generated by these extended ea,b’s separates the points of R ∪ {∞}, and is
thus C(R ∪ {∞}) itself by the Stone–Weierstraßtheorem (see 27XX). Since f
vanishes at infinity, f can be extended to an element of C(R ∪ {∞}), and can
thus be obtained (by taking real parts if necessary) from the extended ea,b’s
and real constants via uniform limits, addition and (real scalar) multiplication.
Since S contains the ea,b’s and constants and is closed under these operations
(acting on bounded functions), we see that f ∈ S.

To complete the proof, we show that such e indeed exists. Let e, s : R → R
be given by e(t) = ts(t) and s(t) = 1

1+t2 . Clearly e and s are continuous and



vanish at infinity. To see that e is ultrastrongly continuous, let (bα)α be a net
of self-adjoint elements of A which converges ultrastrongly to a ∈ AR, and
let ω : A → C be an npu-map. Unfolding the definitions of e and s yields the
following equality.

e(bα)− e(a) = s(bα) (bα − a) s(a) − e(bα) (bα − a) e(a).

Since ‖s(bα)‖ 6 1, we have ‖s(bα)(bα − a)s(a)‖ω 6 ‖(bα − a)s(a)‖ω ≡ ‖bα −
a‖s(a)∗ω. Similarly, since ‖e(bα)‖ 6 1, we get

‖e(bα)− e(a)‖ω 6 ‖bα − a‖s(a)∗ω + ‖bα − a‖e(a)∗ω.

Thus e(bα) converges ultrastrongly to e(a), and so e is ultrastrongly continuous.
�

IIICorollary Given a von Neumann algebra A the map a 7→ |a| : AR → AR is
ultrastrongly continuous.

IVKaplansky Density Theorem Let b be an element of a von Neumann algebra B
which is the ultrastrong limit of a net of elements from a C∗-subalgebra A of B.
Then b is the ultrastrong limit of a net (aα)α in A with ‖aα‖ 6 ‖b‖ for all α.
Moreover,

1. if b is self-adjoint, then the aα can be chosen to be self-adjoint as well;

2. if b is positive, then the aα can be chosen to be positive as well, and

3. if b is an effect, then the aα can be chosen to be effects as well.

VProof Let (aα)α be a net in A that converges ultrastrongly to b.
Assume for the moment that b is self-adjoint. Then (aα)R converges ultra-

weakly (but perhaps not ultrastrongly) to bR = b as α→∞, and so b is in the
ultraweak closure of the convex set AR. Since the ultraweak and ultrastrong
closure of convex subsets of A coincide (by 73VIII), we see that b is also the ultra-
strong limit of some net (a′α)α in AR. Since the map −‖b‖∨( · )∧‖b‖ : BR → BR
is ultrastrongly continuous by I we see that a′′α := −‖b‖ ∨ a′α ∧ ‖b‖ gives a net
(a′′α)α in [−‖b‖, ‖b‖]A that converges ultrastrongly to b.

If we assume in addition that b is positive, then a′′′α := (a′′α)+ gives a
net (a′′′α )α in [0, ‖b‖]A that converges ultrastrongly to b+ = b, because the map
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( · )+ : BR → BR is ultrastrongly continuous by I. Note that if b is an effect,
then so are the a′′′α .

This takes care of all the special cases. The general case in which b is an
arbitrary element of B requires a trick: since the element B :=

(
0 b
b∗ 0

)
of the

von Neumann algebra M2(B) is self-adjoint, and the ultrastrong limit of the net( 0 aα
a∗α 0

)
from the C∗-subalgebra M2(A ) of M2(B), there is, as we’ve just seen, a

net (Aα)α in M2(A ) that converges ultrastrongly to B with ‖Aα‖ 6 ‖B‖ ≡ ‖b‖
for all α. Since the upper-right entries (Aα)12 will then converge ultrastrongly
to B12 ≡ b as α→∞, and ‖(Aα)12‖ 6 ‖Aα‖ 6 ‖b‖ for all α, we are done. �

VI Corollary Given ε > 0 and an ultraweakly dense ∗-subalgebra S of a von
Neumann algebra A each element a of A is the ultrastrong limit of a net (sα)α
from S with ‖sα‖ 6 ‖a‖(1 + ε) for all α.

VII Proof As the norm closure C of S in A is an ultraweakly (and thus by 73VIII
ultrastrongly) dense C∗-subalgebra of A , the element a of A is by IV the
ultrastrong limit of net (cα)α∈D in C with ‖cα‖ 6 ‖a‖ for all α. Each element cα
is in its turn the norm (and thus ultrastrong) limit of a sequence sα1, sα2, . . .
in S , and if we choose the sαn such that ‖cα − sαn‖ 6 2−n, then sαn converge
ultrastrongly to b as D × N 3 (α, n) → ∞. Finally, since limn ‖sαn‖ = ‖cα‖ 6
‖c‖ 6 (1 + ε)‖c‖ we have ‖sαn‖ 6 (1 + ε)‖c‖ for sufficiently large n, and thus
for all n if we replace (sαn)n by the appropriate subsequence. �

3.3.3 Closedness of Subalgebras

75 Recall that according to our definition (42V) a von Neumann subalgebra B
of a von Neumann algebra A is a C∗-subalgebra of A which is closed under
suprema of bounded directed sets of self-adjoint elements. We will show that
such B is ultrastrongly closed in A .

II Lemma Let B be a von Neumann subalgebra of a von Neumann algebra A .
Let ω0, ω1 : A → C be npu-maps, which are separated by a net (bα)α of effects
of B in the sense that limα ω0(bα) = 0 and limα ω1(b⊥α ) = 0. Then ω0 and ω1

are separated by a projection q of B in the sense that ω0(q) = 0 = ω1(q⊥).

III Proof (Based on Lemma 45.3 and Theorem 45.6 of [12].)

Note that it suffices to find an effect a in B with ω0(a) = 0 = ω1(a⊥),

because then ω0(dae) = 0 = ω1(dae⊥) by 60 I and dae ∈ B.

Note that we can find a subsequence (bn)n of (bα)α such that ω0(bn) 6



n−12−n and ω1(b⊥n ) 6 n−1 for all n. For n < m, define

anm = (1 +
∑m
k=n kbk)−1

∑m
k=n kbk.

Since we have seen in 25 II that the map d 7→ (1 + d)−1d is order preserving
(on B+), we have 0 6 anm 6 1

2 and we get the formation

a12 6 a13 6 a14 6 · · · 6 a1

a23 6

6

a24 6

6

· · · 6 a2

6

a34 6

6

· · · 6 a3

6
. . .

...
6

a

6

,

where an :=
∨
m>n anm and a :=

∧
n an. We’ll prove that ω0(a) = 0 = ω1(a⊥).

IV(ω0(a) = 0) Since ω0(bn) 6 n−12−n and anm 6
∑m
k=n kbk, we get ω0(anm) 6∑m

k=n kω0(bk) 6 21−n, and so ω0(a) =
∧
n

∨
m>n ω0(anm) 6

∧
n 21−n = 0.

V(ω1(a⊥) = 0) Let m > n be given. Since
∑m
k=n kbk > mbm and d 7→ (1 + d)−1d

is monotone on B+ we get anm > (1+mbm)−1mbm, and so a⊥nm 6 (1+mbm)−1.
Observe that for a real number t ∈ [0, 1], we have tt⊥ > 0, and so (1 +

mt)(1 + mt⊥) = 1 + m + m2tt⊥ > 1 + m. This yields the inequality (1 +
mt)−1 6 (1 + m)−1(1 + mt⊥) for real numbers t ∈ [0, 1]. The corresponding
inequality for effects of a C∗-algebra (obtained via Gelfand’s representation
theorem, 27XXVII) gives us ω1(a⊥nm) 6 ω1((1 + mbm)−1) 6 (1 + m)−1(1 +
mω1(b⊥m)) 6 2

1+m , where we have used that ω1(b⊥m) 6 1
m . Hence ω1(a⊥n ) =∧

m>n ω1(a⊥nm) 6
∧
m>n

2
1+m = 0 for all n, and so ω1(a⊥) =

∨
n ω1(a⊥n ) = 0. �

VILemma Let B be a von Neumann subalgebra of a von Neumann algebra A .
Let p be a projection of A , which is the ultrastrong limit of a net in B.

For all npu-maps ω0, ω1 : A → C with ω0(p) = 0 = ω1(p⊥) there is a
projection q of B with ω0(q) = 0 = ω1(q⊥).
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VII Proof Let (bα)α be a net in B which converges ultrastrongly to p. We may
assume that all bα are effects by Kaplansky’s density theorem (74 IV). Note
that (ω0(bα))α converges to ω0(p) ≡ 0, and (ω1(b⊥α ))α converges to ω1(p⊥) ≡ 0.
Now apply II. �

VIII Theorem A von Neumann subalgebra B of a von Neumann algebra A is
ultrastrongly and ultraweakly closed.

IX Proof It suffices to show that B is ultrastrongly closed, because then, by 73VIII,
B will be ultraweakly closed as well.

Let p be a projection of A which is the ultrastrong limit of a net from B.
It suffices to show that p ∈ B, because the ultrastrong closure of B being a
von Neumann subalgebra of A is generated by its projections, see 65 IV. Note
that given an np-map ω : A → C, the carrier dωe of ω need not be equal to the
carrier of ω restricted to B, which we’ll therefore denote by dωeB; but we do
have dωe 6 dωeB. Then by 66 IV∨

ω1
dω1eB >

∨
ω1
dω1e = p =

∧
ω0
dω0e⊥ >

∧
ω0
dω0e⊥B , (3.1)

where ω0 ranges over np-maps ω0 : A → C with ω0(p) = 0, and ω1 ranges over
np-maps ω1 : A → C with ω1(p⊥) = 0. Since for such ω0 and ω1 there is by VI

a projection q in B with ω0(q) = 0 = ω1(q⊥), we get dω1eB 6 q 6 dω0e⊥B, and

so
∨
ω1
dω1eB 6

∧
ω0
dω0e⊥B. It follows that the inequalities in (3.1) are in fact

equalities, and so p =
∨
ω1
dω1eB ∈ B. �

3.3.4 Completeness

76 Proposition The von Neumann algebra B(H ) of bounded operators on a
Hilbert space H is ultrastrongly complete.

II Proof Let (Tα)α be an ultrastrongly Cauchy net in B(H ) (which must be
shown to converge ultrastrongly to some operator T in B(H )).

Note that given x ∈ H , the net (Tαx)α in H is norm Cauchy, because
‖(Tα − Tβ)x‖ = ‖Tα − Tβ‖〈x,( · )x〉 vanishes for sufficiently large α, β, and so we
may define Tx := limα Tαx, giving a map T : H →H .

It is clear that T will be linear, but the question is whether T is bounded,
and whether in that case (Tα)α converges ultrastrongly to T .

Suppose towards a contradiction that T is not bounded. Then we can
find x1, x2, . . . ∈ H with ‖xn‖2 6 2−n and ‖Txn‖2 > 1 for all n. Since ω :=∑
n 〈xn, ( · )xn〉 : B(H ) → C is an np-map by 38 IV, it follows that ‖Tα‖2ω ≡



∑∞
n=1 ‖Tαxn‖2 converges to some positive number R. Since any partial sum∑N
n=1 ‖Tαxn‖2 6 ‖Tα‖2ω converges to

∑N
n=1 ‖Txn‖2 > N , we must conclude

that R > N , for all natural numbers N , which is absurd. Hence T is bounded.
It remains to be shown that (Tα)α converges ultrastrongly to T . So let

ω : B(H )→ C be an arbitrary np-map, being of the form ω ≡
∑
n 〈xn, ( · )xn〉

for some x1, x2, . . . ∈H with
∑
n ‖xn‖2 <∞ by 39 IX. We must show that ‖T−

Tα‖ω ≡ (
∑
n ‖(T − Tα)xn‖2)1/2 converges to 0 as α→ 0.

Let ε > 0 be given, and pick α0 such that ‖Tα− Tβ‖ω 6 1
2
√

2
ε for all α, β >

α0 — this is possible because (Tα)α is ultrastrongly Cauchy. We claim that
‖T − Tα‖ω 6 ε for any α > α0. Since for such α the sum

∞∑
n=1

‖(T − Tα)xn‖2 =

N−1∑
n=1

‖(T − Tα)xn‖2 +

∞∑
n=N

‖(T − Tα)xn‖2

converges (to ‖T−Tα‖2ω), we can find N such that the second term in the bound
above is below 1

2ε
2. The first term will also be below 1

2ε
2, because

(N−1∑
n=1

‖(T−Tα)xn‖2
)1/2

6
(N−1∑
n=1

‖(T−Tβ)xn‖2
)1/2

+
(N−1∑
n=1

‖(Tβ−Tα)xn‖2
)1/2

for any β, and in particular for β large enough that the first term on the right-
hand side above is below 1

2
√

2
ε. If we choose β > α0 the second term will be

below 1
2
√

2
ε too, and we get ‖T −Tα‖2ω 6 1

2ε
2 + ( 1

2
√

2
ε+ 1

2
√

2
ε)2 ≡ ε2 all in all.

(This reasoning is very similar to that in 6 II.)
Hence B(H ) is ultrastrongly complete. �

IIIProposition The von Neumann algebra B(H ) of bounded operators on a
Hilbert space H is bounded ultraweakly complete.

IVProof Let (Tα)α be a norm-bounded ultraweakly Cauchy net in B(H ). We
must show that (Tα)α converges ultraweakly to some bounded operator T on H .

Note that given x, y ∈H the net ( 〈x, Tαy〉 )α is Cauchy (because 〈x, ( · )y〉 ≡
1
4

∑3
k=0 i

k
〈
ikx+ y, ( · )(ikx+ y)

〉
is ultraweakly continuous), and so we may de-

fine [x, y] = limα 〈x, Tαy〉. The resulting ‘form’ [ · , · ] : H ×H → C (see 36 IV) is
bounded, because ‖[x, y]‖ 6 (supα ‖Tα‖)‖x‖‖y‖ for all x, y ∈H and supα ‖Tα‖ <
∞ since (Tα)α is norm bounded. By 36V, there is a unique bounded operator T
with 〈x, Ty〉 = [x, y] for all x, y ∈H .

By definition of T it is clear that limα 〈x, (T − Tα)x〉 = 0 for any x ∈ H ,
but it is not yet clear that (Tα)α converges ultraweakly to T . For this we must
show that limα ω(T − Tα) = 0 for any np-map ω : B(H ) → C. By 39 IX, we
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know that such ω is of the form ω =
∑
n 〈xn, ( · )xn〉 for some x1, x2, . . . ∈ H

with
∑
n ‖xn‖2 <∞. Now, given N and α we easily obtain the following bound.

|ω(T − Tα)| 6
N−1∑
n=1

|〈xn(T − Tα), xn〉| +
(
‖T‖+ sup

α
‖Tα‖

) ∞∑
n=N

‖xn‖2

Since the first term of this bound converges to 0 as α→∞, we get, for all N ,

lim sup
α
|ω(T − Tα)| 6

(
‖T‖+ sup

α
‖Tα‖

) ∞∑
n=N

‖xn‖2.

Since the tail
∑∞
n=N ‖xn‖2 converges to 0 as N →∞, lim supα |ω(T − Tα)| = 0.

Hence ω(T ) = limα ω(Tα), and so (Tα)α converges ultraweakly to T . �

77 Theorem A von Neumann algebra A is ultrastrongly complete and bounded
ultraweakly complete.

II Proof Let Ω be the set of all np-functionals on A . Recall from 48 IX that
%Ω gives a nmiu-isomorphism onto the von Neumann algebra R := %Ω(A ) of
operators on the Hilbert space HΩ. Since B(HΩ) is ultrastrongly complete
(76 I), and R is ultrastrongly closed in B(HΩ) (see 75VIII), we see that R is
complete with respect to the ultrastrong topology of B(HΩ), but since any
np-functional ω : R → C is of the form ω ≡ 〈x, ( · )x〉 for some x ∈ HΩ, and
therefore the ultrastrong topology on B(HΩ) coincides on R with the ultra-
strong topology of R, we see that R (and therefore A ) is complete with respect
to its own ultrastrong topology. Since similarly B(HΩ) is bounded ultraweakly
complete (76 III), the ultraweak topology on B(HΩ) coincides on R with the
ultraweak topology on R, and R is ultraweakly closed in B(HΩ) (by 75VIII),
we see that R is bounded ultraweakly complete. �

III Theorem The ball (A )1 of a von Neumann algebra A is ultraweakly compact.

IV Proof Writing Ω for the set of npu-maps ω : A → C, the map κ : A → CΩ given
by κ(a) = (ω(a))ω for all a ∈ A is clearly a linear homeomorphism from A with
the ultraweak topology onto κ(A ) ⊆ CΩ endowed with the product topology.
Since κ restricts to an isomorphism of uniform spaces (A )1 → κ( (A )1 ), and
(A )1 is ultraweakly complete (being a norm-bounded ultraweakly closed subset
of the bounded ultraweakly complete space A , see I), we see that κ( (A )1 ) is
complete, and thus closed in CΩ. Now note that κ( (A )1 ) is a closed subset
of the (by Tychonoff’s theorem) compact space ((C)1)Ω, because |ω(a)| 6 1
for all a ∈ (A )1 and ω ∈ Ω. But then κ( (A )1 ), being a closed subset of a



compact Hausdorff space, is compact, and so (A )1 (being homeomorphic to it)
is compact too. �

VProposition Given an ultraweakly dense ∗-subalgebra S of a von Neumann
algebra A , any ultraweakly continuous and bounded linear map f : S → B
can be extended uniquely to an ultraweakly continuous map g : A → B.

Moreover, g is bounded, and in fact, ‖g‖ = ‖f‖.
VIProof As the uniqueness of g is rather obvious we concern ourselves only with

its existence. Let a ∈ A be given in order to define g(a). Let also ε > 0 be
given. Note that by 74VI there is a net (sα)α in S that converges ultrastrongly
(and so ultraweakly too) to a with ‖sα‖ 6 (1 + ε)‖a‖ for all α. Now, since the
net (sα)α is bounded an ultraweakly Cauchy, and f is bounded and (uniformly)
ultraweakly continuous, the net (f(sα))α is bounded and ultraweakly Cauchy
too, and thus converges (by I) to some element uwlimα f(sα) of B.

VIIOf course we’d like to define g(a) := uwlimα f(sα), but must first check that
uwlimα f(s′α) = uwlimα f(sα) when (s′α)α is a second net with the same proper-
ties as (sα)α. Let us for simplicity’s sake assume that (s′α)α and (sα)α have the
same index set — matters can always be arranged this way. Then as the differ-
ence sα−s′α converges ultraweakly to 0 in A as α→∞, uwlimα f(sα−s′α) = 0,
implying that uwlimα f(sα) = uwlimα f(s′α).

VIIIIn this way we obtain a map g : A → B — which is clearly linear. The map g
is also bounded, because since ‖sα‖ 6 (1 + ε)‖a‖ for all α, where (sα)α and t
are as before, we have ‖f(sα)‖ 6 (1 + ε)‖f‖‖a‖ for all α, and so ‖g(a)‖ =
‖ uwlimα f(sα)‖ 6 (1 + ε)‖f‖‖a‖. More precisely, ‖g‖ 6 (1 + ε)‖f‖, and—
as ε > 0 was arbitrary—in fact ‖g‖ 6 ‖f‖, and so ‖g‖ = ‖f‖.

That, finally, g is ultraweakly continuous follows by a standard but abstract
argument from the fact that f is uniformly ultraweakly continuous. We’ll give
a concrete version of this argument here. To begin, note that it suffices to show
that ω ◦ g is ultraweakly continuous at 0 where ω : B → C is an np-functional.
Let ε > 0 be given. Since f is ultraweakly continuous, and thus ω◦f is too, there
is δ > 0 and an np-functional ν : A → C such that |ν(s)| 6 δ =⇒ |ω(f(s))| 6 ε
for all s ∈ S . We claim that |ν(a)| 6 δ/2 =⇒ |ω(g(a))| 6 2ε for all a ∈ A ,
which implies, of course, that ω ◦g is ultraweakly continuous on 0. So let a ∈ A
with |ν(a)| 6 δ/2 be given. Pick (as before) a bounded net (sα)α in S such
that f(sα) converges to a as α→∞, and observe that, for all α,

|ω(g(a))| 6 |ω(g(a)− f(sα))| + |ω(f(sα))| .

The first term on the right-hand side above will vanish as α → ∞ (since
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g(a) = uwlimα f(sα)), and will thus be smaller than ε for sufficiently large α.
Since limα |ν(sα)| = |ν(a)| 6 δ/2 < δ we see that for sufficiently large α we’ll
have |ν(sα)| 6 δ and with it |ω(f(s))| 6 ε. Combined, we get |ω(g(a))| 6 2ε,
and so g is ultraweakly continuous. �

3.4 Division

78 Using the ultrastrong completeness of von Neumann algebras (see 77 I) we’ll
address the question of division: given elements a and b of a von Neumann
algebra A , when is there an element c ∈ A with a = cb? Surely, such c can not
always exist, because its presence implies

a∗a 6 B b∗b, (3.2)

where B = ‖c‖2; but this turns out to be the only restriction: we’ll see in 81V
that if (3.2) holds for some B ∈ [0,∞), then a = cb for some unique c ∈ A
with dc) 6 (be, which we’ll denote by a/b.

The main application of this division in our work is a universal property for
the map b 7→

√
ab
√
a : A → daeA dae where a is a positive element of a von

Neumann algebra A . Indeed, we’ll show that for every np-map f : B → A with
f(1) 6 a there is a (unique) np-map g : B → daeA dae with f(b) =

√
ag(b)

√
a

for all b ∈ B — by taking g(b) =
√
a\(f(b)/

√
a), see 96V. This does not give a

complete description of the map b 7→
√
ab
√
a, though, since it shares its universal

property with all the maps b 7→ c∗bc, A → daeA dae where c ∈ A with c∗c = a,
but that is a challenge for the next chapter.

Returning to division again, another application is the polar decomposition
of an element a of a von Neumann algebra A , see 82 I, which is simply

a = (a/
√
a∗a)

√
a∗a.

Before we get down to business, let us indicate the difficulty in defining a/b
for a and b that obey (3.2). Surely, if b is invertible, then we could simply put
a/b := ab−1; and also if b is just pseudoinvertible in the sense that b∼1b = db)
and bb∼1 = (be for some b∼1 the formula a/b := ab∼1 would work. But, of
course, b need not be pseudoinvertible. The ideal of b∼1 can however be ap-
proximated in an appropriate sense by a formal series

∑
n tn (which we call an

approximate pseudoinverse) so that we can take a/b :=
∑
n atn (using ultra-

strong completeness to see that the series converges.)



3.4.1 (Approximate) Pseudoinverses

79Definition Let a be an element of a von Neumann algebra A . We’ll say that a
is pseudoinvertible if it has a pseudoinverse, that is, an element t of A with
ta = da) = (te and at = dt) = (ae. When such t exists, it is unique (by 60VIII),
and we’ll denote it by a∼1. If a∼1 = a∗, we say that a is a partial isometry
(see IV).

IILemma For elements a, t of a von Neumann algebra the following are equivalent.

1. ta is a projection, and dt) = (ae.

2. ata = a, and dt) 6 (ae and (te 6 da).

3. at is a projection, and da) = (te.

4. tat = t, and da) 6 (te and (ae 6 dt).

5. t is a pseudoinverse of a.

6. a is a pseudoinverse of t.

IIIProof (5 ⇐⇒ 6) is clear. For the remainder we make two loops. (1=⇒2) We
have dt) 6 (ae by assumption, and (te = (t dt)e = (t (aee = (tae = ta = dta) 6
da). Further, ata = a by 60VIII, because tata = ta (since ta is a projection)
and (atae 6 (ae 6 dt). (3=⇒4) follows along the same lines. (2=⇒5) We have
ta = da) by 60VIII, because ata = a = a da), and (tae 6 (te 6 da). Also,
at = (ae, (because ata = a = (ae a, and dat) 6 dt) 6 (ae). Further, dt) = (ae,
because (ae = at = dat) 6 dt) 6 (ae; and, similarly, da) = (te. (4=⇒5) is
proven by the same principles, and (5=⇒1,3) is rather obvious. �

IVExercise Show that an element u of a von Neumann algebra is a partial isometry
iff u∗u is a projection iff uu∗u = u iff uu∗ is a projection iff u∗uu∗ = u∗ iff u∗ is
the pseudoinverse of u. (Hint: use II, or give a direct proof.)

VExercise Let a and b be a elements of a von Neumann algebra A .

1. Show that a is pseudoinvertible iff a∗ is pseudoinvertible, and, in that case,
(a∗)∼1 = (a∼1)∗.

2. Assuming that a and b are pseudoinvertible, and (be = da), show that ab
is pseudoinvertible, and (ab)∼1 = b∼1a∼1.
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3. Show that a is pseudoinvertible iff a∗a is pseudoinvertible, and, in that
case, a∼1 = (a∗a)∼1a∗ and (a∗a)∼1 = a∼1(a∼1)∗.

VI Exercise Let a be a positive element of a von Neumann algebra A .

1. Show that a is pseudoinvertible iff a is invertible in daeA dae iff at = dae
for some t ∈ A+. Show, moreover, that at = ta for such t.

2. Show that a is pseudoinvertible iff there is λ > 0 with λ dae 6 a.

3. Assume that a is pseudoinvertible.

Show that
⌈
a∼1

⌉
= dae.

Show that if b ∈ A commutes with a, then b commutes with a∼1.

(In other words, a∼1 ∈ {a}��.)

4. Show that c∼1 6 b∼1 when b 6 c are pseudoinvertible positive commuting
elements of A . (The statement is still true without the requirement that b
and c commute, but also much harder to prove.)

5. Show that (0, 0, 1, 1
2 ,

1
3 , . . . ) is not pseudoinvertible in `∞.

80 Remark Note that the obvious candidate for the pseudoinverse of (0, 0, 1, 1
2 ,

1
3 , . . . )

from `∞ being (0, 0, 1, 2, 3, . . . ) is not bounded, and therefore not an element
of `∞. We can nevertheless approximate (0, 0, 1, 2, 3, . . . ) by the elements

(0, 0, 1, 0, 0, . . . ), (0, 0, 1, 2, 0, . . . ), . . .

of `∞ forming what we will call “approximate pseudoinverse” for (0, 0, 1, 1
2 ,

1
3 , . . . ).

That this can also be done for an arbitrary element of a von Neumann algebra
is what we’ll see next.

II Definition An approximate pseudoinverse of an element a of a von Neumann al-
gebra A is a sequence t1, t2, . . . of elements of A such that t1a, t2a, . . . , at1, at2, . . .
are projections with

∑
n tna = da) =

∑
n (tne and

∑
n atn = (ae =

∑
n dtn).

III Exercise Let b be an element of a von Neumann algebra A , and let t1, t2, . . .
be an approximate pseudoinverse of b∗b. Show that t1b

∗, t2b
∗, . . . is an approx-

imate pseudoinverse of b.



IVTheorem Every element a of a von Neumann algebra A has an approximate
pseudoinverse.

VProof By III, it suffices to consider the case that a is positive. When a = 0 the
sequence 0, 0, 0, . . . clearly yields an approximate pseudoinverse for a, so let us
disregard this case, and assume that a is positive and non-zero.

Note that a− 1 6 a− 1
2 6 a− 1

3 6 · · · converges in the norm to a ≡ a+,
and so does (a − 1)+ 6 (a − 1

2 )+ 6 . . . , which converges also ultraweakly
to
∨
n(a− 1

n ), so that a =
∨
n(a− 1

n )+, and thus dae =
⋃
n

⌈
(a− 1

n )+

⌉
by 56XVII.

Writing qn = d(a− 1
n )+e — and picturing it as the places where a > 1

n —
we have (a− 1

n )qn = (a− 1
n )+ > 0 (because b db+e = b+ for a positive element b

of a von Neumann algebra, by 59 IV), and so 1
nqn 6 aqn for all n > 0.

Writing en = qn+1 − qn for all n (taking q0 := 0) — and thinking of it as
the places where 1

n+1 6 a < 1
n — we get a sequence of (pairwise orthogonal)

projections e1, e2, . . . in {a}�� with
∑
n en = dae. By an easy computation

involving the facts that 1
n+1 6

1
n and aqn 6 aqn+1, we get 1

n+1en 6 aen 6
1
nen.

We claim that daene = dene for any n. Indeed, on the one hand aen =
enaen 6 ‖a‖en (as en ∈ {a}��) and so daene 6 d‖a‖ene = en (using here that
‖a‖ 6= 0), while on the other hand, 1

n+1en 6 aen gives en ≡ d 1
n+1ene 6 daene. In

particular, 1
n+1 daene = 1

n+1en 6 aen, so that aen is pseudoinvertible (by 79VI).

Writing tn := (aen)∼1, we have dtne = en (since daene = en). Then
tna = tn dtne a = tnena = daene = en, and similarly, atn = en, so that∑
n atn =

∑
n tna =

∑
n en = dae =

∑
n dtne, making t1, t2, . . . an approxi-

mate pseudoinverse of a. �

3.4.2 Division

81Definition Let b be an element of a von Neumann algebra A , and let a be an
element of A b — so a ≡ cb for some c ∈ A . We denote by a/b the (by 60VIII)
unique element c of A (be with a = cb, and, dually, given an element a of bA
we denote by b\a the unique element c of db)A with a = bc.

IIExercise Let a and b be elements of a von Neumann algebra A .

1. Show that c/b is an element of (ceA (be for every element c of bA .

2. Show that (ab)/b = a (be and b\(ba) = db) a.

3. Let c be an element of aA b. Show that a\c ∈ A b, and c/b ∈ aA , and

(a\c)/b = a\(c/b) =: a\c/b.

..79–81..



Show that a\c/b is the unique element d of da) A (be with c = adb.

4. Let c be an element of A b and let d be an element of aA .

Show that dc ∈ aA b, and a\(dc)/b = (a\d) (c/b).

5. Let c be an element of A b. Show that c∗ ∈ b∗A and b∗\c∗ = (c/b)∗.

III Lemma Given elements a and b of a von Neumann algebra A with a∗a 6 b∗b
we have a ∈ A b. Moreover, given an approximate pseudoinverse t1, t2, . . . of b,
the series

∑
n atn converges ultrastrongly to a/b, and uniformly so in a.

IV Proof To show that
∑N
n=0 atn converges ultrastrongly as N →∞ it suffices to

show that (
∑N
n=0 atn )N is ultrastrongly Cauchy (because A is ultrastrongly

complete, by 77 I). To this end, note that

(
∑N
n=M atn )∗

∑N
n=M atn = (

∑N
n=M t∗n) a∗a (

∑N
n=M tn)

6 (
∑N
n=M t∗n) b∗b (

∑N
n=M tn)

=
∑N
n,m=M t∗nb

∗btm

=
∑N
m=M btm,

where we’ve used that bt1, bt2, . . . are pairwise orthogonal projections — but
then the series

∑∞
n=0 btm converges ultraweakly by 56XVIII. This, coupled with

the inequality above, gives us that
∑N
n=0 atn is ultrastrongly Cauchy, and there-

fore converges ultrastrongly — and even uniformly so in a, because “a” does
not appear in the expression “

∑N
m=M btm” that gave the bound.

Define c :=
∑∞
n=0 atn. Since a∗a 6 b∗b, we have da) 6 db), and so a =

a db) = a
∑
n tnb =

∑
n atnb = cb. So to get c = a/b we only need to prove

that dc) 6 (be, that is, c (be = c. To this end, recall that
∑
n dtn) = (be,

so that dtn) 6 (be, and tn (be = tn, which implies that atn (be = atn, and
so c (be =

∑
n atn (be =

∑
n atn = c. �

V Exercise Let a and b be elements of a von Neumann algebra A .

1. Let λ > 0 be given, and recall that (A )λ = {c ∈ A : ‖c‖ 6 λ}.
Show that a is in (A )λb iff a∗a 6 λ2b∗b, and then ‖a/b‖ 6 λ.

(Compare this with “Douglas’ Lemma” from [15].)



2. Show that a ∈ A (be need not entail that a ∈ A b.

VIExercise Let b be an element of a von Neumann algebra A .

1. Let a be a positive element of A , and let λ > 0.

Show that a ∈ b∗(A )λb iff a 6 λb∗b, and then ‖b∗\a/b‖ 6 λ.

2. Show that b∗\a/b is positive for every positive element a of b∗A b.

(Hint: prove that (b∗\
√
a) (
√
a/b) = b∗\a/b.)

VIIExercise Given elements b and c of a von Neumann algebra A , an approximate
pseudoinverse t1, t2, . . . of b, and an approximate pseudoinverse of s1, s2, . . . of c,
show that (

∑N
n=1 sn) a (

∑N
m=1 tm), converges ultrastrongly to c\a/b as N →∞

(and uniformly so) for a ∈ c(A )1b.

VIIIExercise Show that for positive elements a and b of a von Neumann algebra A ,
the following are equivalent.

1. a 6 λb for some λ > 0;

2. a =
√
bc
√
b for some positive c ∈ A .

In that case, there is a unique c ∈ A+ with a =
√
bc
√
b and dce 6 dbe. Moreover,

if t1, t2, . . . is an approximate pseudoinverse of
√
b, then

∑
m,n tmatn converges

ultraweakly to such c.

IXLemma Given elements b and c of a von Neumann algebra A the maps

a 7→ a/b : (A )1b→ A and a 7→ c\a/b : c(A )1b→ A

are ultrastrongly continuous (where (A )1 is the unit ball).

XProof By III the series
∑
n atn converges ultraweakly to a/b, where t1, t2, . . . is

an approximate pseudoinverse of b, and in fact uniformly so for a ∈ (A )1b (be-

cause a∗a 6 b∗b for such a). Since a 7→
∑N
n=1 atn, (A )1b→ A is ultrastrongly

continuous (by 45 IV) — and the uniform limit of continuous functions is con-
tinuous — we see that a 7→ a/b, (A )1b → A is ultrastrongly continuous. It
follows that ( · )/b : c(A )1b→ c(A )1 and c\( · ) : c(A )1 → A are ultrastrongly
continuous; as must be their composition c\ · /b : c(A )1b→ A . �
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XI Remark The map a 7→ a/b might not give an ultrastrongly continuous map on

the larger domain A b, because, for example, upon applying ( · )/(1, 1
2 ,

1
3 , . . . ) to

the ultrastrongly Cauchy sequence (1, 0, 0, . . . ), (1, 1, 0, . . . ), . . . in `∞ we get
the sequence (1, 0, 0, . . . ), (1, 2, 0, . . . ), . . . , which is not ultrastrongly Cauchy.

3.4.3 Polar Decomposition

82 Proposition (Polar Decomposition) Any element a of a von Neumann alge-

bra A can be uniquely written as a = [a]
√
a∗a, where [a] is an element of A da).

Moreover,

1. [a] is partial isometry with [a]∗[a] = da∗ae ≡ da) and [a][a]∗ = daa∗e ≡ (ae,

2. and [a∗] = [a]∗, so that
√
aa∗[a] = a = [a]

√
a∗a.

II Proof Since a∗a 6
√
a∗a
√
a∗a, the existence and uniqueness of an element [a]

of A with a = [a]
√
a∗a and d [a] ) 6 da) ≡

(√
a∗a

⌉
is provided by 81V, and we

get ( [a] e 6 (ae to boot! Note that [a]∗[a] = da∗ae, by 60VIII, because

√
a∗a [a]∗[a]

√
a∗a = a∗a =

√
a∗a da∗ae

√
a∗a,

and d [a]∗[a] e 6 da) =
⌈√

a∗a
⌉
. In particular, [a] is a partial isometry (by 79 IV).

Let us prove that [a][a]∗ = (ae. Note that [a][a]∗ is a projection (because
[a] is a partial isometry, by 79 IV). We already know that [a][a]∗ = ( [a] e 6 (ae.
Concerning the other direction, aa∗ = [a]

√
a∗a
√
a∗a[a]∗ = [a] a∗a [a]∗, so that

(ae = daa∗e = d [a]a∗a[a]∗ e 6
⌈
‖a‖2[a][a]∗

⌉
= d[a][a]∗e 6 [a][a]∗.

To prove that a =
√
aa∗[a], we’ll first show that

√
aa∗ = [a]

√
a∗a[a]∗. Indeed,

since [a]∗[a] =
⌈√

a∗a
⌉
, we have [a]

√
a∗a[a]∗[a]

√
a∗a[a]∗ = [a]

√
a∗a
√
a∗a[a]∗ =

aa∗ — now take the square root. It follows that
√
aa∗[a] = [a]

√
a∗a[a]∗[a] =

[a]
√
a∗a = a. Finally, upon applying ( · )∗, we see that a∗ = [a]∗

√
aa∗, and

thus [a∗] = [a]∗, by uniqueness of [a∗], because d [a]∗ ) = ( [a] e = (ae = da∗). �

83 Recall from 68 I that the least central projection ddeee above a projection e of
a von Neumann algebra A is given by ddeee =

⋃
a∈A da∗eae. Using the polar

decomposition we can give a more economical description of ddeee, see V.

II Proposition Given projections e′ and e of a von Neumann algebra A , the
following are equivalent.



1. e′ = da∗eae for some a ∈ A ;

2. e′ = da) and (ae 6 e for some a ∈ A ;

3. e′ = u∗u and uu∗ 6 e for some partial isometry u.

In that case we write e′ . e (and say e′ is Murray–von Neumann below e).

IIIProof That 3 implies 2 is clear. (2⇒1) Since (ae 6 e, we have ea = a, and
so da∗eae = da∗ae = da) = e′. (1⇒3) By the polar decomposition (see 82 I)
we get a partial isometry u := [ea] for which u∗u = [ea]∗[ea] = d(ea)∗eae = e′

and uu∗ = deaa∗ee 6 e. �

IVExercise Show that . preorders the projections of a von Neumann algebra.

VLemma Given a projection e of a von Neumann algebra A there is a family
(ei)i of non-zero projections with ddeee =

∑
i ei, and ei . e for all i.

VIProof Let (ei)i be a maximal set of non-zero pairwise orthogonal projections
in A with ei . e for all i. Our goal is to show that

∑
i ei ≡

⋃
i ei = ddeee.

Let ui be a partial isometry with u∗i ui = ei and uiu
∗
i 6 e. Since ei = u∗i ui =

u∗i uiu
∗
i ui 6 u

∗
i eui 6

⋃
a∈A da∗eae = ddeee, we have

⋃
i ei 6 ddeee.

Suppose that
⋃
i ei < ddeee (towards a contradiction). Then since p :=

ddeee −
⋃
i ei is a non-zero projection, and p = p ddeee p =

⋃
a∈A dp da∗eae pe =⋃

a∈A d(eap)∗eape, there must be a ∈ A with (eap)∗eap 6= 0. The polar
decomposition (see 82 I) of eap gives us a partial isometry u := [eap] with
uu∗ = deap(eap)∗e = deapa∗ee 6 e and u∗u = d(eap)∗eape 6 p, so that u∗u is a
non-zero projection, orthogonal to all ei with u∗u . e. In other words, e could
have been added to (ei)i, contradicting its maximality. Hence

⋃
i ei = ddeee. �

84Using 83 II we can classify all finite-dimensional C∗-algebras.

IITheorem Any finite-dimensional C∗-algebra A is a direct sum of full matrix
algebras, that is, A ∼=

⊕
mMNm for some N1, . . . , NM ∈ N.

IIIProof Let e1, . . . , eN be a basis for A . We’ll first show that A is a von Neumann
algebra, and for this we’ll need the fact that the unit ball (A )1 is compact
with respect to the norm on A . For this it suffices to show that ‖ · ‖ is
equivalent to the norm ‖ · ‖′ on A given by ‖a‖′ =

∑
n |zn| for all a ≡

∑
n znen

where z1, . . . , zN ∈ C, (because the unit ‖ · ‖′-ball is clearly compact being
homeomorphic to the unit ball of CN .) Since for such a ≡

∑
n znen we have

‖a‖ 6
∑
n |zn| ‖en‖ 6

∑
n |zn| supn ‖en‖ = ‖a‖′ supn ‖en‖

..81–84..



we see that a 7→ a : A → A is continuous from ‖ · ‖′ to ‖ · ‖. For the converse
it suffices to show that fm : a ≡

∑
n zn 7→ zm, A → C is bounded with respect

to ‖ · ‖, because then

‖a‖′ ≡ ‖
∑
n fn(a)en‖′ 6

∑
n |fn(a)| 6 (

∑
n ‖fn‖) ‖a‖.

In fact, we’ll show that any linear functional on A is bounded. Since the
bounded linear functionals form a linear subspace A ∗ of N -dimensional vector
space of all linear functionals on A it suffices to show that A ∗ has dimension N .
So let f1, . . . , fM be a basis for A ∗; we must show that N 6 M . Since the
states of A (see 22VIII) and thus all linear functionals on A form a separating
collection, the functionals f1, . . . , fN form a separating set too; since therefore

a 7→ (f1(a), . . . , fM (a)) : A → CM

is a linear injection from the N -dimensional space A to the M -dimensional
space CM we get N 6M . Whence all linear functionals on A are bounded, the
norms ‖ · ‖ and ‖ · ‖′ are equivalent, and (A )1 is norm compact.

IV (A is a von Neumann algebra) First we need to show that every bounded
directed set D of self-adjoint elements of A has a supremum (in AR). We may
assume without loss of generality that ‖d‖ 6 1 for all d ∈ D, and so D ⊆
(A )1. Since (A )1 is norm compact there is a cofinal subset D′ of D that norm
converges to some a ∈ A , and thus D norm converges to a itself. It’s easily
seen that a is the supremum of D. Indeed, given d0 ∈ D we have d0 6 d for
all d > d0, and so d0 6 limd>d0

d = a. Hence a is an upper bound for D; and
if b is an upper bound for D, then d 6 b for all d ∈ D, and so a = limd d 6 b.

Since in this finite-dimensional setting
∨
D is apparently the norm limit

of (d)d∈D, any positive functional f on A will map
∨
D to the limit of (f(d))d∈D,

which is
∨
d∈D f(d), and so f(

∨
D) =

∨
d∈D f(d). Whence every positive func-

tional on A is normal; and since the positive functionals on A form a separating
collection, A is a von Neumann algebra.

V (Reduction to a factor) Since pairwise orthogonal non-zero projections are easily
seen to be linearly independent, and A is finite dimensional, every orthogonal
set of projections in A is finite. In particular, any descending sequence of non-
zero projections must eventually become constant. It follows that below every
(central) projection p in A there is a minimal (central) projection, and even
that p is the finite sum of minimal (central) projections. In particular, the
unit 1 of A can be written as 1 =

∑
n zn where z1, . . . , zM are minimal central

projections of A . By 67 IV we know that zmA is a von Neumann algebra for



each m, and that A is nmiu-isomorphic to the direct sum
⊕

m zmA of these von
Neumann algebras via a 7→ (zma)m. Since zm is a minimal central projection,
the von Neumann algebra znA has no non-trivial central projections.

VI(When A is a factor) Let e be a minimal projection of A (which exists by
the previous discussion). Since e 6= 0, and A has no non-trivial central pro-
jections, we have ddeee = 1. By 83V we have 1 ≡ ddeee =

∑
k ek for some non-

zero projections e1, . . . , eK in A with ek . e. So there are partial isometries
u1, . . . , uK ∈ A with u∗kuk = ek and uku

∗
k 6 e for all k. In fact, since e is

minimal, we have uku
∗
k = e. Thinking of uk as |0〉〈k| define uk` = u∗ku`; we’ll

show that % : A 7→
∑
k`Ak`uk` : MK → A is a miu-isomorphism. It’s easy to

see that % is linear, involution preserving and unital. To see that % is multiplica-
tive, first note that uju

∗
k equals e when j = k and is zero otherwise. It follows

that uijuk` equals ui` when k = j and is zero otherwise. Whence

%(A)%(B) =
∑
ijk`AijuijBk`uk` =

∑
i`(
∑
k AikBk`)ui` = %(AB)

for all matrices A,B ∈MK , and so % is multiplicative.
It remains to be shown that % is a bijection. To see that % is injective, first

note that % is normal, because using the fact that % is positive and thus bounded,
we can show that % preserves suprema of bounded directed sets in much the same
way we showed that all np-functionals on A are bounded. We can thus speak
of the central carrier dd%ee of %, and thus to show that % is injective it suffices
to show that dd%ee = 1. Since MK is a factor (see 67 II) the only alternative
is dd%ee = 0 i.e. % = 0, which is clearly absurd unless A = {0} in which case we’d
already be done. Hence % is injective.

To see that % is surjective let a ∈ A with a 6= 0 be given. Since a ≡∑
k,` ekae` =

∑
k,` uk1u1kau`1u1`, and uk1 and u1` are in the range of % it suffices

to show that u1kau`1 is in the range of % for all k and `. In other words, we may
assume without loss of generality that eae = a, where e is the minimal projection
in A we started with. Since e(aR)+e = (aR)+, and so on, we may assume that a
is positive. By scaling, we may also assume that ‖a‖ 6 1/3. Since d‖a‖e− ae 6 e,
and e is minimal, we either have d‖a‖e− ae = e or d‖a‖e− ae = 0.

The former case is impossible: indeed, if e = d‖a‖e− ae ≡
∨
n(‖a‖e− a)1/2n

(see 56 I), then (‖a‖e− a)1/2n norm converges to d‖a‖e− ae = e (cf. IV), and so
‖‖a‖e− a‖1/2n converges to ‖e‖ = 1. Then ‖‖a‖e− a‖ = 1, while ‖‖a‖e− a‖ 6
‖a‖‖e‖+ ‖a‖ 6 2

3 , which is absurd.
Hence d‖a‖e− ae = 0, and so a = ‖a‖e. In particular, a is in the range of %.

Whence % is surjective, and thus a miu-isomorphism MN → A . �
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3.5 Normal Functionals

85 For our study of the category of von Neumann algebras we need two more
technical results concerning the normal functionals on a von Neumann algebra.

The first one, that a net (bα)α in a von Neumann algebra A is (norm)
bounded provided that (ω(bα))α is bounded for each np-functionals ω : A → C
(see 87VIII), ultimately follows from a type of polar decomposition for ultra-
weakly linear functionals (see 86 IX).

The second one, that the ultraweak topology of a von Neumann subalgebra
coincides with the ultraweak topology of the surrounding space (see 89XI), is
proven using the double commutant theorem (88VI) and requires a lot of hard
work.

3.5.1 Ultraweak Boundedness

86 To get a better handle on the normal positive functionals on a von Neumann al-
gebra, we first analyse the not-necessarily-positive normal functionals in greater
detail.

II Lemma A linear map f : A → C on a C∗-algebra A is positive iff ‖f‖ 6 f(1).

III Proof (Based on Theorem 4.3.2 of [43].)
If f(1) = 0, then f = 0 in both cases (viz. f is positive, and ‖f‖ 6 f(1)),

so we may assume that f(1) 6= 0. The problem is easily reduced farther to the
case that f(1) = 1 by replacing f by f(1)−1f (noting that f(1) > 0 in both
cases), so we’ll assume that f(1) = 1.

IV (f positive =⇒ ‖f‖ 6 1) This follows immediately from 34XVI and 34 IX,
but here’s a concrete proof: Let a ∈ A be given. Pick λ ∈ C with |λ| = 1
and λf(a) > 0. Then |f(a)| = f(λa) = f(λa)R = f((λa)R) 6 f(‖a‖) = ‖a‖,
because (λa)R 6 ‖(λa)R‖ 6 ‖λa‖ = ‖a‖, and f is positive. Hence ‖f‖ 6 1.

V (‖f‖ 6 1 =⇒ f is positive) Let a ∈ [0, 1]A be given. To prove that f is positive,

it suffices to show that f(a) > 0. Since (f(a)R)⊥ = (f(a)⊥)R 6
∣∣f(a)⊥

∣∣ =∣∣f(a⊥)
∣∣ 6 1, and therefore f(a)R > 0, we just need to show that f(a)I = 0.

The trick is to consider bn := (a − f(a)R) + nif(a)I. Indeed, since (n +

1)2(f(a)I)
2 = |f(bn)|2 6 ‖bn‖2 = ‖b∗nbn‖ 6 ‖a − f(a)R‖2 + n2(f(a)I)

2, one
sees that (2n + 1)(f(a)I)

2 6 ‖a − f(a)R‖2 for all n, which is impossible un-
less (f(a)I)

2 = 0, that is, f(a)I = 0. �



VILemma An extreme point u of the unit ball (A )1 of a C∗-algebra A is a partial

isometry with (uu∗)⊥A (u∗u)⊥ = {0}.
VIIRemark The converse (viz. every such partial isometry is extreme in (A )1) also

holds, but we won’t need it.

VIIIProof (Based on Theorem 7.3.1 of [43].)

To show u is a partial isometry it suffices to prove that u∗u is a projection.
Suppose towards a contradiction that u∗u is not a projection. Then u∗u, rep-
resented as continuous function (on sp(u∗u) cf. 28 II), takes neither the value 0
nor 1 on a neighbourhood of some point, and so by considering a positive con-
tinuous function, which is sufficiently small but non-zero on this neighbourhood
and zero elsewhere, we can find a non-zero element a of the (commutative)
C∗-subalgebra generated by u∗u with 0 6 a 6 u∗u and ‖u∗u(1 ± a)2‖ 6 1, so
that ‖u(1±a)‖ 6 1. Since u is extreme in (A )1, and u = 1

2u(1+a) + 1
2u(1−a),

we get ua = 0, and so 0 6 a2 6
√
au∗u

√
a = u∗ua = 0, which contradicts a 6= 0.

Let a ∈ (uu∗)⊥A (u∗u)⊥ be given; we must show that a = 0. Assume
(without loss of generality) that ‖a‖ 6 1. We’ll show that ‖u±a‖ 6 1, because,
since u is extreme in (A )1, u ≡ 1

2 (u+ a) + 1
2 (u− a) implies that u = u+ a, and

so a = 0. Note that a∗a 6 (u∗u)⊥ (because a(u∗u)⊥ = a) and u∗a = 0 (because
(uu∗)⊥a = a). Thus (u ± a)∗(u ± a) = u∗u ± u∗a ± a∗u + a∗a = u∗u + a∗a 6
u∗u+ (u∗u)⊥ = 1, so ‖u± a‖ 6 1. �

IXTheorem (Polar decomposition of functionals) Every functional f : A → C
on a von Neumann algebra A which is ultraweakly continuous on the unit
ball (A )1 is of the form f ≡ f(uu∗( · )) = f(( · )u∗u) for some partial isometry u
on A such that f(u( · )) and f(( · )u) : A → C are positive.

XProof (Based on Theorem 7.3.2 of [43].)

XIWe’ll first show that f takes the value ‖f‖ at some extreme point u of (A )1. To
begin, since (A )1 is ultraweakly compact (77 III), and f is ultraweakly continu-
ous the subset { f(a) : a ∈ (A )1 } of R is compact, and therefore has a largest el-
ement, which must be ‖f‖. Thus the convex set F := { a ∈ (A )1 : f(a) = ‖f‖ }
is non-empty. Since F is ultraweakly compact (being an ultraweakly closed sub-
set of the ultraweakly compact (A )1), F has at least one extreme point by the
Krein–Milman Theorem (see e.g. Theorem V7.4 of [13]), say u. Note that F is
a face of (A )1: if 1

2a+ 1
2b ∈ F for some a, b ∈ (A )1, then 1

2f(a) + 1
2f(b) = ‖f‖,

so f(a) = f(b) = ‖f‖ (since ‖f‖ is extreme in (C)‖f‖) and thus a, b ∈ F . It
follows that u is not only extreme in F , but also in (A )1, so that u is an partial
isometry with (uu∗)⊥A (u∗u)⊥ = {0} by VI.

Note that f(u( · )) is positive by II, because ‖f(u( · ))‖| 6 ‖f‖‖u‖ 6 ‖f‖ =
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f(u) = f(u(1)). By a similar argument f(( · )u) is positive.
Let a ∈ A be given. It remains to be shown that f(a) = f(uu∗a) = f(au∗u).

First note that u(u∗u)⊥ = 0 (since u is an isometry) and so f(u(u∗u)⊥) = 0,
that is, u∗u > df(u( · ))e. This entails that f(ubu∗u) = f(ub) for all b ∈ A
by 63VI, and in particular f(uu∗au∗u) = f(uu∗a).

Now, since (uu∗)⊥A (u∗u)⊥ = {0}, we have uu∗au∗u+a = uu∗a+au∗u, and
thus f(a) + f(uu∗a) = f(a) + f(uu∗au∗u) = f(uu∗a) + f(au∗u), which yields
f(a) = f(au∗u). By a similar reasoning we get f(uu∗a) = f(a). �

XII Corollary A functional f : A → C on a von Neumann algebra A is ultraweakly
continuous when it is ultraweakly continuous on the unit ball (A )1.

XIII Proof By IX there is a partial isometry u such that f(uu∗( · )) = f and f(u( · ))
is positive. Recall from 44XV that such a positive functional f(u( · )) is normal
when it is ultraweakly continuous on [0, 1]A ; which it is, because a 7→ ua is
ultraweakly continuous (see 45 IV), maps [0, 1]A into (A )1, and f is ultraweakly
continuous on (A )1. But then f ≡ f(uu∗( · )) being the composition of the
ultraweakly continuous maps f(u( · )) and a 7→ u∗a is ultraweakly continuous
on A too. �

XIV Lemma Let f : A → C be a normal functional on a von Neumann algebra A ,
and let u be a partial isometry in A such that f(u( · )) is positive, and f =
f(uu∗( · )). Then ‖f‖ = f(u). �

XV Proof Since f(u( · )) is positive, we have ‖f(u( · ))‖ = f(u) by 34XVI; hence
‖f‖ = ‖f(uu∗( · ))‖ 6 ‖f(u( · ))‖‖u∗‖ ≡ f(u) 6 ‖f‖, and thus ‖f‖ = f(u).

87 Definition Given a von Neumann algebra A , the vector space of ultraweakly
continuous linear maps f : A → C endowed with the operator norm is denoted
by A∗, and called the predual of A .

II Remark The reason that the space A∗ is called the predual of A is the non-
trivial fact due to Sakai [62] (which we don’t need and therefore won’t prove),
that the obvious map A → (A∗)∗, where (A∗)∗ is the dual of A∗ — the vector
space of bounded linear maps A∗ → C endowed with the operator norm —, is a
surjective isometry, and so A “is” the dual of A∗, (albeit only as normed space,
because (A∗)∗ doesn’t come equipped with a multiplication.)

We will need this:

III Proposition The predual A∗ of a von Neumann algebra A is complete (with
respect to the operator norm).



IVProof Let f1, f2, . . . be a sequence in A∗ which is Cauchy with respect to
the operator norm. We already know (from 4V) that f1, f2, . . . converges to
a bounded linear functional f : A → C; so we only need to prove that f is
ultraweakly continuous to see that A∗ is complete, and for this, we only need to
show (by 86XII) that f is ultraweakly continuous on the unit ball (A )1 of A .
So let (bα)α be a net in (A )1 which converges ultraweakly to 0; we must show
that limα f(bα) = 0. Now, note that for every n and α we have the bound

|f(bα)| 6 |(f − fn)(bα)| + |fn(bα)| 6 ‖f − fn‖ + |fn(bα)| .

From this, and limn ‖f − fn‖ = 0, and limα fn(bα) = 0 for all n, one easily
deduces that limα f(bα) = 0. Thus f is ultraweakly continuous, and so A∗ is
complete. �

VNote that for a self-adjoint element a of a von Neumann algebra A we have
‖a‖ = supω |ω(a)| where ω ranges over the npsu-functionals, but that the same
identity does not need to hold for arbitrary (not necessarily self-adjoint) a ∈ A .
The following lemma shows that this restriction to self-adjoint elements can be
lifted by letting ω range over all of A∗.

VILemma We have ‖a‖ = supf∈(A∗)1
|f(a)| for every element a of a von Neumann

algebra A .

VIIProof It’s clear that supf∈(A∗)1
|f(a)| 6 ‖a‖.

For the other direction, write a ≡ [a]
√
a∗a (see 82 I) and note that ‖a‖ =

‖
√
a∗a‖ = supω∈Ω

∣∣ω(
√
a∗a )

∣∣, where Ω is the set of npu-maps A → C (which

is order separating). Let ω ∈ Ω be given. Since [a]∗a =
√
a∗a we have

ω(
√
a∗a ) = ω([a]∗a) = f(a), where f := ω([a]∗( · )) ∈ (A∗)1, and so ‖a‖ =

supω∈Ω ω(
√
a∗a ) 6 supf∈(A∗)1

|f(a)|. �

VIIITheorem A net (bα)α in a von Neumann algebra A is norm bounded (that
is, supα ‖bα‖ < ∞) provided it is ultraweakly bounded, i.e., supα |ω(bα)| < ∞
for every np(u)-map ω : A → C.

IXProof Note that f 7→ f(bα) gives a linear map ( · )(bα) : A∗ → C with ‖( · )(bα)‖ =
‖bα‖ by VI for each α. So to prove that (bα)α is norm bounded, viz. supα ‖bα‖ ≡
supα ‖( · )(bα)‖ < ∞, it suffices to show (by the principle of uniform bounded-
ness, 35 II, using that A∗ is complete, III), that supα |f(bα)| <∞ for all f ∈ A∗.

Since such f ∈ A∗ can be written as f ≡
∑3
k=0 i

kωk where ωk : A → C
are np-maps (by 72V), we see that supα |f(bα)| 6

∑3
k=0 supα |ωk(bα)| < ∞,

because (bα)α is ultraweakly bounded. Thus (bα)α is norm bounded. �

..86, 87



3.5.2 Ultraweak Permanence

88 We turn to a subtle, and surprisingly difficult matter: it is not immediately clear
that the ultraweak topology on a von Neumann subalgebra A of a von Neumann
algebra B, coincides (on A ) with the ultraweak topology on B. While it is easily
seen that the former is finer (that is, a net in A which converges ultraweakly
in A , converges ultraweakly in B too, because any np-map ω : B → C is also
an np-map restricted to A ), it is not obvious that an np-map ω : A → C can
be extended to an np-map on B — but it can, as we’ll see 89XI. We’ll call this
independence of the ultraweak topology from the surrounding space ultraweak
permanence being not unlike the independence of the spectrum of an operator
from the surrounding space known as spectral permanence (11XXIII).

It is tempting to think that the extension of an np-map ω : A → C on a von
Neumann subalgebra A of a von Neumann algebra B to B is simply a matter of
applying Hahn–Banach to ω, but this approach presents two problems: it yields
a normal but not necessarily positive extension of ω; and it not clear that ω is
ultraweakly continuous on A (that is, whether Hahn–Banach applies).

Instead of applying general techniques we feel forced to delve deeper into
the particular structure provided to us by von Neumann algebras (namely the
commutant, 65 II) to show that any np-map ω : A → C on a von Neumann
algebra A of bounded operators on a Hilbert space H can be extended to an
np-map on B(H ), and in fact, is of the form ω ≡

∑
n 〈xn, ( · )xn〉 for some

x1, x2, . . . ∈H , see 89 IX.

II Proposition Let S be a subset of a von Neumann algebra A that is closed
under multiplication, involution, and contains 1. Let e be a projection in A .
Then deeS� =

⋃
a∈S da∗eae is the least projection in S� above e.

(Compare this with the paragraph “Subspaces” of §2.6 of [43].)

III Proof Let us first show that p := deeS� is in S�. Let b ∈ S be given; we must
show that pb = bp. We may may assume without loss of generality that ‖b‖ 6 1.
Since b∗( · )b : A → A is normal and completely positive, and p =

⋃
a∈S da∗eae,

we have b∗pb 6 db∗pbe =
⋃
a∈S db∗ da∗eae be =

⋃
a∈S d(ab)∗ e abe 6 p by 60 IX

and 60V. Applying p⊥( · )p⊥, we get p⊥b∗pbp⊥ 6 p⊥pp⊥ = 0, so that pbp⊥ = 0,
and thus pbp = pb. Since similarly pb∗ = pb∗p, we get bp = pbp = pb (upon
applying ( · )∗) and so p ∈ S�.

Note that e 6 d1∗e1e 6 p, because 1 ∈ S. It remains to be shown that p is
the least projection in S� above e, so let q be a projection in S� above e. Since
for a ∈ S, we have aq⊥a∗ = q⊥aa∗q⊥ 6 ‖a‖2q⊥ 6 ‖a‖2e⊥, and so a∗ea 6 ‖a‖2q



we get da∗eae 6 q for all a ∈ S, and thus p =
⋃
a∈S da∗eae 6 q. �

IVExercise Show that given a vector x of Hilbert space H , and a collection S of
bounded operators on H that is closed under addition, (scalar) multiplication,
involution, and contains the identity operator, the following coincide.

1. d |x〉〈x| eS� , the least projection in S� above d |x〉〈x| e;

2.
⌈
〈x, ( · )x〉 |S�

⌉
, the carrier of the vector functional on S� given by x;

3.
⋃
a∈S d |ax〉〈ax| e; and

4. the projection on Sx.

Conclude that S��x = Sx. (Hint: S��� = S�.)

VNow consider (instead of x) an np-map ω : B(H )→ C, which we know must be
of the form ω ≡

∑
n 〈xn, ( · )xn〉 (by 39 IX) and is therefore given by an element

x′ ≡ (x1, x2, . . . ) of the N-fold product H ′ :=
⊕

n H of H .

1. Show that ω(t) = 〈x′, %′(t)x′〉, where %′ : B(H ) → B(H ′) is the nmiu-
map given by %′(t)y = (tyn)n for all t ∈ B(H ) and y ∈H ′.

Prove that %′(t) =
∑
n P
∗
ntPn, where Pn := πn : H ′ ≡

⊕
n H → H is

the n-th projection.

2. Let t ∈ S�� be given (with S as above). Show that %′(t) ∈ %′(S)��.

(Hint: first show PnaP
∗
m ∈ S� for all m, n, and a ∈ %′(S)�.)

Conclude that %′(t)x′ ∈ %′(S)��x′ ≡ %′(S)x′.

Whence for every ε > 0 one can find a ∈ S with ‖t− a‖ω 6 ε.

3. Deduce that S�� is contained in the ultrastrong closure of S.

VIDouble Commutant Theorem For a collection S of bounded operators on a
Hilbert space H that is closed under addition, (scalar) multiplication, involu-
tion, and contains the identity operator the following are the same.

1. S��, the “double commutant” of S in B(H );

2. us-cl(S), the ultrastrong closure of S in B(H );

3. uw-cl(S), the ultraweak closure of S in B(H );

88..



4. W ∗(S), the least von Neumann subalgebra of B(H ) that contains S.

VII Proof (Based on Theorem 5.3.1 of [43].)
Note that: us-cl(S) ⊆ uw-cl(S), because ultrastrong convergence implies

ultraweak convergence; and uw-cl(S) ⊆ W ∗(S), because W ∗(S) is ultraweakly
closed in B(H ) by 75VIII; and W ∗(S) ⊆ S��, because S�� is a von Neumann
subalgebra of B(H ) by 65 III; and, finally, S�� ⊆ us-cl(S) by V. �

VIII Exercise Show that central elements of a von Neumann algebra A of bounded
operators on a Hilbert space H coincide with the central elements of the com-
mutant A �, that is, Z(A ) = Z(A �). (Hint: A �� = A by VI.)

IX Deduce that ddf |A ee =
⌈⌈
f |A �

⌉⌉
for every np-map f : B(H ) → B into a von

Neumann algebra B.

89 Lemma Let ω : A → C be an np-map on a von Neumann algebra A , which
is represented by nmiu-maps % : A → B(H ) and π : A → B(K ) on Hilbert
spaces H and K . If 〈x, %( · )x〉 = ω = 〈y, π( · )y〉 for some x ∈H and y ∈ K ,
then there is a bounded operator U : K →H for which UU∗ is the projection
on %(A )x, U∗U is the projection on π(A )y, and Uπ(a) = %(a)U for all a ∈ A .

II Proof (Compare this with Proposition 4.5.3 of [43].)
Since ‖%(a)x‖2 = 〈x, %(a∗a)x〉 = ω(a∗a) = 〈y, π(a∗a)y〉 = ‖π(a)y‖2 for

all a ∈ A , there is a unique bounded operator V : π(A )y → %(A )x with
V π(a)y = %(a)x for all a ∈ A . A moment’s thought reveals that V is a
unitary (and so V ∗V = 1 and V V ∗ = 1.) Now, define U := EV F ∗ where
E : %(A )x → H and F : π(A )y → K are the inclusions (and so E∗E = 1
and F ∗F = 1). Then UU∗ = EV F ∗FV ∗E∗ = EV V ∗E∗ = EE∗ is the projec-
tion onto %(A )x, and UU∗ = FF ∗ is the projection onto π(A )y.

Let a ∈ A be given. It remains to be shown that Uπ(a) = %(a)U . To this
end, observe that V F ∗π(a)F = E∗%(a)EV (because these two bounded linear
maps are easily seen to agree on the dense subset π(A )y of π(A )y); and %(a)E =
EE∗%(a)E (because %(a) maps %(A )x into %(A )x); and similarly %(a∗)F =
FF ∗%(a∗)F , so that F ∗%(a) = F ∗%(a)FF ∗ (upon application of the ( · )∗). By
these observations, Uπ(a) = EV F ∗π(a) = EV F ∗π(a)FF ∗ = EE∗%(a)EV F ∗ =
%(a)EV F ∗ = %(a)U . �

III Exercise It is not too difficult to see that the (ultraweak) sum
∑
i ui of a col-

lection (ui)i of partial isometries from some von Neumann algebra is again a
partial isometry, provided that the initial projections u∗i ui are pairwise orthog-
onal, and the final projections uiu

∗
i are pairwise orthogonal. In this exercise,



you’ll establish a similar result, but for partial isometries between two different
Hilbert spaces, and avoiding the use of an analogue of the ultraweak topology
for such operators.

IVLet H and K be Hilbert spaces, and let Ui : H → K be a bounded operator
for every element i from some set I. Assume that the operators U∗i Ui are pair-
wise orthogonal projections in B(K ), and that UiU

∗
i are pairwise orthogonal

projections in B(H ).

1. Let x ∈H and y ∈ K be given.

Show that |〈x, Uiy〉| 6 ‖U∗i x‖‖Uiy‖ for each i (perhaps by first proving
that Ui = UiU

∗
i Ui).

Show that
∑
i ‖Uiy‖2 6 ‖y‖2 and

∑
i ‖U∗i x‖2 6 ‖x‖2, and deduce from

this that
∑
i |〈x, Uiy〉| 6 ‖x‖‖y‖.

Now use 36V to show that there is a bounded operator U : K →H with
〈x, Uy〉 =

∑
i 〈x, Uiy〉 for all x ∈H and y ∈ K .

2. Show that U∗i Uj = 0 when i 6= j. Deduce from this that U∗U =
∑
i U
∗
i Ui.

Prove that UU∗ =
∑
i UiU

∗
i .

VLemma Let Ω be a collection of np-maps ω : A → C on a von Neumann
algebra A whose central carriers, ddωee, are pairwise orthogonal to one another,
and let H and K be Hilbert spaces on which A is represented such that
each ω ∈ Ω is given by vectors xω ∈ H and yω ∈ K , that is, 〈xω, %( · )xω〉 =
ω = 〈yω, π( · )yω〉, where % : A → B(H ) and π : A → B(K ) are nmiu-maps.

Then there is a bounded operator U : K → H which intertwines π and %
in the sense that Uπ(a) = %(a)U for all a ∈ A such that U∗U is a projection in
π(A )� with ddU∗Ueeπ(A )� = π(

∑
ω ddωee), and UU∗ is projection in %(A )� with

ddUU∗ee%(A )� = %(
∑
ω ddωee).

VIProof Given ω ∈ Ω, let σω : %(A )→ C and σ′ω : %(A )� → C denote the restric-
tions of the vector functional 〈xω, ( · )xω〉 : B(H )→ C, and let τω : π(A )→ C
and τ ′ω : π(A )� → C be similar restrictions of 〈yω, ( · )yω〉. We already know
(by I and 88 IV) that there is a bounded operator Uω : K → H with U∗ωUω =
dτ ′ωe, UωU∗ω = dσ′ωe, and Uωπ(a) = %(a)Uω for all a ∈ A .

We’ll combine these Uωs into one operator U using III, but for this we
must verify that the projections UωU

∗
ω = dσ′ωe are pairwise orthogonal, and
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that the projections U∗ωUω are pairwise orthogonal too. To this end note that
ddσωee = ddσ′ωee by 88 IX. Thus, since the projections ddωee are orthogonal to
one another, and dσ′ωe 6 ddσ′ωee = ddσωee = %(ddωee), we see that the projec-
tions UωU

∗
ω ≡ dσ′ωe are indeed pairwise orthogonal. Since for a similar reason

the projections U∗ωUω ≡ dτ ′ωe are pairwise orthogonal too, there is by III a
bounded operator U : K →H with U∗U =

∑
ω U
∗
ωUω, UU∗ =

∑
ω UωU

∗
ω, and

〈x, Uy〉 =
∑
ω 〈x, Uωy〉 for all x ∈H and y ∈ K .

Let us check that U has the desired properties. To begin, since the projec-
tions ddUωU∗ωee = ddσ′ωee = %(ddωee) are pairwise orthogonal, we have ddUU∗ee =∑
ω ddUωU∗ωee = %(

∑
ω ddωee) by 68 IV and 56XVIII. Similarly, ddU∗Uee = π(

∑
ω ddωee).

Finally, given a ∈ A we have Uπ(a) = %(a)U , because 〈x, Uπ(a)y〉 =∑
ω 〈x, Uωπ(a)y〉 =

∑
ω 〈x, %(a)Uωy〉 =

∑
ω 〈%(a)∗x, Uωy〉 = 〈%(a)∗x, Uy〉 =

〈x, %(a)Uy〉 for all x ∈H and y ∈ K . �

VII Corollary Let A be a von Neumann of bounded operators on some Hilbert
space H , and let % : A → B(H ) denote the inclusion. Let Ω be the collection
of all np-maps A → C, and let %Ω : A → B(HΩ) be as in 30 IX.

There is a bounded operator U : HΩ → H such that U∗U is a projection
in %Ω(A )� with ddU∗Uee%Ω(A )� = 1 and U%Ω(a) = %(a)U for all a ∈ A .

VIII Proof Let {xi}i be a maximal set of vectors in H such that the central car-
riers ddωiee of the corresponding vector functionals ωi := 〈xi, %( · )xi〉 on A are
pairwise orthogonal; so that we’ll have

∑
i ddωiee = 1. Now, the point of HΩ is

that there are vectors yi ∈HΩ with ωi = 〈yi, %Ω( · )yi〉 for each i. Now apply V
to get a map U : HΩ →H with the desired properties. �

IX Theorem Every np-map ω : A → C on a von Neumann subalgebra A of B(H ),
where H is some Hilbert space, is of the form ω ≡

∑
n 〈xn, ( · )xn〉 for some

x1, x2, . . . ∈H (with
∑
n ‖xn‖2 <∞).

X Proof (Based on Theorem 7.1.8 of [43].)

Let % : A → B(H ) denote the inclusion, and let U : HΩ → H be as
in VII. Since ω ∈ Ω, there is y ∈ HΩ with ω = 〈y, %Ω( · )y〉. We’re going to
‘transfer’ y from HΩ to H using the following device. Since 1 = ddU∗Uee%Ω(A )� ,

we can (by 83V) find partial isometries (vi)i in %Ω(A )� with 1 =
∑
i v
∗
i vi and



viv
∗
i 6 U

∗U for all i. Then for every a ∈ A ,

ω(a) = 〈 y, %Ω(a)y 〉
=
∑
i 〈 y, v∗i vi %Ω(a)y 〉 since 1 =

∑
i v
∗
i vi

=
∑
i 〈 y, v∗i U∗Uvi %Ω(a)y 〉 since viv

∗
i 6 U

∗U

=
∑
i 〈Uviy, U%Ω(a)viy 〉 since vi ∈ %(A )�

=
∑
i 〈Uviy, %(a)Uviy 〉 since U%Ω(a) = %(a)U.

In particular, ω(1) =
∑
i ‖Uviy‖2, so at most countably many Uviy’s are non-

zero; and denoting those by x1, x2, . . . , we get ω =
∑
n 〈xn, ( · )xn〉. �

XICorollary Let A be a von Neumann subalgebra of a von Neumann algebra B.

1. For every np-map ω : A → C there is an np-map ξ : B → C with ξ|A = ω.

2. Ultraweak permanence: the restriction of the ultraweak topology on B
to A coincides with the ultraweak topology on A .

3. Ultrastrong permanence: the restriction of the ultrastrong topology on B
to A coincides with the ultrastrong topology on A .

XIIExercise Let % : A → B be an injective nmiu-map.
Show using 48VI that any np-functional ω : A → C can be extended along %,

that is, there is an np-functional ω′ : B → C with % ◦ ω′ = ω.

90We end the chapter with another corollary to 89 IX: that the np-functionals on a
von Neumann algebra are generated (in a certain sense) by any centre separating
collection of functionals. This fact plays an important role in the next chapter
for our definition of the tensor product of von Neumann algebras (on which the
product functionals are to be centre separating, 108 II).

IIProposition Given a centre separating collection Ω of np-functionals on a von
Neumann algebra A , and an ultrastrongly dense subset S of A

1. Ω′ := {ω(s∗( · )s) : ω ∈ Ω, s ∈ S } is order separating, and

2. Ω′′ := {
∑
n ωn : ω1, . . . , ωN ∈ Ω′ } is operator norm dense in (A∗)+.
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III Proof We tackle 1 first. We already know from 30X that the collection Ξ :=
{ω(a∗( · )a) : ω ∈ Ω, a ∈ A }, which contains Ω′, is order separating; so to prove
that Ω′ is itself order separating it suffices by 21X to show that Ω′ is norm dense
in Ξ. This is indeed the case since given a ∈ A and ω ∈ Ω, and a net (sα)α in S
that converges ultrastrongly to a, the functionals sα ∗ω ≡ ω(s∗α( · )sα) converge
in norm to a ∗ ω as α→∞ by 72 III.

IV (Concerning 2) Let f : A → C be an np-map; we must show that f is in

the norm closure Ω′′ of Ω′′. Note that since Ω is centre separating, the map
%Ω : A → B(HΩ) from 30X is injective, and in fact restricts to a nmiu-
isomorphism from A onto %Ω(A ) (cf. 48VIII). So by 89 IX f is of the form
f ≡

∑
n 〈xn, %Ω( · )xn〉 for some x1, x2, . . . ∈ HΩ with

∑
n ‖xn‖2 < ∞, so

that the partial sums
∑N
n=1 〈xn, %Ω( · )xn〉 converge with respect to the opera-

tor norm to f (by 38VI). Thus to show that f is in Ω′′ it suffices to show that
each 〈xn, %Ω( · )xn〉 is in Ω′′ (since Ω′′ is clearly closed under finite sums and norm
limits). In effect we may assume without loss of generality that f ≡ 〈x, %Ω( · )x〉
for some x ∈ HΩ. We reduce the problem some more. By definition of
Hω ≡

⊕
ω∈Ω Hω and %Ω, we have f = 〈x, %Ω( · )x〉 =

∑
ω∈Ω 〈xω, %ω( · )xω〉;

and so we may, by the same token, assume without loss of generality that
f = 〈x, %ω( · )x〉 for some ω ∈ Ω and x ∈Hω. Since such x (by definition of Hω,
30VI) is the norm limit of a sequence ηω(a1), ηω(a2), · · · , where a1, a2, . . . ∈ A ,
the np-maps an ∗ ω ≡ 〈ηω(an), %ω( · )ηω(an)〉 converge to 〈x, %ω( · )x〉 = f in the
operator norm as n→∞ by 38VI; and so we may assume without loss of gen-
erality that f = a∗ω for some a ∈ A and ω ∈ Ω. Since S is ultrastrongly dense
in A we can find a net (sα)α in S that converges ultrastrongly to a. As the
np-functionals sα ∗ ω in Ω′ ⊆ Ω′′ will then operator-norm converge to f = a ∗ ω
as α→∞ by 72 III, we conclude that f ∈ Ω′′. �

91 With this chapter ends perhaps the most hairy part of this thesis: we’ve de-
veloped the theory of von Neumann algebras starting from Kadison’s charac-
terization (see 42) to the point that we have a sufficiently firm hold on the
normal functionals (see e.g. 86 IX, 89 IX), the ultraweak and ultrastrong topolo-
gies (e.g. 74 IV, 89XI, 90 II), the projections (56 I, 59 I, 65 IV), and the division
structure (81V, 82 I) on a von Neumann algebra. In the next chapter we reap
the benefits of our labour when we study an assortment of structures in the
category W∗

cpsu of von Neumann algebras and ncpsu-maps.



Chapter 4

Assorted Structure in W∗
cpsu

92In the previous two chapters we have travelled through charted territory when
developing the theory of C∗-algebras and von Neumann algebras adding some
new landmarks and shortcuts of our own along the way. In this chapter we
properly break new ground by revealing two entirely new features of the cate-
gory W∗

cpsu of von Neumann algebras and the normal completely positive sub-
unital linear maps between them, namely,

1. that the binary operation ∗ on the effects of a von Neumann algebra A
given by p ∗ q =

√
pq
√
p (representing measurement of p) can be axioma-

tised, and

2. that the category W∗
cpsu has all the bits and pieces needed to be a model

of Selinger and Valiron’s quantum lambda calculus.

We’ll deal with the first matter directly after this introduction in Section 4.1.
The second matter is treated in Section 4.3, but only after we have given the
tensor product of von Neumann algebras a complete overhaul in Section 4.2. Fi-
nally, as an offshoot of our model of the quantum lambda calculus we’ll study all
von Neumann algebras that admit a ‘duplicator’ in Section 4.4 — surprisingly,
they’re all of the form `∞(X).
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4.1 Measurement

93 The maps on a von Neumann algebra A of the form a 7→ √pa√p : A → A ,
where p is an effect of A , represent measurement of p, and are called assert maps
in [26]. The importance of these maps to any logical description of quantum
computation is not easily overstated. On the effects of A these maps are also
studied in the guise of the binary operation p ∗ q =

√
pq
√
p called the sequential

product (see e.g. [21]). We’ll axiomatise this operation in this section in terms
of the properties of the underlying assert maps.

Our first observation to this end is that any assert map factors as

A
π : a 7→dpeadpe // dpeA dpe

c : a7→√pa√p // A ,

where both π and c obey a universal property: c is a filter of p, see 96 I, and π
is a corner of dpe, see 95 I. Such maps that are the composition of a filter and
a corner will be called pure, see 100 I, Since not only assert maps turn out to
be pure, but also maps of the form b∗( · )b : A → A for an arbitrary element b
of A , we need another property of assert maps, namely that

√
p e1
√
p 6 e⊥2 ⇐⇒ √

p e2
√
p 6 e⊥1

for all projections e1 and e2 of A —which we’ll describe by saying that

√
p( · )√p : A → A

is �-self-adjoint. Judging only by the name it may not surprise you that the map
b( · )b : A → A where b ∈ A is self-adjoint (but not necessarily positive) turns
out to be �-self-adjoint too, so that as a final touch we introduce the notion of
�-positive maps f : A → A that are simply maps of the form f ≡ gg for some
�-self-adjoint g.

The main technical result, then, of this section is that any �-positive map
f : A → A is of the form f =

√
p( · )√p where p = f(1); and, accordingly, our

axioms (in 106 I) that uniquely determine the sequential product ∗ on the effects
of a von Neumann algebra A are: for every effect p of A ,

1. p ∗ 1 = p,

2. p ∗ q = f(q) for all q ∈ [0, 1]A for some pure map f : A → A ,

3. p = q ∗ q for some q from [0, 1]A ,



4. p ∗ (p ∗ q) = (p ∗ p) ∗ q for all q ∈ [0, 1]A ,

5. p ∗ e1 6 e⊥2 ⇐⇒ p ∗ e2 6 e⊥1 for all projections e1, e2 of A .

While I would certainly not like to undersell the results mentioned above, I
suspect that the notion of purity exposed along the way might turn out to be
of far greater significance for the following reason. Our notion of purity can
be described in wildly different terms: a map f : A → B is pure when given
its Paschke dilation A % //P c // B the map % is surjective (see 171VII
and [73]). Because of my faith in our notion of purity I’ve allowed myself to
address some theoretical questions concerning it here that are not required for
the main results of this thesis, but suppose a general interest in purity: I’ll
show that every pure map f : A → B is extreme among the ncp-maps g : A →
B with f(1) = g(1), and, in fact, enjoys the possibly stronger property of
being rigid (see 102 II and 102 IX).

4.1.1 Corner and Filter

94Definition Given a projection e of a von Neumann algebra A , the corner
of e is the subset eA e of A (consisting of the elements of A of the form eae
with a ∈ A ). In this context, the obvious map eA e→ A is called the inclusion
and the map a 7→ eae, A → eA e is called the projection.

IIExercise Let e be a projection from a von Neumann algebra A .

1. Show that a ∈ A is an element of eA e iff eae = a iff (ae ∪ da) 6 e.

2. Show that the corner eA e is closed under addition, (scalar) multiplication,
and involution.

3. Show that e is a unit for eA e, that is, ea = ae = a for all a ∈ eA e.

4. Show that eA e is norm and ultraweakly closed.
(Hint: use the fact that e( · )e : A → A is normal and bounded.)

5. Show that eA e — endowed with the addition, (scalar) multiplication,
involution and norm from A , and with e as its unit — is a C∗-algebra.

6. Show that the supremum of a bounded directed set D of self-adjoint ele-
ments of eA e computed in A is itself in eA e, and, in fact, the supremum
of D in eA e.
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7. Show that the inclusion eA e→ A is an ncpsu-map.

8. Deduce from this that the restriction of an np-map ω : A → C to a map
eA e→ C is an np-map.

Conclude that eA e is a von Neumann algebra.

9. Show that the projection a 7→ eae, A → eA e is an ncpu-map.

10. Show that every np-map ω : eA e → C is the restriction of the np-map
ω(e( · )e) : A → C. Deduce from this that the ultraweak topology of eA e
coincides (on eA e) with the ultraweak topology on A . Show that the
ultrastrong topologies on eA e and A coincide in a similar fashion.

III Exercise Let a be an element of a von Neumann algebra A , and let p and q be
projections of A with a∗pa 6 q.

1. Show that a∗ba ∈ qA q for every b ∈ pA p.

2. Show that a∗( · )a gives an ncp-map pA p→ qA q.

95 Definition Let p be an effect of a von Neumann algebra A . A corner of p

is an ncp-map π : A → C to a von Neumann algebra C with π(p⊥) = 0,
which is initial among such maps in the sense that every ncp-map f : A → B
with f(p⊥) = 0 factors as f = g ◦ π for some unique ncp-map g : C → B.

While most corners that we’ll deal with are unital, there are also corners
which are not unital (because there are non-unital ncp-isomorphisms). When
we write “corner” we shall always mean a “unital corner” unless explicitly stated
otherwise.

II Proposition Given an effect p of a von Neumann algebra A , and a partial
isometry u of A with bpc = uu∗, the map π : A → u∗uA u∗u given by π(a) =
u∗au is a corner of p.

III Proof By 94 III, π is an ncp-map. To see that π(p⊥) ≡ u∗p⊥u = 0, note that

since u∗u = u∗ uu∗ u, we have 0 = u∗(uu∗)⊥u = u∗bpc⊥u = u∗ dp⊥eu, and so
0 = du∗ dp⊥eue =

⌈
u∗p⊥u

⌉
by 60VII, giving u∗p⊥u = 0 by 59 III.

Let B be a von Neumann algebra, and let f : A → B be an ncp-map with
f(p⊥) = 0. To show that π is a corner, we must show that there is a unique
ncp-map g : u∗uA u∗u→ B with f = g◦π. Uniqueness follows from surjectivity



of π. Concerning existence, define g := f ◦ ζ, where ζ : u∗uA u∗u → A is the
ncp-map given by ζ(a) = uau∗ for a ∈ A (see 94 III), so that it is immediately
clear that g is an ncp-map. It remains to be shown f = g ◦ π, that is, f(a) =
f(uu∗ a uu∗) for all a ∈ A . This follows from 63 IV because f((uu∗)⊥) = 0,
since df( (uu∗)⊥ )e = df(bpc⊥)e = df(dp⊥e)e = df(p⊥)e = d0e = 0. �

96Definition A filter is an ncp-map c : C → A between von Neumann algebras
such that every ncp-map f : B → A with f(1) 6 c(1) factors as f = c ◦ g for
some unique ncp-map g : B → C . We’ll say that c is a filter for c(1).

IITo show that there is a filter for every positive element of a von Neumann algebra
we need to the following result concerning ultraweak limits of ncp-maps.

IIILemma Given von Neumann algebras A and B the pointwise ultraweak limit
f : A → B of a net of positive linear maps fα : A → B is positive, and,

1. f is completely positive provided that the fα are completely positive, and

2. f is normal provided that the fα are normal and the ultraweak convergence
of the fα to f is uniform on [0, 1]A .

IVProof Since given a ∈ A the element f(a) is the ultraweak limit of the positive
elements fα(a), and therefore positive (by 44XI), we see that f is positive.

Suppose that each fα is completely positive. To show that f is completely
positive, we must prove, given a1, . . . , an ∈ A and b1, . . . , bn ∈ B, that the
element

∑
i,j b
∗
i f(a∗i aj)bj of B is positive. And indeed it is, being the ultraweak

limit of the positive elements
∑
i,j b
∗
i fα(a∗i aj)bj , because fα(a∗i aj) converges

ultraweakly to f(a∗i aj), and b∗i ( · )bj : B → B is ultraweakly continuous (45 IV)
for any i and j.

If the fα are normal, and converge uniformly on [0, 1]A ultraweakly to f ,
then f is ultraweakly continuous on [0, 1]A (because the uniform limit of con-
tinuous functions is continuous), and thus normal (by 44XV). �

VProposition Given an element d of a von Neumann algebra A , the map
c : (deA (de → A given by c(a) = d∗ad is a filter.

VIProof Note that c is an ncp-map by 94 III. Let B be a von Neumann algebra,
and let f : B → A be an ncp-map with f(1) 6 c(1). To show that c is a filter,
we must show that there is a unique ncp-map g : B → (deA (de with f = c ◦ g.
Uniqueness of g follows from the observation that c is injective by 60VIII.

To establish the existence of such g, note that f(b) is an element of d∗A d,
when b is positive by 81VI because 0 6 f(b) 6 ‖b‖f(1) 6 ‖b‖c(1) = ‖b‖d∗d, and
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thus for arbitrary b ∈ B too (being a linear combination of positive elements).
We can thus define g : B → (deA (de by g(b) = d∗\f(b)/d for all b ∈ B. It is
clear that g is linear and positive, and c ◦ g = f .

To see that g is normal, note that d∗\ · /d : d∗(A )1d → A is ultrastrongly
continuous by 81 IX, as is f by 45 II (also) as map from (B)1 to d∗(A )1d, so
that g is ultrastrongly continuous on (B)1, and therefore normal by 44XV.

Finally, g is completely positive by III, because it is by 81VII the uniform ul-
trastrong limit of the by 94 III completely positive maps (

∑N
n=1 tn)∗ f( · ) (

∑N
n=1 tn),

where t1, t2, . . . is an approximate pseudoinverse of d. �

97 Before exploring their more technical aspects, we’ll explain how corners and
filters can be made to appear at opposite ends of a chain of adjunctions:

Eff

��

a aa aFilter

**

Corner

tt
(W∗

cpsu)op

0

88

1

ff

The category Eff has as objects pairs (A , p), where A is a von Neumann
algebra, and p ∈ [0, 1]A is an effect from A . A morphism (A , p) −→ (B, q)
in Eff is an ncpsu-map f : B → A with p 6 f(q) + f(1)⊥ — that is,

ω(p) 6 ω(f(q)) + ω(f(1))⊥ for every normal state ω : A → C.

The functor Eff −→ (W∗
cpsu)op in the middle of the diagram above maps a

morphism f : (A , p) → (B, q) to the underlying map f : B → A . The func-
tors 0 and 1 on its sides map a von Neumann algebra A to (A , 0) and (A , 1),
respectively, and send an ncpsu-map f : A → B to itself; this is possible since

0 6 f(0) + f(1)⊥ and 1 6 f(1) + f(1)⊥.

That 1 is right adjoint to the functor Eff −→ (W∗
cpsu)op follows from the obser-

vation that an ncpsu-map f : B → A is always a morphism (A , p) → (B, 1),
whatever p ∈ [0, 1]A may be, because p 6 f(1) + f(1)⊥. For a similar reason 0
is left adjoint to Eff −→ (W∗

cpsu)op.
On the other hand, a morphism (A , 1)→ (B, q) where q ∈ [0, 1]B is not just

any ncpsu-map f : B → A , but one with 1 6 f(q) + f(1)⊥, that is, f(q⊥) = 0.



It’s no surprise then that a corner π : B → C for q ∈ [0, 1]B considered as
morphism (C , 1)→ (B, q) is a universal arrow from 1 to (B, q).

On the other side there’s a twist: a morphism (A , p) → (B, 0) where p ∈
[0, 1]A is an ncpsu-map f : A → B with p 6 f(0) + f(1)⊥, that is, f(1) 6 p⊥.
It follows that any filter c : C → A for p⊥, when considered as morphism
(A , p)→ (C , 0), is a universal arrow from (A , p) to 0.

This chain of adjunctions not only exposes a hidden symmetry between filters
and corners, but such chains appear in many other categories as well, see [6].

98Definition Let A be a von Neumann algebra.

1. Given a positive element p of A we denote by cp : dpeA dpe → A the
standard filter for p given by cp(a) =

√
pa
√
p for all a ∈ dpeA dpe.

2. Given an effect p of A we denote by πp : A → bpcA bpc the standard
corner of p given by πp(a) = bpcabpc.

IIExercise Let c : C → A be a filter, where C and A are von Neumann algebras.

1. Show that, writing p := c(1), there is a unique ncp-map α : C → dpeA dpe
with c = cp ◦ α; and that this α is a unital ncp-isomorphism.

2. Show that c is injective (by proving first that cp is injective using 60VIII).

Conclude that c is faithful (so dfe = 1), and that c is mono in W∗
CP.

3. Show that c is bipositive (by proving first that cp is bipositive using 81VI).

IIIExercise Show that the composition d ◦ c of filters c : C → D and d : D → A
between von Neumann algebras is again a filter.

IVExercise Let p be an effect of a von Neumann algebra A , and let π : A → C
be a corner of p.

1. Show that there is a unique ncp-map β : bpcA bpc → C with π = β ◦ πp;
and that this β is unital and an ncp-isomorphism.

2. Show that π is surjective, and that π is epi in W∗
cp.
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V Exercise Show that an ncpu-map π : A → B between von Neumann algebras
is a corner for an effect p of A iff π is a corner for bpc; in which case dπe = bpc.

Thus a corner π is a corner for dπe.

VI Exercise Show that the composition τ ◦π of corners π : A → B and τ : B → C
between von Neumann algebras is again a corner.
(Hint: prove and use the inequality dτe 6 dπ(dτ ◦ πe⊥)e⊥.)

VII Theorem Given an ncp-map f : A → B between von Neumann algebras, a
projection e of A with dfe 6 e, and a positive element p of B with f(1) 6 p,
there is a unique ncp-map g : eA e→ dpeBdpe such that

A
f //

πe

��

B

eA e
g

// dpeBdpe

cp

OO

commutes, and it is given by g(a) =
√
p\f(a)/

√
p for all a ∈ eA e.

VIII Proof Uniqueness of g follows from the facts that πe is epi and cp is mono
in W∗

cp, see IV and II.
Concerning existence, since πe is a corner of e, 95 I, and dfe 6 e, or in other

words, f(e⊥) = 0, there is a unique ncp-map h : eA e → B with h ◦ πe = f .
Note that h(a) = f(a) for all a from eA e.

As h(1) = h(πe(1)) = f(1) 6 p = cp(1), and cp is a filter, 96 I, there is
a unique ncp-map g : eA e → pBp with cp ◦ g = h, which is (by the proof
of 96V) given by g(a) =

√
p\h(a)/

√
p ≡ √p\f(a)/

√
p for all a from eA e.

Then cp ◦ g ◦ πe = h ◦ πe = f . �

IX Corollary Given an ncp-map f : A → B between von Neumann algebras, there
is a unique ncp-map [f ] : dfeA dfe → df(1)eBdf(1)e such that

A
f //

πdfe

��

B

dfeA dfe
[f ]

// df(1)eBdf(1)e

cf(1)

OO

commutes; and it is given by [f ](a) =
√
f(1)\f(a)/

√
f(1) for all a from dfeA dfe.

Moreover, [f ] is unital and faithful.



XExample For any faithful unital ncp-map f : A → B we have [f ] = f . Such

map need not be an isomorphism; as one may take f : (λ, µ) 7→ 1
2 (λ+µ),C2 → C.

XIExample In the concrete case that f ≡ a∗( · )a : sA s → tA t, where a is an
element of a von Neumann algebra, and s and t are projections of A with
(ae 6 s and da) 6 t, the map [f ] is closely related to the polar decomposition
a ≡ [a]

√
a∗a =

√
aa∗[a] of a, where [a] = a/

√
a∗a (see 82 I).

Indeed, since dfe = (ae, f(1) = a∗a, and [f ] ≡
√
a∗a\a∗( · )a/

√
a∗a ≡

[a]( · )[a]∗, the picture becomes:

sA s
f = a∗ ( · ) a //

π(ae

��

tA t

(aeA (ae
[f ] = [a] ( · ) [a]∗

// da)A da)

ca∗a

OO

Note that in this example [f ] is an ncpu-isomorphism, because [a] is a partial
isometry with initial projection da) and final projection (ae. Thus one can think
of the diagram above as an isomorphism theorem of sorts, which applies only
to certain ncp-maps that’ll be called pure in a moment (see 100 III).

4.1.2 Isomorphism

99In case you were wondering, the ncpu-isomorphism we encountered in 98XI is
simply a nmiu-isomorphism (see IX), which follows from the following charac-
terisation of multiplicativity.

IIProposition For an ncpu-map f : A → B between von Neumann algebras the
following are equivalent.

1. f is multiplicative.

2. f(a)f(b) = 0 for all a, b ∈ A with ab = 0.

3. df(p)e df(q)e = 0 for all projections p and q of A with pq = 0.

4. f maps projections to projections.

5. df(a)e = f(dae) for all a ∈ A+.
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III Proof (Based in part on the work of Gardner in [18]).

IV (1=⇒4 and 5=⇒4) are rather obvious.

V (4=⇒5) df(a)e 60V
=== df(dae)e = f(dae) since f(dae) is a projection.

VI (4=⇒3) Let p and q be projections of A with pq = 0. Then p 6 q⊥, and

so f(p) 6 f(q⊥) = f(q)⊥, which implies that df(p)e df(q)e = f(p)f(q) = 0
since f(p) and f(q) are projections.

VII (3=⇒2) Let a, b ∈ A with ab = 0 be given. We must show that f(a)f(b) = 0,
and for this it suffices to show that df(a)) (f(b)e = 0, because f(a)f(b) =
f(a) df(a)) (f(b)e f(b). Since ab = 0, we have da) (be = 0 by 60VIII, and
so df(da))e df((ae)e = 0. Now, since df(da))e 6 df(a)) and df((aee 6 (f(a)e
by 61 II, we get df(a)) (f(b)e = df(a)) df(da))e df((ae)e (f(a)e = 0.

VIII (2=⇒1) We must show that f(a)f(b) = f(ab) for all a, b ∈ A . Since the linear
span of projections is norm-dense in A , it suffices to show that f(a)f(e) = f(ae)
for any a ∈ A and a projection e of A . Given such a and e, we on the one
hand have ae⊥ e = 0, so that f(ae⊥)f(e) = 0, that is, f(a)f(e) = f(ae)f(e);
and on the other hand we have ae e⊥ = 0, so that f(ae)f(e⊥) = 0, that is,
f(ae) = f(ae)f(e); so that we reach f(ae) = f(a)f(e) as sum total, and the
result that f is multiplicative. �

IX Theorem An ncpsu-isomorphism f : A → B between von Neumann algebras
(so both f and f−1 are ncpsu-maps) is an nmiu-isomorphism.

X Proof Since f−1(1) 6 1 and so 1 = f(f−1(1)) 6 f(1) 6 1, we see that f(1) = 1,
so both f and f−1 are unital. It remains to be shown that f and f−1 are
multiplicative. Since by 55X an effect a of A is a projection iff 0 is the infimum
of a and a⊥, and f (as ncpu-isomorphism) preserves ( · )⊥ and order, we see
that f maps projections to projections, and is thus multiplicative, by II. It
follows automatically that f−1 is multiplicative too. �

XI Exercise Show that any filter of a projection is multiplicative.
(Hint: the filter is a standard filter up to an ncpu-isomorphism, 98 II, which is
a nmiu-isomorphism by IX.)

XII Exercise Show that for an ncp-map f : A → B between von Neumann algebras
the following are equivalent.

1. f is multiplicative.

2. f sends projections to projections.

3. df(a)e = f(dae) for all a ∈ A+.



(Hint: factor f = ζ ◦ h where ζ is a filter for f(1) and h is an ncp-map.)

4.1.3 Purity

100Definition Filters, corners, and their compositions we’ll call pure.

IIExercise Show that the following maps are pure.

1. An ncp-isomorphism between von Neumann algebras.

2. The identity map id: A → A on a von Neumann algebra A .

3. The map a∗ ( · ) a : A → A for any element a of a von Neumann alge-
bra A .

IIIProposition For an ncp-map f : A → B between von Neumann algebras the
following are equivalent.

1. f is pure, i.e., f is the composition of (perhaps many) filters and corners.

2. f = c ◦ π for a filter c : C → B and a corner π : A → C .

3. [f ] from 98 IX is an ncpu-isomorphism.

IVProof 3=⇒2 and 2=⇒1 are rather obvious.

V(1=⇒2) Calling f properly pure when f ≡ c ◦ π for some filter c and corner π,
we must show that every pure map is properly pure. For this it suffices to show
that the composition of properly pure maps is again properly pure; which, since
filters are closed under composition (by 98 III), and corners are closed under
composition (by 98VI), boils down to proving that the composition π ◦ c of a
corner π and a filter c is properly pure. Since π ≡ α ◦ πdπe and c ≡ cc(1) ◦ β for
ncpu-isomorphisms α and β (see 98 II and 98 IV) it suffices to show that f := πscp
is properly pure for a positive element p and a projection s of a von Neumann
algebra A . Since such f is of the form f = s

√
p( · )√ps : dpeA dpe → sA s, we

know by 98XI that [f ] is an ncpu-isomorphism, and thus that f ≡ cf(1)◦[f ]◦πdfe
is properly pure.

VI(2=⇒3) Recall that [f ] is by definition the unique ncp-map with f = cf(1)[f ]πdfe,
see 98 IX. Note that since f = c◦π, we have dfe = dπe (because dce = 1 by 98 II),
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and f(1) = c(1) (because π(1) = 1). Since there are ncpu-isomorphisms α and β
with π = απdπe and c = cc(1)β, we see that f = cc(1)βαπdπe, and so [f ] = βα
by definition of [f ], so [f ] is an ncpu-isomorphism. �

VII Exercise Use III to show that

1. a faithful pure map is a filter,

2. a unital pure map is a corner, and

3. a unital and faithful pure map is an ncpu-isomorphism.

4.1.4 Contraposition

101 Definition Given an ncp-map f : A → B between von Neumann algebras we
define f� : Proj(A )→ Proj(B) by f�(e) = df(e)e for all e ∈ Proj(A ).

II Proposition Given an ncp-map f : A → B between von Neumann algebras and

a projection e from B there is a least projection f�(e) from A with
⌈
f( f�(e)

⊥ )
⌉
6

e⊥, namely f�(e) = d ef( · )e e (being the carrier of the ncp-map ef( · )e from 63 I);
giving a map f� : Proj(B)→ Proj(A ).

III Proof Since by definition d ef( · )e e is the greatest projection s of A with

ef(s⊥)e = 0 (see 63 I); and ef(s⊥)e = 0 iff
⌈
f(s⊥)

⌉
6 de( · )ee⊥ ≡ e⊥; the

projection d ef( · )e e satisfies the description of f�(e). �

IV Exercise Let f : A → B be an ncp-map between von Neumann algebras.

1. Show that f�(s) 6 t⊥ iff f�(t) 6 s⊥, for all s ∈ Proj(A ) and t ∈ Proj(B).

2. Show that f�(
⋃
E ) =

⋃
e∈E f

�(e) for every set of projections E from A .

V Exercise Show that for ncp-maps f, g : A → B between von Neumann algebras
f� = g� iff f� = g�. In that case we say that f and g are equivalent.

VI Show that for ncp-maps f : A → B and g : B → A we have f� = g� iff f� = g�

iff df(s)e 6 t⊥ ⇐⇒ dg(t)e 6 s⊥ for all projections s from A and t from B.

In that case we say that f and g are contraposed.



VIIExamples

1. Given an element a of a von Neumann algebra A , the maps a∗( · )a
and a( · )a∗ on A are contraposed.

If p and q are projections of A with a∗pa 6 q (as in 94 III), then the maps
a∗( · )a : pA p→ qA q and a( · )a∗ : qA q → pA p are contraposed.

In particular, the standard corner πs : A → sA s and the standard filter
cs : sA s→ A for a projection s from A are contraposed.

2. An ncp-isomorphism f : A → B between von Neumann algebras is con-
traposed to its inverse f−1 : B → A .

3. There may be many maps equivalent to a given ncp-map f : A → B
between von Neumann algebras: show that (zf)� = f� for every positive
central element z of B with dze = 1.

VIIIExercise Let A f // B g // C be ncp-maps between von Neumann alge-
bras A , B and C .

1. Show that (g ◦ f)� = g� ◦ f� (using 60V), and (g ◦ f)� = f� ◦ g�.

2. Assuming that f is equivalent to an ncp-map f ′ : A → B and g is equiv-
alent to an ncp-map g′ : B → C , show that g ◦ f is equivalent to g′ ◦ f ′.

3. Assuming that f is contraposed to an ncp-map f ′ : B → A and g is
contraposed to an ncp-map g′ : C → B, show that g ◦ f is contraposed
to f ′ ◦ g′.

IXProposition Given ncp-maps f, g : A → B between von Neumann algebras

(f + g)�(s) = f�(s) ∪ g�(s) and (f + g)�(t) = f�(t) ∪ g�(t)

for all s ∈ Proj(A ) and t ∈ Proj(B).

XProof Note that (f + g)�(s) = d(f + g)(s)e = df(s) + g(s)e = df(s)e∪dg(s)e =

f�(s) ∪ g�(s) by 59 III. Since (f + g)�(t) 6 s⊥ iff f�(s) ∪ g�(s) ≡ (f + g)�(s) 6
t⊥ iff both f�(s) 6 t⊥ and g�(s) 6 t⊥ iff both f�(t) 6 s⊥ and g�(t) 6 s⊥

iff f�(t) ∪ g�(t) 6 s⊥, we see that (f + g)�(t) = f�(t) ∪ g�(t). �

XILemma Given contraposed maps f : A → B and g : B → A between von
Neumann algebras, we have dfe = dgfe.

XIIProof dgfe = (gf)�(1) = f�(g�(1)) = g�(dge) = g�(1) = f�(1) = dfe. �
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4.1.5 Rigidity

102 We now turn to a remarkable property shared by pure and nmiu-maps.

II Definition We say that an ncp-map f : A → B between von Neumann algebras
is rigid when the only ncp-map g : A → B with g(1) = f(1) and df(p)e = dg(p)e
for all projections p from A is f itself.

III Proposition A rigid map f : A → B between von Neumann algebras is extreme
among the ncp-maps g : A → B with g(1) = f(1).

IV Proof Given f ≡ λg1 + λ⊥g2 where λ ∈ (0, 1) and g1, g2 : A → B are ncp-
maps with gi(1) = f(1), we must show that f = g1 = g2. Note that for every
projection s of A we have f�(s) = (λg1 + λ⊥g2)�(s) = g�1(s) ∪ g�2(s) by 101 IX
and 101VII; and in particular g�1(s) 6 f�(s). Then for h := λg1 + λ⊥f we have
h(1) = f(1) and h�(s) = g�1(s) ∪ f�(s) = f�(s), so that λg1 + λ⊥f ≡ h = f =
λg1 + λ⊥g2 by rigidity of f ; and thus f = g2. Similarly, f = g1. �

V Proposition A nmiu-map % : A → B between von Neumann algebras is rigid.

VI Proof Let g : A → B be an ncpu-map with d%(p)e = dg(p)e for every pro-
jection p of A . To show that % is rigid, we must show that g = %, and
for this, it suffices to prove that g(p) = %(p) for every projection p of A .
To this end, we’ll show that g is multiplicative, because then g maps pro-
jections to projections, so that g(p) = dg(p)e = d%(p)e = %(p) for every pro-
jection p of A . We’ll show that g is multiplicative using 99 II by proving
that dg(p)e dg(q)e = 0 for projections p and q of A with pq = 0. Indeed,
dg(p)e dg(q)e = d%(p)e d%(q)e = %(p)%(q) = %(pq) = %(0) = 0. �

VII Lemma Given an element b of a von Neumann algebra A the ncp-map a 7→
b∗ab, (beA (be → A is rigid.

VIII Proof Let g : (beA (be → A be an ncp-map with g(1) = b∗b and db∗pbe = dg(p)e
for every projection p of (beA (be. To prove that c := b∗( · )b : (beA (be → A is
rigid, we must show that g = c. Since c is a filter (by 96V) and g(1) = b∗b there
is a unique ncp-map h : (beA (be → (beA (be with g = c ◦ h. Our task then is to
show that h = id, and for this it suffices to show that, for all a ∈ (beA (be,

en h( en a en ) en = en a en (4.1)

for some sequence of projections e1, e2, . . . of (beA (be that converges ultra-
strongly to (be, because by 45VI the left-hand side of the equation above con-
verges ultrastrongly to g(a), while the right-hand side converges ultrastrongly



to a. We’ll take eN :=
∑N
n=1 dtn), where t1, t2, . . . is an approximate pseudoin-

verse for b, because (be =
∑
n dtn).

Since the identity on enA en is rigid by V, it suffices (for (4.1)) to show that
enh(en)en = en and denh(p)ene = p for every projection p from enA en. Writ-

ing sN :=
∑N
n=1 tn, we have bsn = en, and so denh(p)ene = ds∗nb∗h(p)bsne =

ds∗ng(p)sne = ds∗n dg(p)e sne = ds∗n db∗pbe sne = ds∗nb∗pbsne = denpene for
every projection p from (beA (be. In particular, denh(p)ene = p when p is
from enA en; and we see

⌈
enh(e⊥n )en

⌉
=
⌈
ene
⊥
n en

⌉
= 0 when we take p = e⊥n ,

so that enh(e⊥n )en = 0, which yields enh(en)en = en. �

IXTheorem Every pure map between von Neumann algebras is rigid.

XProof Let f : A → B be a pure map between von Neumann algebras, and
let g : A → B be an ncp-map with f(1) = g(1) and f� = g�. To show that f
is rigid, we must prove that f = g. We know by 98 IX that f can be written as
f ≡ cf(1)◦[f ]◦πdfe, and that cf(1) is rigid, by VII, which we’ll use shortly. To this
end, note that since f� = g�, we have f� = g�, and so dfe = f�(1) = g�(1) = dge.
As πdfe is a corner of dfe = dge, there is a unique ncp-map h : dfeA dfe → B
with h ◦ πdfe = g. Since then h� ◦ π�dfe = g� = f� = c�f(1) ◦ [f ]� ◦ π�dfe, and π�dfe
is clearly surjective, we get h� = c�f(1) ◦ [f ]�, and thus (h ◦ [f ]−1)� = c�f(1), using

here that [f ] is invertible, because f is pure. Now, using that cf(1) is rigid, and
h([f ]−1(1)) = h(1) = h(πdfe(1)) = g(1) = f(1) = cf(1)(1), we get h ◦ [f ]−1 =
cf(1), which yields g = h ◦ πdfe = h ◦ [f ]−1 ◦ [f ] ◦ πdfe = cf(1) ◦ [f ] ◦ πdfe = f ,
and thus f is rigid. �

4.1.6 �-Positivity

103Definition We’ll call an ncp-map f : A → A between von Neumann algebras

1. �-self-adjoint if f is pure and contraposed to itself (f� = f�), and

2. �-positive if f ≡ gg for some �-self-adjoint map g : A → A .

We added “�-” to “positive” not only to distinguish it from the pre-existing
notion of positivity for maps between C∗-algebras, but also to contrast it with
the notion of “†-positivity” that appears in the following thesis (see 214 I).

IIExamples Let A be a von Neumann algebra.

1. Given a ∈ AR the map a( · )a : A → A is �-self-adjoint.

2. Given a ∈ A+ the map a( · )a : A → A is �-positive.
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III Exercise Let f : A → A be an ncp-map, where A is a von Neumann algebra.

1. Show that dfe = df(1)e when f is �-self-adjoint.

2. Assuming f is �-self-adjoint, show that ff is �-self-adjoint, and show
that dffe = dfe (cf. 101XI).

3. Show that f is �-self-adjoint when f is �-positive.

104 We now turn to the question roughly speaking to what extent a filter c is deter-
mined by its action c� : e 7→ dc(e)e on projections; we will see (essentially in VII)
that two filters c1 and c2 are equivalent, c�1 = c�2, if and only if c1(1) and c2(1)
are equal up to some central elements, that is, centrally similar.

II Definition We say that positive elements p and q of a von Neumann algebra A
are centrally similar if cp = dq for some positive central elements c and d of A
with dpe 6 dce and dqe 6 dde.

III Exercise Let p and q be positive elements of a von Neumann algebra A .

1. Show that when p and q are centrally similar, every element a of A that
commutes with p commutes with q too; and in particular, pq = qp.

2. Show that when p and q are centrally similar, dpe = dqe.

3. Show that when p and q commute, and both p∧q
p and p∧q

q are central, p
and q are centrally similar.

4. Show that when p and q are pseudoinvertible, then: p and q are centrally
similar iff pq∼1 is central iff qp∼1 is central iff both (p∧q)p∼1 and (p∧q)q∼1

are central.

5. Assuming that p and q commute and e1 6 e2 6 · · · are projections com-
muting with p and q with

⋃
n en = dpe such that the enp and enq are

pseudoinvertible, and centrally similar, show that p and q are centrally
similar on the grounds that both p∧q

p and p∧q
q are central.

(Hint: en
p∧q
p = (enp)∧(enq)

enp
are central, and converge ultraweakly to p∧q

p .)



IVLemma Suppose that dq ϑ(e) qe 6 e and
⌈
q ϑ(e⊥) q

⌉
6 e⊥, where e is a projec-

tion of a von Neumann algebra A , q is a positive element of A , and ϑ : A → A
is a miu-map. Then eq = qe and ϑ(e) = e.

VProof We have ϑ(e)qe = ϑ(e)q, because e > dq ϑ(e) qe ≡ dϑ(e)q) (see 59VI).

Similarly, ϑ(e⊥)qe⊥ = ϑ(e⊥)q, because e⊥ >
⌈
q ϑ(e⊥) q

⌉
≡
⌈
ϑ(e⊥)q

)
, and

so ϑ(e⊥)qe = 0, which implies ϑ(e)qe = qe. Thus qe = ϑ(e)qe = ϑ(e)q,
and so q2e = qϑ(e)q is self-adjoint, which gives us that q2e = (q2e)∗ = eq2.
Since q2 commutes with e, q =

√
q2 commutes with e too (see 23VII). Finally,

ϑ(e)q = qe = eq and dqe = 1 imply that ϑ(e) = e by 60VIII. �

VICorollary A positive element q of a von Neumann algebra A with dqe = 1 is
central provided there is a miu-map ϑ : A → A with dq ϑ(e) qe 6 e for every
projection e from A ; and in that case ϑ = id.

VIIProposition Positive elements p and q of a von Neumann algebra A with dpe =
dqe = 1 are centrally similar when there is a miu-isomorphism ϑ : A → A
with dpepe = dq ϑ(e) qe for all projections e of A ; and in that case ϑ = id.

VIIIProof Let e be a projection from A with ep = pe. Since 1 = dpe = dp2e we

have e = de dp2e ee = dep2ee = dpepe = dq ϑ(e) qe. Since e⊥ commutes with p
too, we get e⊥ = dq ϑ(e⊥) qe by the same token; and thus eq = qe and ϑ(e) = e
by IV. Since p is the norm limit of linear combinations of such projections e, we
get pq = qp and ϑ(p) = p.

Since p and q commute, we can find a sequence of projections e1 6 e2 6 · · ·
that commute with p and q with

⋃
n en = dpe and such that pen and qen are

pseudoinvertible — one may, for example, take eN :=
∑N
n=1 dtne where t1, t2, . . .

is an approximate pseudoinverse of p ∧ q (see 80 IV). Note that to prove that p
and q are centrally similar, it suffices to show that pen and qen are centrally
similar, by III. Further, to prove that ϑ(a) = a for some a ∈ A , it suffices to show
that ϑ(enaen) = enaen, because enaen converges ultrastrongly to a by 45VI.
Note that ϑ(en) = en, because enp = pen, and so ϑ maps enA en into enA en.

Thus, by considering enA en instead of A , and the restriction of ϑ to enA en
instead of ϑ, and pen and qen instead of p and q, we reduce the problem to the
case that p and q are invertible; and so we may assume without loss of generality
that p and q are invertible to start with. Given a projection e from A we have⌈
p−1q ϑ(e) qp−1

⌉
=
⌈
p−1 dq ϑ(e) qe p−1

⌉
=
⌈
p−1 dpepe p−1

⌉
= e; so by VI, we get

that ϑ = id and p−1q is central; and so p and q are centrally similar (by III). �

IXProposition A faithful �-positive map f : A → A on a von Neumann algebra A
is of the form f =

√
p( · )√p where p := f(1).
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X Proof Note that f , being faithful and pure, is a filter (by 100VII), and thus of
the form f ≡ √p ϑ( · )√p for some isomorphism ϑ : A → A . Our task then is
to show that ϑ = id, and for this it suffices, by VII, to find some positive q in A
with dqe = 1 and f�(e) ≡

⌈√
p ϑ(e)

√
p
⌉

= dqeqe for all projections e in A .
Since f is �-positive, we have f ≡ ξξ for some �-self-adjoint map ξ : A →

A . Since 1 = dfe = f�(1) = ξ�(ξ�(1)) 6 ξ�(1) = dξe we have dξe =
1, and so, ξ, being pure and faithful, is a filter (by 100VII). Furthermore,
as ξ̃ :=

√
ξ(1)( · )

√
ξ(1) : A → A is a filter of ξ(1) too, there is an isomor-

phism α : A → A with ξ = ξ̃α. Now, ξ̃�α� = ξ� = ξ� = α�ξ̃� = (α�)−1ξ̃�

implies ξ̃� = α�ξ̃�α�, and f� = (ξξ)� = ξ̃�α�ξ̃�α� = ξ̃�ξ̃� = (ξ̃ξ̃)�. In other
words,

⌈√
p ϑ(e)

√
p
⌉

= f�(e) = (ξ̃ξ̃)�(e) = dξ(1) e ξ(1)e for all projections e
of A , which implies that ϑ = id by VII, and hence that f =

√
p ( · )√p. �

105 To strip from 104 IX the assumption that f be faithful we employ this device:

II Definition Given an ncp-map f : A → B between von Neumann algebras we
denote by 〈f〉 : dfeA dfe → df(1)eBdf(1)e the unique ncp-map such that

A
f //

πdfe

��

B

dfeA dfe
〈f〉 // df(1)eBdf(1)e

cdf(1)e

OO

commutes. (Compare this with the definition of [f ] in 98 IX.)

III Exercise Let f : A → B be an ncp-map.

1. Show that 〈f〉 = πdf(1)e ◦ f ◦ cdfe (using, perhaps, that πdfe ◦ cdfe = id).

2. Show that 〈f〉 = πdf(1)e ◦ cf(1) ◦ [f ].

(Thus 〈f〉(a) =
√
f(1) [f ](a)

√
f(1) for all a from dfeA dfe.)

3. Show that 〈f〉 is faithful, and 〈f〉(1) = f(1).

4. Assuming that f is pure, show that 〈f〉 is pure, and hence a filter (by 100VII).

IV Exercise Let f : A → A be an ncp-map, where A is a von Neumann algebra.

1. Suppose that f is �-self-adjoint.

Recall that dfe = df(1)e, and so 〈f〉 : dfeA dfe → dfeA dfe.
Prove that 〈f〉 is �-self-adjoint.



2. Suppose again that f is �-self-adjoint, and recall from 103 III that f2 is
�-self-adjoint, and

⌈
f2
⌉

= dfe. Show that
〈
f2
〉

= 〈f〉2.

3. Assuming that f is �-positive, show that 〈f〉 is �-positive.

VTheorem Given a positive element p of a von Neumann algebra A there is a
unique �-positive map f : A → A with f(1) = p, namely f =

√
p( · )√p.

VIProof We’ve already seen in 103 II that f =
√
p( · )√p : A → A is a �-

positive map with f(1) = p. Concerning uniqueness, (given arbitrary f) the
map 〈f〉 : dpeA dpe → dpeA dpe from II is �-positive by IV, and faithful by III,
and so of the form 〈f〉 =

√
p( · )√p by 104 IX (since 〈f〉(1) = f(1) = p); implying

that f = cdpe ◦ 〈f〉 ◦ πdpe =
√
p dpe ( · ) dpe√p =

√
p( · )√p. �

VIICorollary (“Square Root Axiom”) Given a positive element p of a von Neu-
mann algebra A there is a unique �-positive map g : A → A with g(g(1)) = p,
namely g = 4

√
p ( · ) 4

√
p.

VIIIProof Any �-positive map g : A → A with g(g(1)) = p will be of the form
g =

√
g(1) ( · )

√
g(1) by V; so that p = g(g(1)) = g(1)2 implies that g(1) =

√
p

by 23VII, thereby giving g = 4
√
p ( · ) 4

√
p. �

106Theorem On the effects of every von Neumann algebra A there is a unique
binary operation ∗ such that for all p from [0, 1]A ,

A. p ∗ 1 = p,

B. p ∗ q = f(q) for all q from [0, 1]A for some pure map f : A → A ,

C. p ∗ (p ∗ q) = (p ∗ p) ∗ q for all q from [0, 1]A ,

D. p = q ∗ q for some q from [0, 1]A ,

E. p ∗ e1 6 e⊥2 ⇐⇒ p ∗ e2 6 e⊥1 for all projections e1, e2 from A ;

namely, the sequential product, given by p ∗ q =
√
pq
√
p for all p, q from [0, 1]A .

IIProof Let p from [0, 1]A be given. Pick p′ from [0, 1]A with p = p′ ∗ p′ using D,
and find a pure map f : A → A with f(q) = p′ ∗ q for all q from [0, 1]A
using B. Then f is �-self-adjoint by E, and so ff is �-positive. Since f(f(1)) =
p′ ∗ (p′ ∗ 1) = p′ ∗ p′ = p by A, ff =

√
p( · )√p by 105V, so p ∗ q = (p′ ∗ p′) ∗ q =

p′ ∗ (p′ ∗ q) = f(f(q)) =
√
pq
√
p for all q ∈ [0, 1]A by C. �
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III Exercise None of the axioms from I may be omitted (except perhaps D, see IV):

1. Show that p ∗ q := dpe q dpe satisfies all axioms of I except A.

2. Show that p ∗ q := bpc q bpc +
√
p− bpc q

√
p− bpc satisfies all axioms

except B.

3. Show that if for every effect p of A we pick a unitary up from dpeA dpe
then ∗ given by p ∗ q =

√
pu∗p q up

√
p satisfies A and B.

Show that this ∗ obeys C when u2
p = up2 , and D when pup = upp, and E

when u∗p = up.

Conclude that when up is defined by up := g(p), where g : [0, 1]→ {−1, 1}
is any Borel function with g(2/3) = 1 and g(4/9) = −1 the operation ∗
(defined by up as above) satisfies all conditions of I except C.

4. Show that there is a Borel function g : [0, 1]→ S1 with g(1/2) 6= 1 and g(λ2) =
g(λ)2 for all λ ∈ [0, 1], and that ∗ given by p ∗ q =

√
pg(p)∗ q g(p)

√
p sat-

isfies all conditions of I except E.

IV Problem Is there a binary operation ∗ on the effects [0, 1]A of a von Neumann
algebra A that satisfies all axioms of I except D?

V Remark The axioms for the sequential product (on a single von Neumann
algebra) presented here (in I) evolved from the following axioms for all sequential
products on von Neumann algebras (∗A )A we previously published in [72].

Ax.1 For every effect p of a von Neumann algebra A there is a filter c : C → A
of p and a corner π : A → C of bpc with p∗A q = c(π(q)) for all q ∈ [0, 1]A .

Ax.2 p ∗A (p ∗A q) = (p ∗A p) ∗A q for all effects p and q from a von Neumann
algebra A .

Ax.3 f(p ∗A q) = f(p) ∗B f(q) for every nmisu-map f : A → B between von
Neumann algebras and all effects p and q from A .

Ax.4 p ∗A e1 6 e⊥2 ⇐⇒ p ∗A e2 6 e⊥1 for every effect p from a von Neumann
algebra A and projections e1 and e2 from A .

Note that Ax.2 and Ax.4 are mutatis mutandis the same as axioms C and E,
respectively, and Ax.1 is essentially the same as the combination of axioms A
and B. In other words, we managed to get rid of Ax.3—and with it the need to



axiomatise all sequential products simultaneously—at the slight cost of adding
axiom D, though that one might be superfluous as well (see IV).

We refer to §VI of [72] for comments on the relation of our axioms with those
of Gudder and Latémolière [22] and for some more pointers to the literature.

4.2 Tensor product

107The tensor product of von Neumann algebras A and B represented on Hilbert
spaces H and K , respectively, is usually defined as the von Neumann subalge-
bra of B(H ⊗K ) generated by the operators on H ⊗K of the form A ⊗ B
where A ∈ A and B ∈ B. In line with the representation-avoiding treatment
of von Neumann algebras from the previous chapter we’ll take an entirely dif-
ferent approach by defining the tensor product of von Neumann algebras A
and B abstractly as a miu-bilinear map ⊗ : A × B → A ⊗ B whose range
generates A ⊗B and admits sufficiently many product functionals (see 108 II);
we’ll only resort to the concrete representation of the tensor product mentioned
above to show that such an abstract tensor product actually exists (see 111VII).

Moreover, we’ll show that the tensor product has a universal property 112XI
yielding bifunctors on W∗

cpsu and W∗
miu (see 115 IV) turning them into a monoidal

categories (see 119V). In the next chapter, we’ll see that W∗
miu is even monoidal

closed (see 125VIII). This fact is one ingredient of our model for the quantum
lambda calculus from [9] built of von Neumann algebras, but more of that later.

4.2.1 Definition

108Definition A bilinear map β : A ×B → C between von Neumann algebras is

1. unital when β(1, 1) = 1,

2. multiplicative if β(ab, cd) = β(a, c)β(b, d) for all a, b ∈ A , c, d ∈ B,

3. involution preserving if β(a, b)∗ = β(a∗, b∗) for all a ∈ A , b ∈ B.

4. (This list is extended in 112 II.)

We abbreviate these properties as in 10 II, and say, for instance, that β is miu-
bilinear when it is unital, multiplicative and involution preserving.
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II Definition A miu-bilinear map γ : A ×B → T between von Neumann algebras
is a tensor product of A and B when it obeys the following three conditions.

1. The range of γ generates T (which means in this case that the linear span
of the range of γ is ultraweakly dense in T .)

This implies that for all f ∈ A∗ and g ∈ B∗ there is at most one h ∈ T∗
with, for all a ∈ A and b ∈ B,

h(γ(a, b)) = f(a) g(b),

which we’ll call the product functional for f and g, and denote by γ(f, g)
(when it exists).

2. For all np-functionals σ : A → C and τ : B → C the product functional
γ(σ, τ) : T → C exists and is positive.

3. The product functionals γ(σ, τ) of np-functionals σ and τ form a faithful
collection of np-functionals on T .

(We’ll see a slightly different characterisation of the tensor in which not all
product functionals of np-functionals are required to exists upfront in 116VII.)

III Remark This compact definition of the tensor product leaves four questions
unanswered: whether such a tensor product of two von Neumann algebras al-
ways exists, whether it has some universal property, whether it is unique in some
way, and whether it coincides with the usual definition. We’ll shortly address
all four questions.

4.2.2 Existence

109 We’ll start with the existence of a tensor product of von Neumann algebras for
which we’ll first need the tensor product of Hilbert spaces.

II Definition We’ll call a bilinear map γ : H ×K → T between Hilbert spaces
a tensor product when it obeys the following two conditions.

1. The linear span of the range of γ is dense in T .

2. 〈γ(x, y), γ(x′, y′)〉 = 〈x, x′〉 〈y, y′〉 for all x, x′ ∈H and y, y′ ∈ K .



IIIExercise We’re going to prove that every pair of Hilbert spaces H and K
admits a tensor product.

1. Given sets X and Y show that γ : `2(X)× `2(Y )→ `2(X × Y ) given by

γ(f, g) = ( f(x) g(y) )x∈X,y∈Y

is a tensor product of `2(X) and `2(Y ).

2. Show that a subset E of a Hilbert space H is an orthonormal basis
(see 39 IV) iff the map T : `2(E ) → H given by T (x) =

∑
e∈E xee is

an isometric isomorphism.

3. Show that any pair H and K of Hilbert spaces has a tensor product
(using the fact that every Hilbert space has an orthonormal basis).

IVProposition Let γ : H ×K → T be a tensor product of Hilbert spaces.

1. We have ‖γ(x, y)‖ = ‖x‖‖y‖ for all x ∈H and y ∈ K .

2. Given orthonormal bases E and F of H and K , respectively, the set

G := { γ(e, f) : e ∈ E , f ∈ F }

is an orthonormal basis for T .

VProof 1 We have ‖γ(x, y)‖2 = 〈γ(x, y), γ(x, y)〉 = 〈x, x〉 〈y, y〉 = ‖x‖2‖y‖2.
2 Since 〈γ(e, e′), γ(f, f ′)〉 = 〈e, e′〉 〈f, f ′〉 where e, e′ ∈ E and f, f ′ ∈ F , the

set G is clearly orthonormal. To see that G is maximal (and thus a basis) it
suffices to show that the span of G is dense in T , and for this it suffices to
show that each γ(x, y) where x ∈ H and y ∈ K is in the closure of the span
of G . Now, since y =

∑
f∈F 〈f, y〉 f , by 39 IV and 〈x, ( · )〉 is bounded by 1 we

have γ(x, y) =
∑
f∈F 〈y, f〉 γ(x, f). Since similarly γ(x, f) =

∑
e∈E 〈e, x〉 γ(e, f)

for all f ∈ F , we see that γ(x, y) is indeed in the closure of the span of G . �

110Definition We’ll say that a bilinear map η : H × K → L between Hilbert
spaces is `2-bounded by B ∈ [0,∞) when

‖
∑
i

β(xi, yi)‖2 6 B2
∑
i,j

〈xi, xj〉 〈yi, yj〉

for all x1, . . . , xn ∈H and y1, . . . , yn ∈ K .
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II Remark We added the prefix “`2-” to clearly distinguish it from the boundedness
of (sesquilinear) forms from 36 IV, which one might call “`∞-boundedness.”

This distinction is needed since for example given a Hilbert space H the
bilinear map (f, x) 7→ f(x) : H ∗ ×H → C is always `∞-bounded in the sense
that |f(x)| 6 ‖f‖‖x‖ for all f ∈ H ∗ and x ∈ H , but it is not `2-bounded
when H is infinite dimensional

III Theorem A tensor product γ : H ×K → T of Hilbert spaces is `2-bounded,
and initial as such in the sense that for any by B ∈ [0,∞) `2-bounded bilinear
map β : H ×K → L into a Hilbert space L there is a unique bounded linear
map βγ : T → L with βγ(γ(x, y)) = β(x, y) for all x ∈ H and y ∈ K .
Moreover, ‖βγ‖ 6 B for such β.

IV Proof Note that γ is `2-bounded, since for all x1, . . . , xn ∈H , y1, . . . , yn ∈ K ,
we have ‖

∑
i γ(xi, yi)‖2 =

∑
i,j 〈γ(xi, yi), γ(xj , yj)〉 =

∑
i,j 〈xi, xj〉 〈yi, yj〉.

Let E and F be orthonormal bases for H and K , respectively. Then
since { γ(e, f) : e ∈ E , f ∈ F } is an orthonormal basis for T by 109 IV, and βγ
is fixed on it by βγ(γ(e, f)) = β(e, f), uniqueness of βγ is clear.

Concerning existence of βγ , note that since t =
∑
e∈E ,f∈F 〈γ(e, f), t〉 γ(e, f)

for all t ∈ T by 39 IV, we’d like to define βγ by

βγ(t) =
∑

e∈E , f∈F

〈γ(e, f), t〉 γ(e, f); (4.2)

but before we can do this we must first check that this series converges. To this
end, note that since β is `2-bounded by B we have, given t ∈ T ,∥∥∑
e∈E, f∈F

〈γ(e, f), t〉β(e, f)
∥∥2

=
∥∥∑
e∈E, f∈F

β(e, 〈γ(e, f), t〉 f )
∥∥2

6 B2
∑

e′,e∈E, f ′,f∈F

〈e′, e〉 〈t, γ(e′, f ′)〉 〈f ′, f〉 〈γ(e, f), t〉

= B2
∑

e∈E, f∈F

|〈γ(e, f), t〉|2

for all finite subsets E ⊆ E and F ⊆ F . Since ‖t‖2 =
∑
e∈E , f∈F |〈γ(e, f), t〉|2

by Parseval’s identity (39 IV), we see that the series from (4.2) converges defin-
ing βγ(t), and, moreover, that ‖βγ(t)‖2 6 B2‖t‖2.

The resulting map βγ : T → L is clearly linear, and bounded by B. Further,
βγ(γ(e, f)) = β(e, f) for all e ∈ E and f ∈ F implies that βγ(γ(x, y)) = β(x, y)
for all x ∈H and y ∈ K , and so we’re done. �



VExercise Show that the tensor product of Hilbert spaces H and K is unique
in the sense that given tensor products γ : H ×K → T and γ′ : H ×K → T ′

there is a unique isometric linear isomorphism ϕ : T → T ′ with γ′(x, y) =
ϕ(γ(x, y)) for all x ∈H and y ∈ K .

VINotation Now that we’ve established that that the tensor product of Hilbert
spaces H and K exists and is unique (up to unique isomorphism) we just pick
one and denote it by ⊗ : H ×K →H ⊗K .

111Essentially to turn ⊗ into a functor on the category of Hilbert spaces in V, we’ll
need the following result (known as part of Schur’s product theorem), which will
be useful several times later on.

IILemma For any natural number N the entrywise product (anmbnm) of positive
N ×N -matrices (anm) and (bnm) over C is positive.

IIIProof Let z1, . . . , zN ∈ C be given. To show that (anmbnm) is positive, it suffices
by 33 II to prove that

∑
n,m znanmbnmzm > 0 for all n,m. Since (anm) is a

positive element of the C∗-algebra MN it’s of the form (anm) = C∗C for some
N ×N -matrix C ≡ (cnm) over C, so anm =

∑
k cknckm for all n,m. Similarly,

there a N ×N -matrix (dnm) over C with bnm =
∑
` d`nd`m for all n,m. Then∑

n,m

znanmbnmzm =
∑

n,m,k,`

zn cknckm d`nd`mzm

=
∑
k,`

(∑
n

zncknd`n

)(∑
m

zmckmd`m

)
=
∑
k,`

∣∣∣∑
n

zncknd`n

∣∣∣2 > 0,

and so (anmbnm) is positive. �

IVExercise Given square matrices (anm) 6 (ãnm) and (bnm) 6 (b̃nm) over C of
the same dimensions, show that ( anmbnm ) 6 ( ãnmb̃nm ).

VProposition Given bounded linear maps A : H → H ′ and B : K → K ′

between Hilbert spaces there is a unique bounded linear map

A⊗B : H ⊗K →H ′ ⊗K ′

with (A⊗B)(x⊗ y) = (Ax)⊗ (By) for all x ∈H and y ∈ K .

VIProof In view of 110 III the only thing we need to prove is that the bilinear map
⊗◦(A×B) : H ×K →H ⊗K is `2-bounded (for then A⊗B = (⊗◦(A×B) )⊗.)
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So let x1, . . . , xn ∈H and y1, . . . , yn ∈ K be given, and note that

‖
∑
i

(⊗ ◦ (A×B))(xi, yi) ‖2 = ‖
∑
i

(Axi)⊗ (Byi)‖2

=
∑
i,j

〈Axi, Axj〉 〈Byi, Byj〉

6 ‖A‖2‖B‖2
∑
i,j

〈xi, xj〉 〈yi, yj〉 ,

so ⊗ ◦ (A × B) is bounded by ‖A‖‖B‖. The last step in the display above
is justified by IV, and the inequalities ( 〈Axi, Axj〉 ) 6 ( ‖A‖2 〈xi, xj〉 ) and
( 〈Byi, Byj〉 ) 6 ( ‖B‖2 〈yi, yj〉 ). �

VII Theorem Let A and B be von Neumann algebras of bounded operators on
Hilbert spaces H and K , respectively. Sending operators A ∈ A and B ∈ B
to A⊗B : H ⊗K →H ⊗K from V gives a miu-bilinear map

⊗ : A ×B −→ B(H ⊗K ).

Letting T be the von Neumann subalgebra of B(H ⊗K ) generated by the
range of ⊗, the restriction γ : A ×B → T of ⊗ is a tensor product of A and B.

VIII Proof We’ll check that the three conditions of 108 II hold; we leave it to the
reader to verify that ⊗ is miu-bilinear.

IX (Condition 1) The range of γ being the same as the range of ⊗ generates T
simply by the way T was defined.

X (Condition 2) Let σ : A → C and τ : B → C be np-maps. We must find an np-
functional ω on T with ω(A⊗B) = σ(A)τ(B) for all A ∈ A , B ∈ B. Note that
by 89 IX σ and τ are of the form σ ≡

∑
n 〈xn, ( · )xn〉 and τ ≡

∑
n 〈yn, ( · )yn〉 for

some x1, x2, . . . ∈H and y1, y2, . . . ∈ K with
∑
n ‖xn‖2 <∞ and

∑
m ‖ym‖2 <

∞. So as
∑
n,m ‖xn⊗ ym‖2 ≡

∑
n ‖xn‖2

∑
m ‖ym‖2 <∞, we can define an np-

functional ω on T by ω(T ) :=
∑
n,m 〈xn ⊗ ym, T xn ⊗ ym〉; which does the job:

ω(A⊗B) =
∑
n,m 〈xn, Axn〉 〈ym, Bym〉 = σ(A)τ(B) for all A ∈ A and B ∈ B.

XI (Condition 3) It remains to be shown that the product functionals on T form
a faithful collection. These functionals are—as we’ve just seen—all of the form∑
m,n 〈xn ⊗ yn, ( · )xn ⊗ ym〉 for some x1, x2, . . . ∈H and y1, y2, . . . ∈ K (and,

conversely, it’s easily seen that a functional of that form is a product functional).
It suffices, then, to show that the subset of product functionals of the form
〈x⊗ y, ( · )x⊗ y〉 where x ∈H and y ∈ K is faithful. To this end, let T ∈ T+

with 〈x⊗ y, Tx⊗ y〉 = 0 for all x ∈ H and y ∈ K be given in order to



show that T = 0. Note that since ‖
√
T x ⊗ y‖2 = 〈x⊗ y, T x⊗ y〉 = 0, and

so
√
T x⊗ y = 0 for all x ∈H , y ∈ K , we have

√
T = 0 (since the linear span

of the x⊗ y is dense in H ⊗K ), and thus T = 0. �

XIIExercise Given von Neumann algebras A and B (which are not a priori rep-
resented on Hilbert spaces) construct a tensor product γ : A ×B → T of A
and B using 48VIII and VII.

4.2.3 Universal Property

112Before we bring our categorical faculties to bear upon the tensor product for
von Neumann algebras we quickly review the (algebraic) tensor product of plain
vector spaces V andW first — it is a vector space V �W equipped with a bilinear
mapping � : V ×W → V �W which is universal in the sense that for every
bilinear mapping β : V ×W → Z into some vector space Z there is a unique
linear map β� : V �W → Z with β�(v�w) = β(v, w) for all v ∈ V and w ∈W .
This property uniquely determines the algebraic tensor product in the sense
that for any bilinear map �̃ : V ×W → V �̃W into a vector space V �̃W which
shares this property there is a unique linear isomorphism ϕ : V �W → V �̃W
with ϕ(v � w) = v �̃ w for all v ∈ V and w ∈W .

In fact, one may take this property as a neat abstract definition of the
algebraic tensor product. However, to see that the darn thing actually exists,
one still needs a concrete description such as this one: take given a basis B of V
and a basis C of W the bilinear map � on V ×W to the vector space (B×C) ·C
with basis B ×C determined by b� c = (b, c) for b ∈ B and c ∈ C. This shows
us not only that the algebraic tensor product exists, but also that � is injective
(among other things).

This is all, of course, well known, and we already saw in 110 III that the tensor
product for Hilbert spaces has a similar universal property; the interesting thing
here is that with some work one can see that a tensor product γ : A ×B → T
of von Neumann algebras A and B has a similar universal property too! We’ll
see that any bilinear map β : A ×B → C into a von Neumann algebra C which
is sufficiently regular extends uniquely along γ to a ultraweakly continuous map
βγ : T → C, where regular will mean that the extension β� : A � B → C
from the algebraic tensor product is ultraweakly continuous and bounded with
respect to the norm and ultraweak topology induced on A �B by T via γ.

To prevent a circular description here, we’ll first describe the norm and
ultraweak topology that the tensor product induces on A �B directly, which
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turns out to be independent (as it should) from the choice of γ. This description
is essentially based on the fact that the product functionals on T are centre
separating; and that this determines both norm and ultraweak topology is just
a general observation concerning centre separating sets, as we saw in 90 II.

II Definitions Let A and B be von Neumann algebras.

1. A basic functional is a map ω : A �B → C with ω ≡ (σ � τ)(t∗( · )t) for
some np-maps σ : A → C, τ : B → C, and t ∈ A �B.

A simple functional is a finite sum of basic functionals.

2. Each basic functional ω : A �B → C gives us an operation [ · , · ]ω, that
will turn out to be an inner product in V by [s, t]ω := ω(s∗t) (cf. 30 II),
and an associated semi-norm denoted by ‖t‖ω := [t, t]1/2ω = ω(t∗t)1/2.

The tensor product norm on A �B is the norm (see VIII) given by

‖t‖ = supω ‖t‖ω,

where ω ranges over all basic functionals on A �B with ω(1) 6 1.

3. Note that having endowed A �B with the tensor product norm we can
speak of bounded functionals on A �B, and the operator norm on them;
and note that the basic and simple functionals are bounded.

The ultraweak tensor product topology is the least topology on A �B
that makes all operator norm limits of simple functionals continuous.

4. A bilinear map β : A ×B → C to a von Neumann algebra C is called

(a) (continues the list from 108 I)

(b) bounded when the unique extension β� : A �B → C is bounded,

(c) normal when β� is continuous with respect to the ultraweak tensor
product topology on A �B and the ultraweak topology on C ,

(d) completely positive when
∑
i,j,k c

∗
k β(a∗i aj , b

∗
i bj) ck > 0 for all tuples

a1, . . . , aN ∈ A , b1, . . . , bN ∈ B, and c1, . . . , cN ∈ C .

III Lemma Given C∗-algebras A and B we have (σ�τ)(t∗t) > 0 for all t ∈ A �B
and p-maps σ : A → C and τ : B → C.



IVProof Note that writing t ≡
∑
n an�bn, where a1, . . . , aN ∈ A , b1, . . . , bN ∈ B,

we have (σ � τ)(t∗t) =
∑
n,m σ(a∗nam) τ(b∗nbm). Since (a∗nam) is a positive

matrix over A , and σ : A → C is completely positive (by 34 IX), the ma-
trix (σ(a∗nam)) is positive. Since (τ(b∗nbm)) is positive by the same token,
the entrywise product (σ(a∗nam) τ(b∗nam) ) is positive too (by 111 II). Whence
(σ � τ)(t∗t) =

∑
n,m σ(a∗nam) τ(b∗nbm) > 0. �

VExercise Use III to show that [ · , · ]ω from II is an inner product.

VILemma Product functionals on A �B formed from separating collections Ω
and Ξ of linear functionals on C∗-algebras A and B, respectively, are separating
in the sense that given t ∈ A �B the condition that (σ�τ)(t) = 0 for all σ ∈ Ω
and τ ∈ Ξ entails that t = 0.

VIIProof Write t ≡
∑
n an � bn for some a1, . . . , aN ∈ A and b1, . . . , bN ∈ B.

Note that (by replacing them if necessary) we may assume that the a1, . . . , aN
are linearly independent. Let τ ∈ Ξ be given. Since 0 = (σ � τ)(t) =∑
n σ(an)τ(bn) = σ(

∑
n anτ(bn) ) for all σ from the separating collection Ω,

we have 0 =
∑
n anτ(bn), and so—a1, . . . , aN being linearly independent—we

get 0 = τ(b1) = · · · = τ(bN ). Since this holds for any τ in the separating
collection Ξ we get 0 = b1 = · · · = bN , and thus t =

∑
n an � bn = 0. �

VIIIExercise Show that the tensor product norm from II is, indeed, a norm.

IXExercise Note that given np-functionals σ : A → C and τ : B → C on von
Neumann algebras, the functional σ� τ : A �B → C is ultraweakly continuous
and bounded, almost by definition.

Show that f � g is bounded and ultraweakly continuous too for all f ∈ A∗
and g ∈ B∗ (perhaps using 72XI).

XExercise We’re going to show that the ultraweak tensor product topology and
tensor product norm from II actually describe the norm and ultraweak topology
on A �B induced by a tensor product A ×B → T (via γ�) by establishing
the two closely related facts that γ� : A � B → T is an isometry and an
ultraweak embedding, and that certain functionals ω : A � B → C can be
extended uniquely to T along γ�.

1. Show using 90 II that the collection Ω of np-functionals on T of the form
γ(σ, τ)(γ�(s)∗( · )γ�(s)), where σ : A → C, τ : B → C are np-functionals
and s ∈ A �B, is order separating, and that every np-functional on T
is the operator norm limit of finite sums of functionals from Ω.

Show that ω ◦ γ� is a basic functional (see II) for every ω ∈ Ω, and that
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every basic functional is of this form for some unique ω ∈ Ω.

2. Show that the subset Ω1 of Ω of unital maps is order separating, and
so determines the norm on T via ‖a‖2 = ‖a∗a‖ = supω∈Ω1

ω(a∗a) for
all a ∈ T (see 21VII).

Prove that ‖γ�(s)‖ = supω∈Ω1
ω(s∗s)1/2 = supω∈Ω1

‖s‖ω◦τ� = ‖s‖ for
all s ∈ A �B, and conclude that γ� is an isometry.

3. Show that ‖f ◦ γ�‖ 6 ‖f‖ for every f ∈ T∗, and deduce from this that
when ω : T → C is an np-functional its restriction ω ◦ γ� is the operator
norm limit of simple functionals on A � B implying that ω ◦ γ�—and
thus γ� itself—is ultraweakly continuous.

4. In order to show that γ� is an ultraweak embedding, we’ll need the equality
‖f ◦ γ�‖ = ‖f‖ for all f ∈ T∗.

In order to show this in turn, recall (from 86 IX) that there is a partial
isometry u in T with f(u) = ‖f‖ (see 86XIV).

Show that given ε > 0 there is a net (sα)α in A �B with ‖sα‖ 6 1+ε for
all α such that γ�(sα) converges ultrastrongly to t as α→∞ (cf. 74VI).

Deduce that ‖f‖ = f(u) = |f(u)| = limα |f(γ�(sα))| 6 ‖f ◦ γ�‖(1 + ε),
and conclude that ‖f‖ = ‖f ◦ γ�‖.

5. Show that any functional ω′ : A �B → C that is the operator norm limit
of simple functionals on A � B can be extended uniquely along γ� to
an np-functional on T (using the fact that the operator norm limit of
np-functionals is an np-functional again, see 87 III).

Deduce from this that γ� is a ultraweak topological embedding.

(Note that by 77V any bounded ultraweakly continuous functional on A �
B can be extended uniquely to a normal functional on T .)

XI Theorem A tensor product γ : A × B → T of von Neumann algebras A
and B has this universal property: for every normal bounded bilinear map
β : A × B → C to a von Neumann algebra C there is a unique ultraweakly
continuous map βγ : T → C with βγ ◦ γ = β. Moreover, ‖βγ‖ = ‖β�‖.

XII Proof Since β� : A � B → C is ultraweakly continuous and bounded, and
A �B can by X be considered an ultraweakly dense ∗-subalgebra of T via γ�,
the theorem follows from 77V except for some trivial details. �



113We’ll need some observations concerning completely positive bilinear maps.

IIExercise Show that a mi-bilinear map β : A ×B → C between von Neumann
algebras is completely positive.

IIINotation Given a bilinear map β : A ×B → C between von Neumann algebras,
we define MNβ : MNA ×MNB →MNC by (MNβ)(A,B) = (β(Aij , Bij))ij for
each N .

IVExercise Show that for a bilinear map β : A ×B → C between von Neumann
algebras the following are equivalent.

1. β is completely positive.

2. MNβ is completely positive for each N .

3. (MNβ)(A,B) > 0 for all A ∈MN (A )+, B ∈MN (B)+ and N .

Deduce as a corollary that h◦β◦(f×g) is completely positive when f : A ′ → A ,
g : B′ → B and h : C → C ′ are cp-maps between von Neumann algebras.

114Exercise Let γ : A ×B → T be a tensor product of von Neumann algebras,
β : A ×B → C a normal bounded bilinear map, and βγ : T → C its extension
along γ� from 112XI. Show that

1. βγ is multiplicative iff β is multiplicative (see 112 II);

2. βγ is involution preserving iff β is involution preserving;

3. βγ is unital iff β is unital;

4. βγ is positive iff
∑
i,j β(a∗i aj , b

∗
i bj) > 0 for all tuples a1, . . . , aN from A

and b1, . . . , bN from B;

5. βγ is completely positive iff β is completely positive.

IIExercise Show that the tensor product of von Neumann algebras A and B is
unique in the sense that when γ : A ×B → T and γ′ : A ×B → T ′ are tensor
products of A and B, then there is a unique nmiu-isomorphism ϕ : T → T ′

with ϕ(γ(a, b)) = γ′(a, b) for all a ∈ A and b ∈ B.
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4.2.4 Functoriality

115 Notation Now that we’ve established that that the tensor product of von Neu-
mann algebras A and B exists and is unique (up to unique nmiu-isomorphism)
we just pick one and denote it by ⊗ : A ×B → A ⊗B.

II Proposition Given ncp-maps f : A → C and g : B → D between von Neumann
algebras there is a unique ncp-map f ⊗ g : A ⊗B → C ⊗D with

(f ⊗ g)(a⊗ b) = f(a)⊗ f(b)

for all a ∈ A and b ∈ B. Moreover,

1. f ⊗ g is multiplicative when f and g are multiplicative;

2. f ⊗g is involution preserving when f and g are involution preserving; and

3. f ⊗ g is (sub)unital when f and g are (sub)unital.

III Proof As uniqueness of f ⊗g is rather obvious, we leave it at that. To establish
existence of f ⊗ g, it suffices to show that the bilinear map β : A × B →
C ⊗D given by β(a, b) = f(a)⊗ g(b), which is completely positive by 113 IV, is
bounded and normal; because then we may take f ⊗ g := β⊗ as in 112XI and
all the properties claimed for f ⊗ g will then follow with the very least of effort
from 114 I.

To see that β is bounded, we’ll prove that ‖β�(s)‖ 6 ‖f‖‖g‖‖s‖ given an
element s of A ⊗ B, and for this it suffices (by the definition of the tensor
product norm, 112 II) to show that ω(β�(s)∗β�(s)) 6 ‖f‖2‖g‖2‖s‖2 given a
basic functional ω on A � B with ω(1) 6 1. We’ll prove in a moment that
‖ω ◦ β�‖ 6 ‖f‖‖g‖ and β�(s)∗β�(s) 6 ‖f‖‖g‖β�(s∗s), because with these two
claims we get ω(β�(s)∗β�(s)) 6 ‖f‖‖g‖ω(β�(s∗s)) 6 ‖f‖‖g‖‖ω ◦ β�‖‖s‖2 6
‖f‖2‖g‖2‖s‖2 — which is the result desired.

Concerning the first promise, that ‖ω ◦ β�‖ 6 ‖f‖‖g‖, note that writing
ω ≡ (σ � τ)(t∗( · )t), where σ and τ are np-maps on C and D , respectively,
and t ≡

∑
ij ci � di is from C �D , we have

ω ◦ β� =
∑
ij σ(c∗i f( · )cj) � τ(d∗i g( · )dj),

and so ω ◦ β� is ultraweakly continuous and bounded by 112 IX, because the
σ(c∗i f( · )cj) and τ(d∗i g( · )dj) are bounded ultraweakly continuous functionals.



Although the bound for ω ◦ β� thus obtained is in all probability nowhere
near ‖f‖‖g‖, it does allow us by 112XI to extend ω ◦ β� to an ultraweakly
continuous functional ω′ := (ω ◦ β)⊗ on C ⊗ D with the same norm, ‖ω′‖ =
‖ω◦β�‖. Since this extension ω′ is completely positive (because β and thus ω◦β
are completely positive, see 113 IV) its norm is by 34XVI given by ‖ω′‖ = ω′(1) ≡
ω(f(1)⊗g(1)) 6 ‖f‖‖g‖, where we used that ω(1) 6 1. Thus ‖ω◦β�‖ = ‖ω′‖ 6
‖f‖‖g‖, as was claimed.

Incidentally, since each ω◦β� is ultraweakly continuous, so is β�, and thus β
is normal. The only thing that remains is to make good on our last promise,
that β�(s)∗β�(s) 6 ‖f‖‖g‖β�(s∗s). To this end, write s ≡

∑
i ai � bi, and

consider the matrices A and B given by

A :=


a1 a2 · · · an
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 B :=


b1 b2 · · · bn
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ,

and the cp-map h : Mn(C⊗D)→ C⊗D given by h(C) = 〈(1, . . . , 1), C(1, . . . , 1)〉 =∑
ij Cij . We make these arrangements so that we may apply the inequality

(Mnf)(A)∗(Mnf)(A) 6 ‖(Mnf)(1)‖(Mnf)(A∗A) easily derived from 34XIV.
Indeed, noting also ‖(Mnf)(1)‖ = ‖f(1)‖ = ‖f‖, we have

β�(s)∗β�(s) =
∑
ij f(ai)

∗f(aj)⊗ g(bi)
∗g(bj)

= h( (Mnf)(A)∗(Mnf)(A) (Mn⊗) (Mng)(B)∗(Mng)(B) )

6 ‖f‖‖g‖h( (Mnf)(A∗A) (Mn⊗) (Mng)(B∗B) )

= ‖f‖‖g‖
∑
ij f(a∗i aj)⊗ g(b∗i bj)

= ‖f‖‖g‖β�(s∗s),

which concludes this proof. �

IVExercise Show that the assignments (A ,B) 7→ A ⊗B, and (f, g) 7→ f ⊗g give
a bifunctor ⊗ : C×C→ C where C can be W∗

miu, W∗
cp, W∗

cpu or W∗
cpsu.

VProposition Given injective nmiu-maps f : A → C and g : B → D , the nmiu-
map f ⊗ g : A ⊗B → C ⊗D is injective.

VIProof The trick is to consider the von Neumann subalgebra T generated by the
elements of C ⊗D of the form f(a)⊗g(b) where a ∈ A and b ∈ B, and to show
that the miu-bilinear map γ : A ×B → T given by γ(a, b) = f(a) ⊗ g(b) is a
tensor product of A and B. Indeed, if this is achieved, then there is, by 114 II,
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a unique nmiu-map ϕ : A ⊗B → T with ϕ(a ⊗ b) = γ(a, b) = f(a) ⊗ g(b), so
that the following diagram commutes.

A ×B
f×g //

γ

&&
⊗
��

C ×D

⊗
��

A ⊗B ϕ // T ⊆ // C ⊗D

The map on the bottom side of this rectangle above is none other than f ⊗ g,
and is thus, being the composition of the isomorphism ϕ with the inclusion
T ⊆ C ⊗D , injective.

It remains to be shown that γ is a tensor product, that is, obeys the con-
ditions from 108 II. Condition 1 holds simply by definition of T . To see that γ
obeys condition 2, let np-functionals σ̃ : A → C and τ̃ : B → C be given; we
must find an np-functional γ(σ̃, τ̃) on T with γ(σ̃, τ̃)(a⊗ b) = γ(a, b).

By ultraweak permanence σ̃ and τ̃ can be extended along f and g, re-
spectively, see 89XII, giving us np-functionals σ : C → C and τ : D → C
with σ̃ = σ ◦ f and τ̃ = τ ◦ g. Now simply take γ(σ̃, τ̃) to be the restriction of
σ ⊗ τ to T , which does the job.

Finally, concerning condition 3, let z be a central projection of T with
γ(σ̃, τ̃)(z) = 0 for all σ̃ and τ̃ of aforementioned type. We must show that z = 0,
and for this it suffices to show that (σ⊗ τ)(z) = 0 for all np-functionals σ and τ
on C and D , respectively. Since for such σ and τ we have γ(σ̃, τ̃)(γ(a, b)) =
σ(f(a)) τ(g(b)) = (σ⊗ τ)(γ(a, b)) for all a ∈ A and b ∈ B, we have γ(σ̃, τ̃)(t) =
(σ ⊗ τ)(t) for all t ∈ T , and, in particular, 0 = γ(σ̃, τ̃)(z) = (σ ⊗ τ)(z).
Hence z = 0. �

4.2.5 Miscellaneous Properties

116 Lemma Given von Neumann algebras A and B, we have ‖f ⊗ g‖ = ‖f‖‖g‖
for all f ∈ A∗ and g ∈ B∗.

II Proof The trick is to use the polar decomposition for normal functionals, 86 IX.
On its account we can find partial isometries u ∈ A and v ∈ B such that
f(u( · )) and g(v( · )) are positive, and f ≡ f(uu∗( · )), g ≡ g(vv∗( · )). Then
u⊗ v is a partial isometry such that (f ⊗ g)((u⊗ v)( · )) is positive, and f ⊗ g =
(f⊗g)( (u⊗v) (u⊗v)∗ ( · ) ) so that ‖f⊗g‖ = (f⊗g)(u⊗v) = f(u)g(v) = ‖f‖‖g‖
by 86XIV. �



IIIExercise There are some easily obtained facts concerning the tensor prod-
uct A ⊗B of von Neumann algebras that nevertheless deserve explicit mention.

1. Show that a ⊗ b > 0 for all a ∈ A+ and b ∈ B+; and conclude that
a1 ⊗ b1 6 a2 ⊗ b2 for all a1 6 a2 from A and b1 6 b2 from B.

2. Show that ‖a⊗ b‖ = ‖a‖‖b‖ for all a ∈ A and b ∈ B.

Conclude that ⊗ : A ×B → A ⊗B is norm continuous.

(Warning: as ⊗ is not linear this is not entirely trivial.)

3. Show that ⊗ : A∗ ×B∗ → (A ⊗B)∗ is norm continuous (using I).

4. Show that ⊗ : A ×B → A ⊗B is ultraweakly continuous.

(Hint: since we already know that ⊗� : A �B → A ⊗B is ultraweakly
continuous, by 112X, an equivalent question is whether � : A × B →
A �B is ultraweakly continuous, which may be boiled down to the fact
that (a, b) 7→

∑
ij σ(a∗i aaj) τ(b∗i bbj) : A ×B → C is ultraweakly contin-

uous, where σ and τ are np-functionals on A and B, respectively, and
a1, . . . , an ∈ A , and b1, . . . , bn ∈ B.)

5. Show that a⊗ ( · ) : B → A ⊗B is a ncp-map for every a ∈ A , and that
1⊗ ( · ) : B → A ⊗B is a nmiu-map.

IVProposition Let A and B be von Neumann algebras.

1. If S and T are ultraweakly dense subsets of A and B, respectively,
then { s⊗ t : s ∈ S, t ∈ T } is ultraweakly dense in A ⊗B.

2. If Ω and Θ are centre separating collections of np-functionals on A and B,
respectively, then {ω⊗ϑ : ω ∈ Ω, ϑ ∈ Θ } is centre separating for A ⊗B.

VProof Concerning 1, since the elements of A ⊗B of the form a⊗b lie ultraweakly
dense in A ⊗B where a ∈ A and b ∈ B, it suffices to show that such element a⊗
b is the ultraweak limit of elements of the form s⊗t where s ∈ S and t ∈ T . This
is indeed the case as there are nets (sα)α and (tβ)β in S and T that converge
to a and b, respectively, and so, because ⊗ is ultraweakly continuous by III, we
see that sα ⊗ tβ converges ultraweakly to a⊗ b as α, β →∞.

Concerning 2, let t be a positive element of A ⊗B with (ω⊗ϑ)(s∗ts) = 0 for
all ω ∈ Ω, ϑ ∈ Θ, and s ∈ A ⊗B; we must show that t = 0. For this it suffices
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to show that (σ ⊗ τ)(t) = 0 for all np-functionals σ : A → C and τ : B → C
(since the product functionals σ ⊗ τ form a faithful collection.) Now, since Ω
is centre separating such σ may by 90 II be obtained as operator norm limit
of finite sums of functionals of the form ω(a∗( · )a) where ω ∈ Ω and a ∈ A .
Since a np-functional τ : B → C can be obtained in a similar fashion from Θ,
and ⊗ : A∗ ⊗ B∗ → (A ⊗ B)∗ is operator norm continuous (by III), we see
that a product functional σ ⊗ τ can be obtained as the operator norm limit of
finite sums of functionals of the form ω(a∗( · )a) ⊗ ϑ(b∗( · )b) ≡ (ω ⊗ ϑ)( (a ⊗
b)∗ ( · ) (a ⊗ b) ); and since those functionals map t to 0, by assumption, we
conclude that (σ ⊗ τ)(t) = 0 too. �

VI To obtain certain examples the following characterisation of the tensor product
of von Neumann algebras proves useful.

VII Theorem Given centre separating collections Σ and Γ of np-functionals on von
Neumann algebras A and B, respectively, a miu-bilinear map γ : A ×B → T
is a tensor product iff all of the following conditions hold.

1. The range of γ generates T .

2. For all σ ∈ Σ and τ ∈ Γ the product functional γ(σ, τ) : T → C exists
(see 108 II) and is positive.

3. The set { γ(σ, τ) : σ ∈ Σ, τ ∈ Γ } is centre separating for T .

VIII Proof A tensor product γ obeys these conditions by definition and by IV, so
we only need to show that a γ that obeys these conditions is a tensor product,
and for this it suffices to show that γ can be extended to a nmiu-isomorphism
γ⊗ : A ⊗B → T . To extend γ to just a miu-map γ⊗ (to begin with) it suffices
by 112XI and 114 I to show that γ� : A �B → T is bounded with respect to
the tensor product norm on A �B and continuous with respect to the tensor
product topology on A �B and the ultraweak topology on T .

To see that γ� is bounded, let t ∈ A �B be given; we’ll show that ‖γ�(t)‖2 ≡
‖γ�(t∗t)‖ 6 ‖t‖2 where ‖t‖ is the tensor product norm of t. Since by 90 II the
np-functionals on T of the form

γ(σ, τ)( γ�(s)∗ ( · ) γ�(s) ) (4.3)

where σ ∈ Σ, τ ∈ Γ and s ∈ A �B, are order separating, also with the restric-
tion that 1 = γ(σ, τ)(γ�(s∗s)) ≡ (σ�τ)(s∗s), and therefore determine the norm
of t∗t as in 21VII, it suffices to show that γ(σ, τ)(γ�(s)∗γ�(t∗t)γ�(s)) 6 ‖t‖2



given such σ, τ , and s (with (σ�τ)(s∗s) = 1). But since γ(σ, τ)(γ�(s)∗γ�(t∗t)γ�(s)) =
(σ� τ)(s∗t∗ts) = ‖t‖2(σ�τ)(s∗( · )s) 6 ‖t‖

2 by the definition of the tensor product

norm (see 112 II), this is indeed the case.
To see that γ� : A �B → T is ultraweakly continuous it suffices to show that

ω ◦ γ� is the operator norm limit of finite sums of basic functionals on A �B
(see 112 II) given any np-functional ω : T → C. Since by 90 II such ω is the
norm limit of finite sums of functionals on T of the form displayed in (4.3),
and γ� is bounded, we may assume without loss of generality that ω itself is as
shown in (4.3). Since ω ◦ γ� ≡ (σ � τ)(s∗( · )s) is then a basic functional γ� is
ultraweakly continuous.

Having established boundedness and continuity of γ� we obtain our nmiu-
map γ⊗ : A ⊗ B → T with γ⊗(a ⊗ b) = γ(a, b) for all a ∈ A and b ∈ B.
To show that γ is a tensor product, it suffices to show that γ⊗ is a nmiu-
isomorphism, and for this, it suffices to show that γ⊗ is a bijection. In fact,
we only need to show that γ⊗ is injective, because since the elements of T of
the form γ(a, b) ≡ γ⊗(a⊗ b) generate T (by assumption), and are in the range
of γ⊗ (which is a von Neumann subalgebra of T by 48VI), γ⊗ will be surjective.

To show that γ⊗ is injective, it suffices to show that dγ⊗e ≡ ddγ⊗ee = 1
(see 69 IV). Since the product functionals on A ⊗B of the form σ⊗τ where σ ∈ Σ
and τ ∈ Γ are centre separating (by IV), and ddγ⊗ee is central, it suffices to

show that (σ ⊗ τ)( ddγ⊗ee⊥ ) = 0 given σ ∈ Σ and τ ∈ Γ. But this is easy —

(σ ⊗ τ)( ddγ⊗ee⊥ ) = γ(σ, τ)(γ⊗( ddγ⊗ee⊥ )) = 0. Whence γ is a tensor product. �

117Using the characterization from 116VII it is pretty easy to see that the tensor
product distributes over (infinite) direct sums (see III) after some unsurprising
observations regarding direct sums (in II).

IIExercise Let (Ai)i∈I be a collection of von Neumann algebras.

1. Show that given a generating subset Ai for each von Neumann algebra Ai

the set
⋃
i∈I κi(Ai) generates

⊕
i∈I Ai, where κi : Ai →

⊕
i∈I Ai denotes

the np-map given by (κi(a))i = a and (κi(a))j = 0 when j 6= i.

2. Show that given a centre separating collection Ωi of np-functionals on Ai

for each i ∈ I the collection {ω ◦ πi : ω ∈ Ωi, i ∈ I } is centre separating
for
⊕

i∈I Ai.

IIIProposition Given von Neumann algebras A and (Bi)i∈I the bilinear map

γ : A ×
⊕

i Bi −→
⊕

i A ⊗Bi, (a, b) 7→ (ai ⊗ b)i
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is a tensor product. (Whence A ⊗
⊕

i Bi
∼=
⊕

i A ⊗Bi.)

IV Proof We use 116VII to show that γ is a tensor product. Note that γ is clearly
miu-bilinear, and that the elements of the form γ(a, κi(b)) = κ(a⊗ b) from the
range of γ where a ∈ A , i ∈ I, and b ∈ Bi generate

⊕
i A ⊗Bi by II. Further,

since given i ∈ I and np-functionals σ : A → C and τ : Bi → C the product
functional γ(σ, τ ◦ πi) exists being simply (σ ⊗ τ) ◦ πi :

⊕
i A ⊗Bi → C, and

such product functionals form a centre separating collection by II, we see that γ
is indeed a tensor product. �

118 The tensor interacts with projections as expected.

II Lemma Let A and B be von Neumann algebras.

1. We have da⊗ be = dae ⊗ dbe for all a ∈ A+ and b ∈ B+.

2. We have dda⊗ bee = ddaee ⊗ ddbee for all a ∈ A and b ∈ B.

III Proof Let a ∈ A+ and b ∈ B+ be given. Since the map ( · )⊗ b : A → A ⊗B is
np, da⊗ be 60V

=== ddae ⊗ be. Since similarly ddae ⊗ be = d dae ⊗ dbe e ≡ dae ⊗ dbe
using here that dae ⊗ dbe is already a projection, we get dae ⊗ dbe = da⊗ be.

Let a ∈ A and b ∈ B be given in order to prove that dda⊗ bee = ddaee ⊗ ddbee.
Since ddaee⊗1 commutes with all elements of A ⊗B of the form a′⊗b′, and thus
with all elements of A ⊗B, we see that ddaee⊗1 is central. Since similarly 1⊗ddbee
is central, we see that ddaee⊗ ddbee = (ddaee⊗ 1)⊗ (1⊗ddbee) is central too. Since in
addition ddaee⊗ddbee is a projection, and (ddaee⊗ddbee) (a⊗ b) = (ddaee a)⊗ (ddbee b) =
a⊗ b we see that dda⊗ bee 6 ddaee ⊗ ddbee (by definition, see 68 III).

So all that remains is to show that ddaee ⊗ ddbee 6 dda⊗ bee. Recall that ddaee =⋃
ã∈A dã∗a∗aãe by 68 I. Using this, a similar expression for ddbee, and 60 IX, we see

that ddaee ⊗ ddbee =
⋃
ã∈A

⋃
b̃∈B d(ã∗a∗aã)⊗ (b̃∗b∗bb̃)e, and so it suffices to show

that d(ã∗a∗aã)⊗ (b̃∗b∗bb̃)e 6 dda⊗ bee given ã ∈ A and b̃ ∈ B. This is indeed the
case since d(ã∗a∗aã)⊗ (b̃∗b∗bb̃)e = d(ã⊗ b̃)∗ (a⊗ b)∗(a⊗ b) (ã⊗ b̃)e 6 dda⊗ bee
(by 68 I, again.) �

IV Exercise Let f : A → B and g : C → D be np-maps between von Neumann
algebras. We’re going to prove that df ⊗ ge = dfe ⊗ dge.

1. Show that (f⊗g)(dfe⊗dge) = 1⊗1, and conclude that df ⊗ ge 6 dfe⊗dge.

2. Assume for the moment that A and C are von Neumann algebras of
bounded operators on Hilbert spaces H and K , respectively, and that f



and g are vector functionals, that is, B = D = C, and f = 〈x, ( · )x〉 for
some x ∈H , and g = 〈y, ( · )y〉 for some y ∈ K .

Show that dfe =
⋃
a∈A � d a∗ |x〉〈x| a e using 88 IV and 88VI.

3. With the same assumptions as in the previous point, suppose, further-
more, without loss of generality that A ⊗B is given as the von Neumann
subalgebra of B(H ⊗K ) generated by the operators A⊗B where A ∈ A
and B ∈ B (cf. 111VII).

Show that f ⊗ g = 〈x⊗ y, ( · )x⊗ y〉.
Given a ∈ A � and b ∈ B� show that a⊗ b ∈ (A ⊗B)�, and thus

da∗ |x〉〈x| ae ⊗ db∗ |y〉〈y| be 6 df ⊗ ge .

Deduce from this that dfe ⊗ dge 6 df ⊗ ge, so dfe ⊗ dge = df ⊗ ge.

4. Let f and g be arbitrary again, and assume now that f and g are func-
tionals, that is, B = D = C. Show that df ⊗ ge = dfe ⊗ dge.

5. Let f and g be arbitrary again, and recall from 66 IV that 1 =
⋃
σ dσe

when σ ranges over the np-functionals σ on B.

Show that 1⊗1 =
⋃
σ,τ dσ ⊗ τe where σ and τ range over the np-functionals

on B and D , respectively.

Show using 101 IV and 101VIII that df ⊗ ge ≡ (f ⊗g)�(1⊗1) = dfe⊗dge.

6. Show that (f ⊗ g)�(s⊗ t) = f�(s)⊗ g�(t) for projections s ∈ B and t ∈ D .

4.2.6 Monoidal Structure

119Up to this point we have only written about the tensor product A ⊗ B of
two von Neumann algebras (to save ink), but all of it, as you will no doubt
have observed already, can be easily adapted to deal with a tensor product
⊗ : A1 × . . . × An → A1 ⊗ · · · ⊗ An of a tuple A1, . . . ,An of von Neumann
algebras, which will then, of course, be a multilinear map instead of a bilinear
map, etc..

What is less obvious is that there should be any relation between (A ⊗B)⊗
C , and A ⊗ (B ⊗ C ) and A ⊗B ⊗ C ; but there is.
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II Proposition Given von Neumann algebras A , B and C , the trilinear map
γ : (a, b, c) 7→ (a⊗ b)⊗ c, A ×B × C → (A ⊗B)⊗ C is a tensor product.

III Proof We need to verify the three conditions from 108 II (adapted to trilinear
maps). The first condition, that the elements of the form (a ⊗ b) ⊗ c generate
(A ⊗B)⊗C follows by 116 IV since the elements of the form a⊗b generate A ⊗B
(and C generates C ). The second condition is met by defining γ(σ, τ, υ) :=
(σ⊗ τ)⊗υ for all np-functionals σ : A → C, τ : B → C and υ : C → C. Finally,
these product functionals γ(σ, τ, υ) are center separating by 116 IV because the
functionals on A ⊗B of the form σ⊗ τ are center separating (and so is the set
of all np-functionals on C ), which was the third condition. �

IV Corollary There is a unique nmiu-isomorphism

α : A ⊗ (B ⊗ C ) −→ (A ⊗B)⊗ C ,

with α(a ⊗ (b ⊗ c)) = (a ⊗ b) ⊗ c for all a ∈ A , b ∈ B, c ∈ C , for any von
Neumann algebras A , B, C .

V Exercise Show that W∗
miu, W∗

cp, W∗
cpu and W∗

cpsu endowed with the tensor
product are symmetric monoidal categories with C as unit.

4.3 Quantum Lambda Calculus

120 In this section we provide the parts needed to built a model of the quantum
lambda calculus using von Neumann algebras. We will not venture to describe
the quantum lambda calculus in all its details here, nor will we describe how to
built the model from these parts (as we did in [9]); we’ll just touch upon the
two key ingredients: the interpretation of “!” and “(” — with them the expert
can easily produce the model.

Let us, nevertheless, try to give some impression to those who are not familiar
with the quantum lambda calculus. The quantum lambda calculus is a type
theory proposed by Selinger and Valiron in [64, 65] to describe programs for
quantum computers especially designed to include not only function types (()
and classical data types (such as bit), but also quantum data types (such as
qbit), so that there can be a term such as new : bit( qbit that represents the
program that initialises a qubit in the given state. There are of course also terms
such as 0 : bit and 1 : bit, so that new 0 : qbit represents a qubit in state |0〉. The
addition of quantum data to a type theory is a very delicate matter for if one
were to allow for example in this system a variable to be used twice (a thing



usually beyond dispute) it would not take much more to construct a program
that duplicates the contents of a qubit, which is nonphysical.

Still, classical data such as a bit can be duplicated freely, so to accommodate
this the type !bit is used. More precisely, the type !A represents that part of
the type of A that is duplicable, so that !bit is the proper type for a bit, and
!qbit is empty. For example, the term that represents the measurement of a
qubit is meas : qbit( !bit, where the ! indicates that the bit resulting from the
measurement may be duplicated freely.

The model we alluded to assigns to each type A a von Neumann algebra JAK,
e.g. JqbitK = M2 and JbitK = C2. A (closed) term t : A is interpreted as an npsu-
functional Jt : AK : JAK → C, so for example J0 : bitK : (x, y) 7→ x : C2 → C.
When t : A has free variables x1 : B1, . . . , xN : BN the interpretation becomes
an ncpsu-map JtK : JAK→ JB1K⊗ · · · ⊗ JBN K, so for example,

Jx : qbit ` measx K : (x, y) 7→
(
x 0
0 y

)
: C2 →M2.

In short, there are no surprises here. As said, the difficulty lies in the definition
of J!AK and JA(BK, for which we will provide the following three ingredients.

• The observation (by to Kornell, [44]) that the category (W∗
miu)op is monoidal

closed, that is, that for every von Neumann algebra B, the functor B ⊗
( · ) : W∗

miu →W∗
miu has a left adjoint ( · )∗B.

• The following two adjunctions.

Set

`∞
,,

⊥ (W∗
miu)op

⊆
,,

nsp:=W∗
miu(−,C)

jj ⊥ (W∗
cpsu)op

F
ll

The interpretation of J!AK and JA(BK will then be

J!AK = `∞(nsp(JAK)) and JA(BK = F(JBK)∗JAK.

Note that J!AK will always be a discrete von Neumann algebra no matter
how complicated JAK may be, so that although this does the job perhaps a more
interesting interpretation of ! may be chosen as well. This is not the case: in the
next section we’ll show that any von Neumann algebra that carries a ⊗-monoid
structure (such as J!AK) is commutative and discrete, and that `∞(nsp(A )) is
moreover the free ⊗-monoid on A .

121In this section, we’ll need the following result from the literature on von Neu-
mann algebras.
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II Proposition Given Hilbert spaces H and K , and von Neumann subalgebras A1

and A2 of B(H ) and von Neumann subalgebras B1 and B2 of B(K ), we have

(A1 ⊗B1) ∩ (A2 ⊗B2) = (A1 ∩A2) ⊗ (B1 ∩B2).

Here A1 ⊗B1 denotes not just any tensor product of A1 and B1, but instead
the “concrete” tensor product of A1 and B1: the least von Neumann subalgebra
of B(H ⊗K ) that contains all operators of the form A ⊗ B where A ∈ A1

and B ∈ B1.

III Proof See Corollary IV.5.10 of [67]. �

4.3.1 First Adjunction

122 Definition We write nsp := W∗
miu( · ,C) for the functor (W∗

miu)op → Set which
maps a von Neumann algebra A to its set of nmiu-functionals, nsp(A ), and
sends a nmiu-map f : A → B to the map nsp(f) : nsp(B) → nsp(A ) given
by nsp(f)(ϕ) = ϕ ◦ f for ϕ ∈ nsp(B).

II Proposition Given a set X the map

η : X → nsp(`∞(X)) given by η(x)(h) = h(x)

is universal in the sense that for every map f : X → nsp(A ), where A is a von
Neumann algebra, there is a unique nmiu-map g : A → `∞(X) such that

X
η //

f
$$

nsp(`∞(X))

nsp(g)

��

`∞(X)

nsp(A ) A

g

OO

commutes. Moreover, and as a result, the assignment X 7→ `∞(X) extends
to a functor `∞ : Set → (W∗

miu)op that is left adjoint to nsp, and is given by
`∞(f)(h) = h ◦ f for any map f : X → Y and h ∈ `∞(Y ).

III Proof Note that if we identify `∞(X) with the X-fold product of C, we see
that η(x) : `∞(X) ≡

⊕
x∈X C → C is simply the x-th projection, and thus a

nmiu-map (see 47 IV). Hence we do indeed get a map η : X → nsp(`∞(X)).
To see that η has the desired universal property, let f : X → nsp(A ) be

given, and define g : A → `∞(X) by g(a)(x) = f(x)(a). One can now either
prove directly that g is nmiu, or reduce this in a slightly roundabout way from



the known fact that `∞(X) is the X-fold product of C with the η(x) as projec-
tions; indeed g is simply the unique nmiu-map with η(x)◦g = f(x) for all x ∈ X,
that is, g = 〈f(x)〉x∈X . In any case, we see that nsp(g)(η(x)) ≡ η(x) ◦ g = f(x)
for all x ∈ X, and so nsp(g) ◦ η = f . Concerning uniqueness of such g, note
that given a nmiu-map g′ : A → `∞(X) with nsp(g′)◦η = f we have η(x)◦g′ =
nsp(g′)(η(x)) = f(x) for all x ∈ X, and so g′ = 〈f(x)〉x∈X = g.

Hence η is a universal arrow from X to nsp. That as a result the assignment
X 7→ `∞(X) extends to a functor Set→ (W∗

miu)op by sending f : X → Y to the
unique nmiu-map `∞(f) : `∞(Y )→ `∞(X) with nsp(`∞(f)) ◦ ηX = ηY ◦ f is a
known and easily checked fact (where ηX := η and ηY : Y → nsp(`∞(Y )) is what
you’d expect). Finally, applying x ∈ X and h ∈ `∞(Y ) we get `∞(f)(h)(x) =
ηX(x)(`∞(f)(h))) = nsp(`∞(x))(ηX(x))(h) = ηY (f(x))(h) = h(f(x)). �

IVLemma A nmiu-functional ϕ on a direct sum
⊕

i Ai of von Neumann algebras
is of the form ϕ ≡ ϕ′ ◦ πi for some i and nmiu-functional ϕ′ on Ai.

VProof Let ej denote the element of
⊕

i Ai given by ej(j) = 1 and ej(i) = 0
for all i 6= j. Note that given i and j with i 6= j we have eiej = 0 and so 0 =
ϕ(eiej) = ϕ(ei)ϕ(ej); from this we see that there is at most one i with ϕ(ei) 6= 0.
Since for this i we have e⊥i =

∑
j 6=i ej and so ϕ(e⊥i ) =

∑
j 6=i ϕ(ej) = 0, we see

that ϕ(a) = ϕ(eia) for all a ∈
⊕

i Ai. Letting κi : Ai →
⊕

j Aj be the nmisu-
map given by κi(a)(i) = a and κi(a)(j) = 0 for j 6= i we have ϕ = ϕ ◦ κi ◦ πi.
Hence taking ϕ′ := ϕ ◦ κi does the job. �

VIExercise Deduce from IV that the functor nsp: (W∗
miu)op → Set preserves

coproducts, and that the map η : X → nsp(`∞(X)) from II is a bijection.

Show that `∞ : Set→ (W∗
miu)op is full and faithful. Whence Set is (isomor-

phic to) a coreflective subcategory of (W∗
miu)op via `∞ : Set→ (W∗

miu)op.

123Exercise We’re going to prove that `∞(X × Y ) ∼= `∞(X)⊗ `∞(Y ).

1. Given an element x of a set X let x̂ denote the element of `∞(X) that
equals 1 on x and is zero elsewhere.

Show that { x̂ : x ∈ X } generates `∞(X).

2. Show that the projections πx : `∞(X) ≡
⊕

y∈X C → C form an order
separating collection of nmiu-functionals on `∞(X).

3. Using this, and 116VII, prove that given sets X and Y the map

⊗ : `∞(X)× `∞(Y )→ `∞(X × Y )
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given by (f ⊗ g)(x, y) = f(x)g(y) is a tensor product.

Conclude that `∞(X × Y ) ∼= `∞(X)⊗ `∞(Y ).

(In fact, it follows that `∞ is strong monoidal.)

II Exercise Let A and B be von Neumann algebras. We’re going to show
that nsp(A ⊗B) ∼= nsp(A )× nsp(B).

1. Given a nmiu-functional ϕ : A ⊗ B → C show that σ := ϕ(( · ) ⊗ 1)
and τ := ϕ(1⊗ ( · )) are nmiu-functionals on A and B, respectively; and
show that ϕ = σ ⊗ τ (by proving that ϕ(a⊗ b) = σ(a)τ(b).)

2. Show that σ, τ 7→ σ⊗τ gives a bijection nsp(A )×nsp(B)→ nsp(A ⊗B).

(This makes nsp strong monoidal.)

4.3.2 Second Adjunction

124 Lemma If a von Neumann algebra A is generated by S ⊆ A , then

#A 6 22#C+#S

,

where #S denotes the cardinality of S, and so on.

II Proof Note that the ∗-subalgebra S′ of A generated by S is ultraweakly dense
in A . Since every element of S′ can be formed from the infinite set S ∪ C
using the finitary operations of addition, multiplication, and involution, #S′ 6
#C+#S. Since every element of A is the ultraweak limit of a filter (see [76, §12])

on S′ of which there no more than 22#S′

, we conclude #A 6 22#C+#S

. �

III Theorem The inclusion W∗
miu →W∗

cpsu has a left adjoint F : W∗
cpsu →W∗

miu.

IV Proof Note that since the category W∗
miu has all products (47 IV), and equalis-

ers (47V), W∗
miu has all limits (by Theorem V2.1 and Exercise V4.2 of [46]).

Moreover, the inclusion U : W∗
miu → W∗

cpsu preserves these limits (see 47 IV
and 47V). So by Freyd’s adjoint functor theorem (Theorem V6.1 of [46]) it
suffices to check the solution set condition, that is, that



for every von Neumann algebra A there be a set I, and for each i ∈ I
an ncpsu-map fi : A → Ai into a von Neumann algebra Ai such that
every ncpsu-map f : A → B into some von Neumann algebra B is
of the form f ≡ h ◦ fi for some i ∈ I and nmiu-map h : Ai → B.

To this end, given a von Neumann algebra A , let κ := 22#C+#A

, define

I = { (C , γ) : C is a von Neumann algebra on a subset of κ,

and γ : A → C is an ncpsu-map },

and set fi := γ for every i ≡ (C , γ) ∈ I.
Let f : A → B be an ncpsu-map into a von Neumann algebra B. The

von Neumann algebra B′ generated by f(A ) has cardinality below κ by I, and
so by relabelling the elements of B′ we may find a von Neumann algebra C
on a subset of κ isomorphic to B′ via some nmiu-isomorphism Φ: B′ → C .
Then the map γ : A → C given by γ(a) = Φ(f(a)) for all a ∈ A is ncpsu,
so that i := (C , γ) ∈ I, and, moreover, the assignment c 7→ Φ−1(c) gives a
nmiu-map h : C → B with h ◦ fi ≡ h ◦ γ = f . Hence U : W∗

miu →W∗
cpsu obeys

the solution set condition, and therefore has a left adjoint. �

VRemark A bit more can be said about the adjunction between the inclu-
sion U : W∗

miu → W∗
ncpsu and F : since W∗

miu has the same objects as W∗
cpsu,

the category (W∗
cpsu)op is, for very general reasons, equivalent to the Kleisli cat-

egory of the (by the adjunction induced) monad FU on (W∗
miu)op in a certain

natural way (see e.g. Theorem 9 of [71]).

4.3.3 Free Exponential

125We’ll prove Kornell’s result (from [44]) that the functor B⊗( · ) : W∗
miu →W∗

miu

has a left adjoint ( · )∗B for every von Neumann algebra B. Kornell original
proof is rather complex, and so is ours, unfortunately, but we’ve managed to
peel off one layer of complexity from the original proof by way of Freyd’s Adjoint
Functor Theorem, reducing the problem to the facts that B ⊗ ( · ) : W∗

miu →
W∗

miu preserves products, equalisers, and satisfies the solution set condition.

IILemma A von Neumann algebra A can be faithfully represented on a Hilbert

space which contains no more than 2#A vectors.

IIIProof If A = {0}, then the result is obvious, so let us assume that A 6= {0}.
Then A is infinite, and so ℵ0 ·#A = #A .
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Let Ω be the set of np-functionals on A . Recall that by the GNS-construction
(see 48VIII) A can be faithfully represented on the Hilbert space HΩ ≡

⊕
ω∈Ω Hω.

Since every element of Hω is the limit of a sequence of elements from A , we
have #Hω 6 ℵ#A

0 6 (2ℵ0)#A = 2#A , because ℵ0 · #A = #A . Since every
normal state is a map ω : A → C, we have #Ω 6 #C#A = (2ℵ0)#A = 2#A ,
because ℵ0 ·#A = #A . Hence #H =

∑
ω∈Ω #Hω 6 2#A · 2#A = 2#A . �

IV Lemma Every nmiu-map h : D → A ⊗ C , where A , C and D are von Neu-
mann algebras, factors as D h̃ // Ã ⊗ C ι⊗id // A ⊗ C , where Ã is a von
Neumann algebra, and ι and h̃ are nmiu-maps, such that for all nmiu-maps
f, g : A → B into some von Neumann algebra B with (f ⊗ id) ◦h = (g⊗ id) ◦h
we have f ◦ ι = g ◦ ι.

Moreover, Ã can be generated by less than #D · 2#C elements.

V Proof Assume (without loss of generality) that C is a von Neumann algebra of

operators on a Hilbert space H with no more than 2#C vectors, see II.
For every vector ξ ∈ H let rξ : A ⊗ C → A be the unique np-map given

by rξ(a⊗c) = 〈ξ, cξ〉 a for all a ∈ A and c ∈ C (see 112XI and 114 I), and let Ã
be the least Neumann subalgebra of A that contains S :=

⋃
ξ∈H rξ(h(D)), and

let ι : Ã → A be the inclusion (so ι is nmiu). Note that S (which generates Ã )
has no more than #D ·#H 6 #D · 2#C elements.

Let f, g : A → B be nmiu-maps into a von Neumann algebra B such that
(f ⊗ id) ◦ h = (g ⊗ id) ◦ h. We must show that f ◦ ι = g ◦ ι. By definition
of Ã (and the fact that f and g are nmiu), it suffices to show that f ◦ rξ ◦ h =
g ◦ rξ ◦ h for all ξ ∈H . Note that given such ξ, we have f ◦ rξ = r′ξ ◦ (f ⊗ id),
where r′ξ : B ⊗ C → B is the np-map given by r′ξ(b ⊗ c) = 〈ξ, cξ〉 b. Since
similarly, g◦rξ = r′ξ◦(g⊗id), we get f ◦rξ◦h = r′ξ◦(f⊗id)◦h = r′ξ◦(g⊗id)◦h =
g ◦ rξ ◦ h.

It remains only to be shown that h(D) ⊆ Ã ⊗ C , because we may then
simply let h̃ be the restriction of h to Ã ⊗ C . It is enough to prove that
h(D) ⊆ Ã ⊗B(H ), because Ã ⊗ C = (Ã ⊗B(H )) ∩ (A ⊗ C ) (see 121 II)
and we already know that h(D) ⊆ A ⊗ C . Let (ek)k be orthonormal basis of
H . Since 1 =

∑
k |ek〉〈ek| in B(H ), we have, for all d ∈ D ,

h(d) =
(∑

k 1⊗ |ek〉〈ek|
)
h(d)

(∑
` 1⊗ |e`〉〈e`|

)
=
∑
k

∑
` ( 1⊗ |ek〉〈ek| ) h(d) ( 1⊗ |e`〉〈e`| ).

We are done if we can prove that, for all ξ, ζ ∈H ,

( 1⊗ |ξ〉〈ξ| ) h(d) ( 1⊗ |ζ〉〈ζ| ) ∈ Ã ⊗B(H ). (4.4)



By an easy computation, we see that, for all e ∈ A ⊗ C of the form e ≡ a⊗ c,

( 1⊗ |ξ〉〈ξ| ) e ( 1⊗ |ζ〉〈ζ| ) =
1

4

3∑
k=0

ik rikξ+ζ(e)⊗ |ξ〉〈ζ| .

It follows that the equation above holds for all e ∈ A ⊗ C . Choosing e = h(d)
we see that (4.4) holds, because rikξ+ζ(h(d)) ∈ Ã . �

VIProposition Let e : E → A be an equaliser of nmiu-maps f, g : A → B between
von Neumann algebras. Then e⊗ id : E ⊗ C → A ⊗ C is an equaliser of f ⊗ id
and g ⊗ id for every von Neumann algebra C .

VIIProof Let h : D → A ⊗C be a nmiu-map with (f⊗id)◦h = (g⊗id)◦h. We must
show that there is a unique nmiu-map k : D → E ⊗C such that h = (e⊗ id)◦k.
Note that since the equaliser map e is injective, e⊗id : E⊗C → A ⊗C is injective
(by 115V) and thus uniqueness of k is clear. Concerning existence, by IV, h
factors as D h̃ // Ã ⊗ C ι⊗id // A ⊗ C where h̃ and ι are nmiu-maps, and
moreover, we have f ◦ι = g◦ι. Since e is an equaliser of f and g, there is a unique
nmiu-map ι̃ : Ã → E with e ◦ ι̃ = ι. Now, define k := (ι̃⊗ id) ◦ h̃ : D → E ⊗ C .
Then (e⊗ id) ◦ k = ((e ◦ ι̃)⊗ id) ◦ h̃ = (ι⊗ id) ◦ h̃ = h. �

VIIITheorem (Kornell) The functor (−)⊗A : W∗
miu →W∗

miu has a left adjoint for
every von Neumann algebra A .

IXProof The category W∗
miu is (small-)complete, and (−) ⊗ A : W∗

miu → W∗
miu

preserves (small-)products and equalisers. Thus, by Freyd’s (General) Adjoint
Functor Theorem [47, Thm. V.6.2], it suffices to check the following Solution
Set Condition (where we’ve used that W∗

miu is locally small).

• For each B ∈W∗
miu, there is a small subset S of objects in W∗

miu such that
every arrow h : B → C ⊗A can be written as a composite h = (t⊗idA )◦f
for some D ∈ S, f : B → D ⊗A , and t : D → C .

Let B be an arbitrary von Neumann algebra. We claim that the following set
S satisfies the required condition:

S = {D | D is a von Neumann algebra on κ}, where κ = 22#C·#B·2#A

.

Indeed, suppose that h : B → C ⊗A is given. By IV, h factors as

B // C̃ ⊗A ι⊗id // C ⊗A ,
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where C̃ is a von Neumann algebra generated by no more than #B · 2#A

elements. It follows that C̃ has no more than κ elements (by 124 I). Thus we
may assume without loss of generality that C̃ is a subset of κ, that is, C̃ ∈ S.�

X Remark It should be noted that analogues of the first and second adjunctions
can be found in the setting of C∗-algebras, which raises the question as to
whether a variation on the free exponential exist for C∗-algebras, that is, is
there a tensor ⊗ on C∗miu such that (−)⊗A : C∗miu → C∗miu has a left adjoint?

Such a tensor does not exist if we require that on commutative C∗-algebras
it is given by the product of the spectra (as is the case for the projective and
injective tensors of C∗-algebras) in the sense that there is a natural isomor-
phism ΦX,Y : C(X)⊗ C(Y ) ∼= // C(X × Y ) between the obvious functors of
type CH × CH → (C∗miu)op. Indeed, if (−) ⊗ A : C∗miu → C∗miu had a left
adjoint and so would preserve all limits for all C∗-algebras A , then the func-
tor (−)×X : CH→ CH would preserve all colimits for every compact Hausdorff
space X, which it does not, because if it did the square βN× βN of the Stone–
Čech compactification βN of the natural numbers (being the N-fold coproduct
of the one-point space) would be homeomorphic to the Stone–Čech compactifi-
cation β(N× N) of N× N, which it is not (by Theorem 1 of [19]).

Whence C∗cpsu does not form a model of the quantum lambda calculus in
the same way W∗

cpsu that does.

4.4 Duplicators and Monoids

126 When asked for an interpretation of the type !A as a von Neumann algebra

J!AK =
⊕
n

JAK⊗n (4.5)

definitely seems like a suitable answer given the cue that !A should represent as
many instances of A as needed, which makes the interpretation we actually use
in our model of the quantum lambda calculus (namely J!AK = `∞(nsp(JAK)))
rather suspect. To address such concerns we’ll show that any von Neumann
algebra that carries a ⊗-monoid structure (in W∗

miu as J!AK should) must be
nmiu-isomorphic to `∞(X) for some set X (see 127 III) ruling out the interpre-
tation (4.5) for all but the most trivial cases. We’ll show in fact that `∞(nsp(A ))
is the free ⊗-monoid over A in W∗

miu (see 132 IV) exonerating it in our minds
from all doubts.



4.4.1 Duplicators

127Definition A von Neumann algebra A is duplicable if there is a duplicator
on A , that is, an npsu-map δ : A ⊗A → A with a unit u ∈ [0, 1]A satisfying

δ(a⊗ u) = a = δ(u⊗ a) for all a ∈ A .

(Note that we require of δ neither associativity nor commutativity.)

IIRemark The unit u can be identified with a positive subunital map ũ : C→ A
via ũ(λ) = λu. The definition is motivated by the fact that the interpretation
of !A must carry a commutative monoid structure in W∗

miu. The condition is
weaker, requiring the maps to be only positive subunital, and dropping associa-
tivity and commutativity. Nevertheless this is sufficient to prove the following.

IIITheorem A von Neumann algebra A is duplicable if and only if A is nmiu-
isomorphic to `∞(X) for some set X. In that case, the duplicator (δ, u) is
unique, given by δ(a⊗ b) = a · b and u = 1.

IVThus, to interpret duplicable types, we can really only use von Neumann alge-
bras of the form `∞(X). It also follows that a von Neumann algebra is duplica-
ble precisely when it is a (commutative) monoid in W∗

miu, or in the symmetric
monoidal category W∗

cpsu of von Neumann algebras and normal completely pos-
itive subunital (CPsU) maps.

VTo prove III we proceed as follows. First we prove in 128VIII every duplica-
ble von Neumann algebra A is commutative (and that the duplicator is given
by multiplication). This reduces the problem to a measure theoretic one, be-
cause A ∼=

⊕
i L
∞(Xi) for some finite complete measure spaces Xi (by 70 III).

Since each of the L∞(Xi)s will be duplicable (see 128XIII) we may assume
without loss of generality that A ∼= L∞(X) for some finite complete measure
space X. Since X splits into a discrete and a continuous part (see 129VI),
and the result is obviously true for discrete spaces, we only need to show
that L∞(C) = {0} for any continuous complete finite measure space C for
which L∞(C) is duplicable. In fact, we’ll show that µ(C) = 0 for such C
(see 129VIII).

VILemma Let δ be a duplicator with unit u on a von Neumann algebra A .
Then u = 1 and δ(1⊗ 1) = 1.

VIIProof Since 1 = δ(u ⊗ 1) 6 δ(1 ⊗ 1) 6 1, we have δ(1 ⊗ 1) = 1, and so

δ(u⊥ ⊗ 1) = 0. But, because u⊥ = δ(u⊥ ⊗ u) 6 δ(u⊥ ⊗ 1) = 0, we have u⊥ = 0,
and thus u = 1. Hence 1 = δ(1⊗ u) = δ(1⊗ 1). �
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128 To prove that a duplicable von Neumann algebra is commutative we’ll need the
following two results from the theory on C∗-algebras.

II Theorem (Tomiyama) Given a C∗-subalgebra B of a C∗-algebra A , any linear
map f : A → B with f(f(a)) = f(a) and ‖f(a)‖ 6 ‖a‖ for all a ∈ A must be
positive and obey bf(a)b′ = f(bab′) for all a ∈ A and b, b′ ∈ B.

III Proof See [68] or 10.5.86 of [43]. �

IV Theorem (Russo–Dye) We have ‖f‖ 6 1 for any pu-map f : A → B between
C∗-algebras A and B.

V Proof See Corollary 1 of [61]. �

VI Lemma Let A be a C∗-algebra, and let f : A ⊕ A → A be a pu-map with
f(a, a) = a for all a ∈ A . Then p := f(1, 0) is central, and

f(a, b) = ap + bp⊥

for all a, b ∈ A .

VII Proof (Based on Lemma 8.3 of [26].)
Note that (c, d) 7→ ( f(c, d), f(c, d) ) gives a pu-map f ′ from A ⊕ A onto

its C∗-subalgebra { (a, a) : a ∈ A } with f ′(f ′(c, d)) = f ′(c, d) for all c, d ∈ A .
Since ‖f ′‖ 6 1 by Russo–Dye’s theorem (IV), Tomiyama’s theorem (II) implies
that for all a, b, c, d ∈ A ,

(a, a) f ′(c, d) (b, b) = f ′( acb, adb ), and so a f(c, d) b = f( acb , adb ).

In particular, ap ≡ af(1, 0) = f(a, 0) = f(1, 0)a ≡ pa for all a ∈ A , and so p is
central. Similarly, f(0, b) = bp⊥ for all b ∈ A . Then f(a, b) = f(a, 0)+f(0, b) =
ap+ bp⊥ for all a, b ∈ A . �

VIII Lemma Let δ : A ⊗ A → A be a duplicator on a von Neumann algebra A .
Then A is commutative and δ(a⊗ b) = a · b for all a, b ∈ A .

IX Proof To prove A is commutative we must show that all a ∈ A are central,
but, of course, it suffices to show that all p ∈ [0, 1]A are central (by the usual
reasoning). Similarly, we only need to prove that δ(a⊗ p) = a · p for all a ∈ A
and p ∈ [0, 1]A . Given such p ∈ [0, 1]A define f : A ⊕ A → A by f(a, b) =
δ(a ⊗ p + b ⊗ p⊥) for all a, b ∈ A . Then f is positive, unital, f(1, 0) = p, and
f(a, a) = a for all a ∈ A . Thus by VI, p is central, and f(a, b) = ap + bp⊥ for
all a, b ∈ A . Then a · p = f(a, 0) = δ(a⊗ p). �

X Remark The special case of VIII in which δ is completely positive can be found
in the literature, see for example Theorem 6 of [45] (in which A is also finite
dimensional).



XICorollary Let A be a von Neumann algebra. Then A is duplicable iff there is
an np-map δ : A ⊗A → A with δ(a ⊗ b) = a · b for all a, b ∈ A , (and in that
case A is commutative.)

XIIRemark Thus for a non-commutative von Neumann algebra A multiplication
(a, b) 7→ ab : A ×A → A is not a normal bilinear map in the sense of 112 II.

XIIICorollary When the direct sum A ⊕B of von Neumann algebras A and B is
duplicable, A and B are duplicable

XIVProof Let δ : (A ⊕ B) ⊗ (A ⊕ B) −→ A ⊕ B be a duplicator on A ⊕
B. By VIII A ⊕ B is commutative and δ((a1, b1) ⊗ (a2, b2)) = (a1a2, b1b2)
for all a1, a2 ∈ A and b1, b2 ∈ B. Let κ1 : A → A ⊕ B be the nmiu-
map given by κ1(a) = (a, 0) for all a ∈ A . Let δA be the composition of

A ⊗A κ1⊗κ1
// (A ⊕B)⊗ (A ⊕B) δ // A ⊕B π1 // A . Then δA is

normal, positive, and δA (a1 ⊗ a2) = π1(δ((a1, 0) ⊗ (a2, 0))) = π1(a1a2, 0) =
a1a2 for all a1, a2 ∈ A . Thus, by XI, A is duplicable. �

129We will now work towards the proof that if C is a continuous complete finite
measure space, then L∞(C) cannot be duplicable unless µ(C) = 0, see X. Let
us first fix some more terminology from measure theory (see 51 and [16]).

IIDefinition Let X be a finite complete measure space.

1. A measurable subset A of X is atomic if 0 < µ(A) and µ(A′) = µ(A) for
all A′ ∈ ΣX with A′ ⊆ A and µ(A′) > 0.

2. X is discrete if X is covered by atomic measurable subsets.

(This coincides with being “purely atomic” from 211K of [16].)

3. X is continuous (or “atomless”) if X contains no atomic subsets.

IIIThe following lemma, which will be very useful, is a variation on Zorn’s Lemma
(that does not require the axiom of choice).

IVLemma Let S be a collection of measurable subsets of a finite complete measure
space X such that for every ascending countable sequence A1 ⊆ A2 ⊆ · · · in S
there is A ∈ S with A1 ⊆ A2 ⊆ · · · ⊆ A.

Then each element A ∈ S is contained in some B ∈ S that is maximal in S
in the sense that µ(B′) = µ(B) for all B′ ∈ S with B ⊆ B′.
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V Proof The trick is to consider for every C ∈ S the quantity

βC = sup{µ(D) : C ⊆ D and D ∈ S }.

Note that µ(C) 6 βC 6 µ(X) for all C ∈ S, and βC2
6 βC1

for all C1, C2 ∈ S
with C1 ⊆ C2. To prove this lemma, it suffices to find B ∈ S with A ⊆ B
and µ(B) = βB .

Define B1 := A. Pick B2 ∈ S such that B1 ⊆ B2 and βB1 − µ(B2) 6 1/2.
Pick B3 ∈ S such that B2 ⊆ B3 and βB2 − µ(B3) 6 1/3. Proceeding in this
fashion, we get a sequence B ≡ B1 ⊆ B2 ⊆ · · · in S with βBn − µ(Bn+1) 6 1/n
for all n. By assumption there is a B ∈ S with B1 ⊆ B2 ⊆ · · · ⊆ B. Note that

µ(B1) 6 µ(B2) 6 · · · 6 µ(B) 6 βB 6 · · · 6 βB2
6 βB1

.

Since for every n ∈ N we have both µ(Bn+1) 6 µ(B) 6 βB 6 βBn and βBn −
µ(Bn+1) 6 1/n, we get βB − µ(B) 6 1/n, and so βB = µ(B). �

VI Lemma Each finite complete measure space X contains a discrete measurable
subset D such that X\D is continuous.

VII Proof Since clearly the countable union of discrete measurable subsets of X
is again discrete, there is by IV a discrete measurable subset D of X which is
maximal in the sense that µ(D′) = µ(D) for every discrete measurable subset D′

of X with D ⊆ D′. To show that X\D is continuous, we must prove that X\D
contains no atomic measurable subsets. If A ⊆ X\D is an atomic measurable
subset of X, then D∪A is a discrete measurable subset of X which contains D,
and µ(D ∪ A) = µ(D) ∪ µ(A) > µ(D). This contradicts the maximality of D.
Thus X\D is continuous. �

VIII Lemma Given a continuous finite complete measure space X, and r ∈ [0, µ(X)],
there is a measurable subset A of X with µ(A) = r.

IX Proof Let us quickly get rid of the case that µ(X) = 0. Indeed, then r = 0,
and so A = ∅ will do. For the remainder, assume that µ(X) > 0.

For starters, we show that for every ε > 0 and B ∈ ΣX with µ(B) > 0 there
is A ∈ ΣX with A ⊆ B and 0 < µ(A) < ε. Define A1 := B. Since µ(B) > 0,
and A1 is not atomic (because X is continuous) there is A ∈ ΣX with A ⊆ A1

and µ(A) 6= µ(A1). Since µ(A) + µ(A1\A) = µ(A1), either 0 < µ(A) 6 1
2µ(A1)

or 0 < µ(X\A) 6 1
2µ(A1). In any case, there is A2 ⊆ A1 with A2 ∈ ΣX and 0 <

µ(A2) 6 1
2µ(A1). Similarly, since A2 is not atomic (because X is continuous),

there is A3 ⊆ A2 with A3 ∈ ΣX and 0 < µ(A3) 6 1
2µ(A2). Proceeding in a



similar fashion, we obtain a sequence B ≡ A1 ⊇ A2 ⊇ · · · of measurable subsets
of X with 0 < µ(An) 6 2−nµ(X). Then, for every ε > 0 there is n ∈ N such
that 0 < µ(An) 6 ε and An ⊆ B.

Now, let us prove that there is A ∈ ΣX with µ(A) = r. By IV there is a
measurable subset A of X with µ(A) 6 r and which is maximal in the sense
that µ(A′) = µ(A) for all A′ ∈ ΣX with µ(A) 6 r and A ⊆ A′. In fact, we claim
that µ(A) = r. Indeed, suppose that ε := r−µ(A) > 0 towards a contradiction.
By the previous discussion, there is C ∈ ΣX with C ⊆ X\A such that µ(C) 6 ε.
Then A∪C is measurable, and µ(A∪C) = µ(A) +µ(C) 6 µ(A) + ε 6 r, which
contradicts the maximality of A. �

XLemma Let X be a continuous finite complete measure space for which L∞(X)
is duplicable. Then µ(X) = 0.

XIProof Suppose that µ(X) > 0 towards a contradiction. Let δ be a duplicator
on L∞(X). By 128VIII δ(f⊗ g) = f · g for all f, g ∈ L∞(X).

Let ω : L∞(X) → C be given by ω(f◦) = 1
µ(X)

∫
f dµ for all f ∈ L∞(X).

Then ω is normal, positive, unital and faithful (cf. 51 IX). We’ll use the product
functional ω ⊗ ω : L∞(X) ⊗ L∞(X) → C, (which is also faithful, by 118 IV) to
tease out a contradiction, but first we need a second ingredient.

Since X is continuous, we may partition X into two measurable subsets
of equal measure with the aid of VIII, that is, there are measurable subsets
X1 and X2 of X with X = X1 ∪ X2, X1 ∩ X2 = ∅, and µ(X1) = µ(X2) =
1
2µ(X). Similarly, X1 can be split into two measurable subsets, X11 and X12,
of equal measure, and so on. In this way, we obtain for every word w over the
alphabet {1, 2}— in symbols, w ∈ {1, 2}∗ — a measurable subset Xw of X such
that Xw = Xw1 ∪Xw2, Xw1 ∩Xw2 = ∅, and µ(Xw1) = µ(Xw2) = 1

2µ(Xw). It
follows that µ(Xw) = 1

2#w µ(X), where #w is the length of the word w.

Now, pw := 1◦Xw is a projection in L∞(X), and ω(pw) = 2−#w for every w ∈
{1, 2}∗. Moreover, pw = pw1 + pw2, and so

pw ⊗ pw = pw1 ⊗ pw1 + pw1 ⊗ pw2 + pw2 ⊗ pw1 + pw2 ⊗ pw2

> pw1 ⊗ pw1 + pw2 ⊗ pw2.

Thus, if we define qN :=
∑
w∈{1,2}N pw ⊗ pw for every natural number N ,

where {1, 2}N is the set of words over {1, 2} of length N , then we get a descend-
ing sequence q1 > q2 > q3 > · · · of projections in L∞(X)⊗L∞(X). Let q be the
infimum of q1 > q2 > · · · in the set of self-adjoint elements of L∞(X)⊗L∞(X).
Do we have q = 0 ?

On the one hand, we claim that δ(q) = 1, and so q 6= 0. Indeed, δ(pw⊗pw) =
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pw · pw = pw for all w ∈ {1, 2}N . Thus δ(qN ) =
∑
w∈{1,2}N δ(pw ⊗ pw) =∑

w∈{1,2}N pw = 1 for all N ∈ N. Hence δ(q) =
∧
n δ(qN ) = 1, because δ is

normal. On the other hand, we claim that (ω⊗ω)(q) = 0, and so q = 0 since ω⊗ω
is faithful and q > 0. Indeed, (ω ⊗ ω)(qN ) =

∑
w∈{1,2}N ω(pw) · ω(pw) =∑

w∈{1,2}N 2−N ·2−N = 2−N for allN ∈ N, and so (ω⊗ω)(q) =
∧
N (ω⊗ω)(qN ) =∧

N 2−N = 0. Thus, q = 0 and q 6= 0, which is impossible. �

130 This takes care of the continuous case. To deal with the discrete case we first
need some simple observations.

II Lemma Let A be an atomic measure space. Then L∞(A) ∼= C.

III Proof Let f ∈ L∞(A) be given. It suffices to show that there is z ∈ C such
that f(x) = z for almost all x ∈ A. Moreover, we only need to consider the case
that f takes its values in R (because we may split f in its real and imaginary
parts, and in turn split these in positive and negative parts).

Let S be some measurable subset of A. Note that either µ(S) = 0 or µ(A\S).
Indeed, if not µ(S) = 0, then µ(S) > 0, and so µ(S) = µ(A) (by atomicity of A),
which entails that µ(A\S) = 0.

In particular, for every real number t ∈ R one of the sets

{x ∈ A : t 6 f(x) } {x ∈ A : f(x) < t }

must be negligible. Whence either t 6 f◦ or f◦ 6 t. It follows that the two
closed sets L := {t ∈ R : t 6 f◦} and U := {t ∈ R : f◦ 6 t} cover R. Since
clearly −‖f‖ ∈ L and ‖f‖ ∈ U , the sets L and U can’t be disjoint, because they
would partition R into two clopen non-empty sets. For an element t ∈ L∩U in
the intersection we have t 6 f◦ 6 t, and so t = f◦. Hence L∞(X) ∼= C. �

IV Exercise Let X be a measure space with µ(X) < ∞. Show that L∞(X) ∼=⊕
A∈A L

∞(A) for every countable partition A of X consisting of measurable
subsets.

V Corollary For every discrete measure space X with µ(X) <∞ there is a set Y
with L∞(X) ∼= `∞(Y ).

131 We are now ready to prove the main result of this section.

II Proof of 127 III We have already seen that `∞(X) can be equipped with a
commutative monoid structure in W∗

miu for any set X, and is thus duplicable.
Conversely, let δ : A ⊗A → A be a duplicator with unit u on a von Neumann
algebra A . By 127VI, we know that u = 1, and by 128VIII, we know that A



is commutative and δ(a⊗ b) = a · b for all a, b ∈ A . Thus, the only thing that
remains to be shown is that A is miu-isomorphic to `∞(Y ) for some set Y .
By 70 III A ∼=

⊕
i L
∞(Xi) for some finite complete measure spaces Xi. So

to prove that A ∼= `∞(Y ) for some set Y it suffices to find a set Yi with
L∞(Xi) ∼= `∞(Yi) for each i, because then A ∼=

⊕
i∈I `

∞(Yi) ∼= `∞
(⋃

i∈I Yi
)
.

Let i ∈ I be given. Since A ∼= L∞(Xi) ⊕
⊕

j 6=i L
∞(Xj) is duplica-

ble, L∞(Xi) is duplicable by 128XIII. By 129VI there is a measurable sub-
set D of Xi such that D is discrete, and C := X\D is continuous. We
have L∞(Xi) ∼= L∞(D)⊕L∞(C) by 130 IV, and so L∞(D) and L∞(C) are dupli-
cable (again by 128XIII). By 129X, L∞(C) can only be duplicable if µ(C) = 0,
and so L∞(C) ∼= {0}. On the other hand, since D is discrete, we have L∞(D) ∼=
`∞(Y ) for some set Y (by 130V). All in all, we have L∞(Xi) ∼= `∞(Y ). �

4.4.2 Monoids

132We further justify our choice, J!AK = `∞(nsp(JAK)), by proving that `∞(nsp(A ))
is the free (commutative) monoid on A in W∗

miu. As a corollary, we also obtain
that `∞(W∗

cpsu(A ,C)) is the free (commutative) monoid on A in W∗
cpsu.

IILet us first recall some terminology. Given a symmetric monoidal category
(SMC) C, a monoid in C is an object A from C endowed with a multiplication
map m : A⊗ A→ A and a unit map u : I → A satisfying the associativity and
the unit law, i.e. making the following diagrams commute.

(A⊗A)⊗A
α
��

m⊗id // A⊗A
m
��

A⊗ (A⊗A)
id⊗m

// A⊗A
m

// A

I ⊗A

λ &&

u⊗id // A⊗A
m
��

A⊗ Iid⊗uoo

ρ
xx

A

Here α, λ, ρ respectively denote the associativity isomorphism, and the left and
the right unit isomorphism. A monoid A is commutative if m ◦ γ = m, where
γ : A⊗A→ A⊗A is the symmetry isomorphism. A monoid morphism between
monoids A1 and A2 is an arrow f : A1 → A2 that satisfies mA2◦(f⊗f) = f ◦mA1

and uA2
= f ◦ uA1

. We denote the category of monoids and monoid morphisms
in C by Mon(C). The full subcategory of commutative monoids is denoted
by cMon(C). Recall that W∗

miu and W∗
cpsu are symmetric monoidal categories

with C as tensor unit (see 119V), and so we may speak about monoids in W∗
miu

and W∗
cpsu.
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III Exercise Let A be a von Neumann algebra.

1. Show that any monoid structure on A in W∗
cpsu is a duplicator on A .

2. Deduce from this and 127 III that there is a monoid structure on A in W∗
miu

or in W∗
cpsu iff A is duplicable iff A ∼= `∞(X) for some set X; and that, in

that case the multiplication m : A ⊗A → A of the monoid is commutative
and uniquely being fixed by m(a⊗ b) = a · b.

3. Show that the monoid morphisms in W∗
miu and in W∗

cpsu are precisely the
nmiu-maps.

4. Conclude that cMon(W∗
miu) = Mon(W∗

miu) = cMon(W∗
cpsu) = Mon(W∗

cpsu).

5. Show that Mon(W∗
miu) ∼= dW∗

miu ' Setop, where dW∗
miu denotes the full

subcategory of W∗
miu consisting of duplicable von Neumann algebras.

(Hint: `∞ : Set→ (W∗
miu)op is full and faithful by 122VI.)

IV Theorem Let A be a von Neumann algebra, and let η : A → `∞(nsp(A )) be
the nmiu-map given by η(a)(ϕ) = ϕ(a). Then `∞(nsp(A )) is the free (commu-
tative) monoid on A in W∗

miu via η.

V Proof Let B be a monoid on W∗
miu, and let f : A → B be a nmiu-map We

must show that there is a unique monoid morphism g : `∞(nsp(A ))→ B such
that g ◦ η = f . Since the monoid structure on B is a duplicator on B we may
assume, by 127 III, that B = `∞(Y ) for some set Y . Since nsp: (W∗

miu)op → Set
is left adjoint to `∞ : Set→ (W∗

miu)op with unit η (see 122 II), there is a unique
map h : Y → nsp(A ) with `∞(h)◦η = f . Since `∞ is full and faithful by 122VI,
the only thing that remains to be shown is that `∞(h) is a monoid morphism.
Indeed it is, since the monoid multiplication on `∞(nsp(A )) and `∞(Y ) is given
by ordinary multiplication, which is preserved by `∞(h) being a miu-map. �

VI Corollary Let A be a von Neumann algebra. Then `∞(W∗
cpsu(A ,C)) is the

free (commutative) monoid on A in W∗
cpsu.

VII Proof By IV `∞ ◦ nsp is a left adjoint to the forgetful functor Mon(W∗
miu) →

W∗
miu. Note that by III, the forgetful functor Mon(W∗

cpsu) → W∗
cpsu factors

through W∗
miu as:

Mon(W∗
cpsu) Mon(W∗

miu)
⊥ //W∗

miu

`∞◦nsp

ww
⊥ //W∗

cpsu

F
yy



where F is from 124 III. Thus the free monoid on A in W∗
cpsu is given by:

(`∞ ◦ nsp ◦ F)(A ) = `∞(W∗
miu(FA ,C)) ∼= `∞(W∗

cpsu(A ,C))

as was claimed. �

133Conclusion Here ends this thesis, but not the entire story. There’s much more to
be said about self-dual Hilbert A -modules, about dilations and their relation to
purity, and about the abstract theory of corners, filters, and �-positivity. You’ll
see all this, and more, in the sequel, “Dagger and dilations in the category of
von Neumann algebras” [74], brought to you by my twin brother.

134(Paragraphs numbered 134 and up can be found in [74].)
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Index

( · )′
f ′, derivative of a holomorphic func-

tion, 12 II
( · )I, imaginary part

operation on a C∗-algebra, 7 II
( · )R, real part

AR, of a C∗-algebra, 7 II
operation on a C∗-algebra, 7 II

( · )∗
adjoint of an operator, 4VIII
involution on a C∗-algebra, 3 I

( · )⊥, orthosupplement, 9 IX
( · )+, positive part

A+, of a C∗-algebra, 9 IV
a+, of a self-adjoint element of a

C∗-algebra, 24 I
( · )−, negative part

a−, of a self-adjoint element of a
C∗-algebra, 24 I

(a), order ideal generated by a, 22 III
](w0, z, w1), angle between complex num-

bers, 14 III
≈

A ≈ B, for subsets of a topological
space, 52 II

f ≈ g, for measurable functions,
51V

A ∗B, free exponential, 125 I
a ∗ ω, 72 II
(X )1, unit ball, 4 IV
(X )r, r-ball, 4 IV
!, 120 I⋂
A, infimum of projections, 56XVI⋃
A, supremum of projections, 56XVI

[a], from the polar decomposition of a,

82 I
[f ], for an ncp-map, 98 IX
dd · ee

ddaee, central support, 68 I, 83V
ddfee, central carrier, 69 I

d · e
dae, ceiling, 56 I, 59 I
dfe, carrier of an np-map, 63 I

da), support, 59 I
(ae, range, 59 I
deeS , 88 II
f�, 101 I
〈f〉, 105 II
f�, 101 II
eA e, corner, 94 I
b · c

bac, of an effect, 56VI
γ(f, g), product functional, 108 II
[ · , · ]ω, given np-functional ω, 30 II
|x〉〈y|, with x, y ∈H , 4XIX
|n〉〈m|, with n,m ∈ N, 43 II
6, order

on a C∗-algebra, 9 IV
(, 120 I
J · K, 120 I
a∼1, pseudoinverse of a, 79 I
a/b

in a von Neumann algebra, 81 I, 81 III
a\c/b

in a von Neumann algebra, 81 II, 81VII√
a, square root

in a C∗-algebra, 23VII
S�, commutant of S, 65 II∨
D, supremum of D

in B(H ), 37XI



f◦, equivalence class of f , 51V
⊗

H ⊗K , of Hilbert spaces, 110VI
A ⊗B, of von Neumann algebras,

115 I
a⊗b, of elements of von Neumann

algebras, 115 I
A⊗B, of operators between Hilbert

spaces, 111V
bifunctor on W∗

nmiu, . . . , 115 IV
f ⊗ g, of normal functionals, 116 I
f ⊗ g, of np-maps, 115 II
x⊗y, of elements of Hilbert spaces,

110VI
�, algebraic tensor product, 112 I
β�, 112 I
βγ , 112XI
β⊗, 115 III
A∗, predual of A , 87 I
., Murray–von Neumann preorder, 83 II⊕

, direct sum⊕
i Ai, of C∗-algebras, 3V⊕
i Ai, of von Neumann algebras,
42V⊕

i Hi, of Hilbert spaces, 6 II
‖ · ‖, norm

of an operator, 4 II
on a C∗-algebra, 3 I
on a pre-Hilbert A -module, 32 IX
on a pre-Hilbert space, 4XV
supremum ∼, 3V

1A, indicator function
on [0, 1], 14 II

〈 · , · 〉, inner product
C-valued, 4VIII, 32 I

definite, 32 I

A
A∗( · )A : Ba(X)→ Ba(Y )

is completely positive, 34V
a∗( · )a : A → A

is completely positive, 34V
is normal, 44XV

adjoint
of a adjointable map between pre-

Hilbert A -modules, 32 I
adjoint of an operator, 4VIII
adjointable

map between pre-Hilbert A -modules,
32 I

operator, 4VIII
almost clopen, 52 II
approximate pseudoinverse, 80 II
atomic subset of a measure space, 129 II

B
Baire’s Category Theorem, 54 II
Ba(X), 32 I

as a von Neumann algebra, 49 II
as C∗-algebra, 32XIII

Ba(X,Y ), 32 I
BC(X)

as a C∗-algebra, 3VI
Bessel’s inequality, 39 IV
B(H )

as a C∗-algebra, 4 I, 5XII
as a von Neumann algebra, 42V

Bicommutant Theorem, 88VI
bilinear map

bounded, 112 II
completely positive, 112 II
normal, 112 II

bipositive
map between C∗-algebras, 20VI

bound
for a linear map, 4 II

B(X ), 4 II
B(X ,Y ), 4 II



C
C, the complex numbers

as a C∗-algebra, 3 III
as a Hilbert space, 4 IX
as a von Neumann algebra, 42V

C(X), 3VI
as a C∗-algebra, 3VI

c00

as a pre-Hilbert space, 4 IX
carrier, 63 I
category of von Neumann algebras, 47 III
Cauchy’s Integral Formula, 15 I
Cauchy–Schwarz inequality

for A -valued inner products, 32VI
for C-valued inner products, 4XV

cC∗: cC∗miu, cC∗pu,. . . , 10 III
ceiling, 56 I, 59 I
central

element of a von Neumann alge-
bra, 67 I

central carrier, 69 I
central support, 68 III
centre of a von Neumann algebra, 65 II
centre separating collection

of maps on a C∗-algebra, 21 II
of np-functionals, 90 II

CH, 29 I
Choi’s Theorem, 34XVIII
commutant, 65 II
completely positive

bilinear map, 112 II, 113 I
map between C∗-algebras, 10 II, 34 II

contraposed, 101VI
corner (map), 95 I

standard, 98 I
unital, 95 I

corner (von Neumann algebra), 94 I
cp, standard filter for p, 98 I
C∗: C∗miu, C∗cpu, . . . , 10 III

C∗(a), C∗-subalgebra genererated by a,
28 II

C∗-algebra, 3 I
commutative, 3 I, 27XXVII
concrete, 4 I
finite dimensional, 3VIII, 84 II
of bounded operators, 4 I

C∗-identity, 3 I
C∗-subalgebra, 3 IV
cyclic projection, 66 III

D
definitions, 1V
derivative of a holomorphic function,

12 II
direct sum

of C∗-algebras, 3V
of Hilbert spaces, 6 II
of von Neumann algebras, 42V

dom(f), domain of an A -valued par-
tial function, 12 II

Double Commutant Theorem, 88VI
Douglas’ Lemma, 81V
duplicable von Neumann algebra, 127 I

is commutative, 128VIII
duplicator, 127 I

is multiplication, 128VIII

E
Eff , 97 I
effect

in a C∗-algebra, 9 IX
effectus, 47VI
equaliser

in C∗cpsu, 34VI
in W∗

miu and W∗
cpsu, 47V

in C∗miu and C∗pu, 10VIII
equivalent ncp-maps, 101V
essential supremum norm, 51V



ηω, 30VI
extremal disconnectedness, 53 III

F
F : W∗

cpsu →W∗
miu, 124 III

factor, 67 III
faithful collection

of maps on a C∗-algebra, 21 II
filter, 96 I

for p, 96 I
standard, 98 I

FinPAC, 47VI
floor

of an effect, 56VI
form, between Hilbert A -modules, 36 IV

bounded, 36 IV
free exponential, 125 I
free monoid

in W∗
cpsu, 132VI

in W∗
miu, 132 IV

function
holomorphic (at z), 12 II
A -valued & partial, 12 II

functional
basic, on A �B, 112 II
positive, 86 II

normal, 89 IX
simple, on A �B, 112 II
ultraweakly continuous, 86XII
vector, 21 III

f(a), continuous functional calculus, 28 II

G
γ, Gelfand representation, 27 III
Gelfand–Mazur’s Theorem, 16VII
Gelfand–Naimark’s Theorem, 30XIV

for von Neumann algebras, 48VIII
Gelfand–Naimark–Segal (GNS), 30VI
Gelfand’s Representation Theorem, 27XXVII

for von Neumann algebras, 53 II
geometric series, 11 II, 11VII
Goursat’s Theorem, 14 IV

H
Hahn–Banach’s Theorem, 73 IV
Hellinger–Toeplitz’s Theorem, 35VIII
Hilbert A -module, 32 I

self dual, 36 I
Hilbert space, 4VIII
holomorphic function, 12 II
HΩ, 30 IX
Hω, 30VI
∗-homomorphism, 10 III

I
imaginary part

of an element of a C∗-algebra, 7 II
inclusion

of a corner, 94 I
inner product

C-valued, 4VIII, 32 I
completion, 30V
definite, 4VIII

invertible
element of a C∗-algebra, 11VI

involution
on a C∗-algebra, 3 I

involution preserving
bilinear map, 108 I
map between C∗-algebras, 10 II

K
Kadison’s inequality, 30 IV
Kaplansky’s Density Theorem, 74 IV

L
`2

as a Hilbert space, 4 IX



`2-bounded bilinear map, 110 I
L∞(X), 51 II
`∞(X), 3V

as a C∗-algebra, 3V
`∞-bounded bilinear map, 110 II
L∞(X), 51V
`∞ : Set→ (W∗

miu)op, 122 II

M
Mn, the n× n-matrices

as a C∗-algebra, 3VII
MnA , the n× n-matrices over A

as a C∗-algebra, 33 I
as a von Neumann algebra, 49 IV

Mnf , 33 III
is normal, 49 IV

meagre, 52 II
measurable function, 51 I
measure

complete, 51 I
finite, 51 I

measure space
continuous, 129 II
discrete, 129 II

miu-bilinear, 108 I
miu-map, 10 III

injective
is isometry, 29VIII

Mnβ, for bilinear β, 113 III
monoid

in an SMC, 132 II
multiplicative

bilinear map, 108 I
map between C∗-algebras, 10 II
ncp-map, 99XII
ncpsu-map, 99 II

Murray–von Neumann preorder, 83 II
µX , measure, 51 I

N
negligible, subset of a measure space,

51 I
normal

bilinear map, 112 II
element of a C∗-algebra, 28 II
functional, 42 II
positive functional, 46 III, 89 IX

on B(H ), 38 I, 39 IX
positive map between von Neumann

algebras, 44XV, 48 II
nsp: (W∗

miu)op → Set, 122 I

O
operator, 4 II

adjointable, 4VIII
bounded, 4 II

operator norm, 4 II
order ideal of a C∗-algebra, 22 II

maximal, 22 II
proper, 22 II

order separating collection
of maps on a C∗-algebras, 21 II
of pu-maps on a C∗-algebra, 21VII

orthogonal projections, 55XII
orthonormal basis, for a Hilbert space,

39 II
orthonormal, subset of a Hilbert space,

39 II
maximal, 39 II

orthosupplement
operation in a C∗-algebra, 9 IX

P
parallelogram law, 4XV
Parseval’s identity, 39 IV
partial isometry

in a von Neumann algebra, 79 I
πj , projection



in C∗miu, 10VII
πp, standard corner of p, 98 I
polar decomposition

of a functional, 86 IX
of an element of a von Neumann

algebra, 82 I
polarisation identity

in a von Neumann algebra, 44 II
polarization identity

for an inner product, 4XV
positive

completely ∼ bilinear map, 112 II
completely∼map between C∗-algebras,

10 II
element of a C∗-algebra, 9 IV, 17V, 25 I
map between C∗-algebras, 10 II

�-positive, 103 I
power series, 13 II
predual, 87 I
pre-Hilbert A -module, 32 I
pre-Hilbert space, 4VIII
Principle of Uniform Boundedness, 35 II
product

in C∗cpsu, 34VI
in W∗

miu and W∗
cpsu, 47 IV

in C∗miu and cC∗miu, 10VII
in C∗pu, 18 I

product functional, 108 II
projection

in a C∗-algebra, 55 II
of x on C, 5 II
onto a corner, 94 I

Projection Theorem, 5VII
pseudoinverse, 79 I

approximate, 80 II
pu-map, 10 III
pure map, 100 I

is rigid, 102 IX
Pythagoras’ theorem, 4XV

Q
quantum lambda calculus, 120 I
quotient–comprehension chain, 97 I

R
radially open set, 73 II
radius of convergence, 13 II
real part

of an element of a C∗-algebra, 7 II
%Ω, 30 IX

is normal, 48V
%ω, 30VI

is normal, 48 III
Riesz decomposition lemma, 26 III
Riesz ideal, 27VII

maximal, 27VII
Riesz’ Representation Theorem, 5 IX
rigid ncp-map, 102 II
Russo–Dye Theorem, 20 IV

for completely positive maps, 34XVI
Russo-Dye’s Theorem, 128 IV

S∫
, integral∫

f , of continuous f : [0, 1] → A ,
14 II

of continuous f : C→ A∫
T
f , over a triangle, 14 III∫ w′

w
f , over an interval, 14 III

Schur’s Product Theorem, 111 I, 113 II
self adjoint, 7 II
�-self-adjoint, 103 I
separating collection

of maps on a C∗-algebra, 21 II
sequential product, 106 I
ΣX , measurable subsets, 51 I
SOT, strong operator topology, 37V
sp, spectrum

sp(A ), of a C∗-algebra, 27 III



is extremally disconnected for a
von Neumann algebra, 53 III

sp(a), of an element of a C∗-algebra,
11XIX

spacial tensor product, 111VII
Spectral Mapping Theorem, 28 II
Spectral Permanence, 11XXIII
spectral radius, 16 II
square root axiom, 105VII
state of a C∗-algebra, 22 I

order separating, 22VIII
Stone–Weierstraß’ Theorem, 27XIX
subunital map between C∗-algebras, 10 II
supremum norm, 3V
symmetric monoidal category (SMC),

132 II

T
tensor product

algebraic = of vector spaces, 112 I
of Hilbert spaces, 109 II

exists, 109 III
is `2-bounded, 110 III
universal property, 110 III

of von Neumann algebras, 108 II
exists, 111XII
functorial, 115 IV
uniqueness, 114 II
universal property, 112XI, 114 I

Tomiyama’s Theorem, 128 II
triangle, for our purposes, 14 III

U
ultracyclic projection, 66 II
ultraweak and ultrastrong, 42 III

completeness, 77 I
convex ∼ly closed subset, 73VIII
permanence, 89XI
topologies are Hausdorff, 44XI

ultraweak tensor product topology, 112 II
ultraweakly bounded net, 87VIII
Uniform Boundedness Theorem, 35 II
unit

of a C∗-algebra, 3 I
unit ball, 4 IV

of a C∗-algebra
extreme points, 86VI

unital
bilinear map, 108 I
C∗-algebra, 3 II
map between C∗-algebras, 10 II

V
vector functional

for a Hilbert A -module, 32XV
for a Hilbert space, 21 III

is normal, 38 II
is completely positive, 34V
is normal, 49 II

von Neumann algebra, 42 I
category of, 47 III
commutative, 70 III
finite dimensional, 84 II
is bounded ultraweakly complete,

77 I
is ultrastrongly complete, 77 I
with a faithful np-functional, 51VII

von Neumann subalgebra, 42V
is ultraweakly closed, 75VIII

W
W∗

miu, W∗
cpsu, . . . , 47 II

wnT, winding number, 14 III
WOT, weak operator topology, 37V

Z
Z(A ), centre of A , 65 II
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